Coulomb excitation 2006Ra08

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

2006Ra08: ${}^{12}C({}^{138}Ce, {}^{138}Ce'\gamma)$ E=480 MeV ${}^{138}Ce$ beam of about 1 pnA was produced from the ATLAS accelerator at ANL. Target was 1 mg/cm² ${}^{12}C$. γ rays were detected with the Gammasphere array of 98 HPGe detectors in 15 rings. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma(\theta)$, DSA. Deduced levels, J, π , lifetimes, γ -ray multipolarities and mixing ratios. Comparisons with neighboring nuclei.

2014Na15: ²⁴Mg(¹³⁸Ce, ¹³⁸Ce' γ) E=480 MeV ¹³⁸Ce beam of about 1.7 enA was produced from ATLAS-ANL facility. Target was 0.85 mg/cm² ²⁴Mg followed by a 15.7 mg/cm² thick layer of natural copper. γ rays were detected with the Gammasphere array of 100 HPGe detectors and recoils were detected with a silicon detector. Measured E γ , I γ , (particle) γ -coin. Deduced lifetime of first 2⁺ state by recoil-distance (RDDS) method using Yale plunger device, and g factor of first 2⁺ state by time-dependent recoil into vacuum (TDRIV) following Coulomb excitation. Comparison with predictions from large-scale shell-model (lssm) and quasiparticle phonon model (qpm).

1989Lo01: ¹³⁸Ce($\alpha, \alpha' \gamma$) E=9,10 MeV alpha beam was produced from the Cologne FN tandem accelerator. Target was made from material containing ¹³⁸Ce and ¹⁴²Ce. γ rays were detected with Ge detectors. Measured γ , relative $\sigma(\theta)$. Deduced B(E2) from $\sigma(\theta)$ relative to B(E2)(¹⁴²Ce).

1989Ga24: ¹³⁸Ce(p,p' γ) E=3.0 MeV. Measured γ , $\sigma(\theta)$. Deduced β_2 , B(E2) from $\sigma(\theta)$.

¹³⁸Ce Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	Comments
0.0	0+		
788 1	2+	1.98 ps 4	 B(E2)↑=0.45 3; β₂=0.126 8 g=0.26 8 (2014Na15) T_{1/2}: weighted average of 2.06 ps 14 from average B(E2)↑ of 1989Lo01 and 1989Ga24, and 1.97 ps 4 from RDDS (2014Na15). B(E2): weighted average of 0.45 3 (1989Lo01) and 0.461 50 (1989Ga24). β₂: from average B(E2). The g factor measured by 2014Na15 relative to g(first 2⁺)=0.21 5 for ¹⁴²Ce. Statistical
			uncertainty=0.05, uncertainty from value in 142 Ce is 0.06.
1476.4 12	0+ #		
1510.3 7	2+	0.834 ps 20	
1826.4 12	4+	-	
2142.7 8	2+	123 fs 7	
2177.3 9	3-		B(E3)↑=0.163 9 (2006Ra08)
2236.7 8	2+	56.8 fs 35	
2470.7 8	$(2^+)^{@}$	109 fs 6	
2642.2 8	2 ^{+#}	66 fs 32	

[†] From a least-squares fit to γ -ray energies.

[‡] From 2006Ra08 based on $\gamma(\theta)$ and RUL, unless otherwise noted.

From Adopted Levels.

[@] 2⁺ from 2006Ra08 and brackets are added by the evaluator since no experimental evidence is given in 2006Ra08.

& From DSA method (2006Ra08), unless otherwise noted. 2006Ra08 does not explain the source of the uncertainties. Usually, a $\approx 5\% - 10\%$ systematic uncertainty due to slowing-down process should be included.

Coulomb excitation 2006Ra08 (continued)

 γ ⁽¹³⁸Ce)

A₂, A₄ values are from 2006Ra08.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
667 <i>1</i>	1.97 3	2177.3	3-	1510.3 2+			
688 <i>1</i>	0.069 6	1476.4	0^{+}	788 2 ⁺			
722 1	7.33 6	1510.3	2^{+}	788 2 ⁺	M1+E2	-1.97 +32-25	A ₂ =-0.172 8; A ₄ =-0.018 11
788 <i>1</i>	1000.0 1	788	2+	$0.0 \ 0^+$	E2		$A_2 = +0.112$ 5; $A_4 = -0.003$ 7
1038 <i>I</i>	2.565 15	1826.4	4+	788 2 ⁺			A ₂ =+0.347 10; A ₄ =-0.033 13
1354 <i>I</i>	1.173 13	2142.7	2+	788 2+	M1+E2	-0.83 +6-8	$A_2 = -0.203 \ 15; \ A_4 = -0.005 \ 15$
1389 <i>1</i>	4.10 3	2177.3	3-	788 2 ⁺	E1+M2	-0.025 + 12 - 19	$A_2 = -0.191 9; A_4 = -0.006 12$
1448 <i>1</i>	2.263 15	2236.7	2+	788 2+	M1+E2	0.18 + 5 - 4	A ₂ =+0.308 14; A ₄ =+0.012 18
1510 <i>I</i>	9.68 6	1510.3	2^{+}	$0.0 \ 0^+$			A ₂ =+0.201 7; A ₄ =-0.056 10
1682 <i>I</i>	0.411 5	2470.7	(2^{+})	788 2+			
1854 <i>I</i>	0.250 10	2642.2	2^{+}	788 2^+			
2143 <i>I</i>	0.378 8	2142.7	2+	$0.0 0^+$			
2237 <i>1</i>	1.811 25	2236.7	2^{+}	$0.0 \ 0^+$			$A_2 = +0.298 \ 21; A_4 = -0.08 \ 3$
2471 <i>I</i>	0.508 13	2470.7	(2^{+})	$0.0 0^+$			
2642 1	0.087 35	2642.2	2+	0.0 0+			I_{γ} : deduced from branching ratio in Adopted Gammas.

[†] From 2006Ra08. Values of intensities given by 2006Ra08 have been divided by 1000. [‡] From 2006Ra08 based on $\gamma(\theta)$.

¹³⁸₅₈Ce₈₀