		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

 $Q(\beta^{-})=-4437 \ 10; \ S(n)=9724 \ 5; \ S(p)=7719 \ 50; \ Q(\alpha)=-1046 \ 5 2017$ Wal0

S(2n)=17205 5, S(2p)=13262 5 (2017Wa10).

First identification of ¹³⁸Ce nuclide by A.J. Dempster: Phys Rev 49, 947 (1936).

Other measurement:

 138 Ba(π^+,π^-): GDR built on IAS state (1992Od01).

Theoretical calculations:

2016Du04: calculated charge densities, rms charge radii.

2016Pr01: calculated B(E2).

2015El05: calculated two-neutron separation energies.

2015Hu05,2013Bo24,2010Pa12,2009Si32,2008Lo05,2007Ji05,2007Tu03, 2004Yo04: calculated energy levels, J, π, B(E2).

¹³⁸Ce Levels

Cross Reference (XREF) Flags

		A ¹³⁸ L B ¹³⁸ P C ¹³⁸ P D ¹³⁸ C	a β^- decay r ε decay (1.45 m r ε decay (2.03 h) e IT decay (8.73	$ \begin{array}{ccccc} E & {}^{124}\mathrm{Sn}({}^{18}\mathrm{O},4\mathrm{n}\gamma) & \mathrm{I} & {}^{139}\mathrm{La}(\mathrm{p},2\mathrm{n}\gamma) \\ \mathrm{in}) & \mathrm{F} & {}^{130}\mathrm{Te}({}^{12}\mathrm{C},4\mathrm{n}\gamma) & \mathrm{J} & {}^{140}\mathrm{Ce}(\mathrm{p},\mathrm{t}) \\ \mathrm{G} & {}^{136}\mathrm{Ba}(\alpha,2\mathrm{n}\gamma) & \mathrm{K} & \mathrm{Coulomb\ excitation} \\ \mathrm{ms}) & \mathrm{H} & {}^{138}\mathrm{Ba}(\alpha,4\mathrm{n}\gamma) \end{array} $
E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
0.0 [@] 788.744 [@] 8	0 ⁺	>4.4×10 ¹⁶ y	ABCDEFGHI JK	%2ε=100 T _{1/2} : From 2014Be37 for the 2ν2K decay mode for the decay branch of g.s. to g.s. at 90% confidence level. Limits of T _{1/2} values for other 0ν decay modes to g.s. were also derived in 2014Be37 and are: ≥5.5×10 ¹⁷ y for 0ν2K mode; ≥4.6×10 ¹⁷ y for 0vKL mode; and ≥4.0×10 ¹⁷ for 0v2L mode. Others: 2011Be02, 2009Be20, 2001Da22. $\Delta < r^2 > (^{138}Ce, ^{140}Ce) = 0.056 \ 16 \ (1989Ga24), isotope shift$ $\delta v (^{138}Ce, ^{140}Ce) = 26.0 \ 42 \ MHz \ (1999Is02).$ Evaluated nuclear charge radius $< r^2 > ^{1/2} = 4.8737 \ fm \ 18 \ (2013An02).$ $\mu = 0.52 \ 16 \ (2014Na15)$
/00.711 0	2	1.90 ps /		$\beta_2 = 0.126 \ 8; \ B(E2)\uparrow=0.45 \ 3$ $J^{\pi}: \ 788.742\gamma \ E2 \ to \ 0^+, \ L(p,t)=2.$ $T_{1/2}: \ weighted average of 2.06 \ ps \ 14 \ from \ B(E2)\uparrow in \ Coulomb \ Excitation.$ $\mu: \ from \ g-factor=0.26 \ 8 \ measured \ using \ the \ Time-Dependent \ Recoil \ Into \ Vacuum \ (TDRIM) \ technique \ (2014Na15).$
1476 93 9	0^{+}		B G T K	p_2 and $B(E2)$ from Coulomb Excitation. $I^{\pi} \cdot 1476.9 \times F0$ to 0^+
1510.80 15	2^{+}	0.834 ps 20	B G IJK	J^{π} : 722.2 γ M1 to 2 ⁺ , 1510.5 γ E2 to 0 ⁺ ; systematics of N=80 nuclides. T _{1/2} : from Coulomb excitation by DSAM.
1826.51 [@] 10	4+	<40 ps	CDEFGHI JK	J^{π} : 1037.8 γ E2 to 2 ⁺ . See J^{π} comment for 2137 level. T _{1/2} : from $\gamma\gamma(t)$ in ¹³⁰ Te(¹² C, 4n γ).
2129.28 [@] 12	7-	8.73 ms 20	CDEFGHI J	%IT=100 J^{π} : 302.8 γ E3 to 4 ⁺ ; L(p,t)=7. $T_{1/2}$: from γ (t) in ¹³⁸ Ce IT decay (1977Go15 and 1960Mo19). Configuration= $\nu d^{-1}_{-1} h^{-1}_{-1}$, (1976Lu05).
2137.00 13	4+		BC EFGHI	J^{π} : L(p,t)=5,6 for 2217 level; 80.4 γ from 2217 to 2137 level, 1348.1 γ E2 from 2137 level to 2 ⁺ ; and 390.9 γ E1 from 2217 level to 1826

Continued on next page (footnotes at end of table)

¹³⁸Ce Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}$	XREF		Comments
					level, 1037.8 γ E2 from 1826 level to 2 ⁺ , establish $J^{\pi}(1826)=4^+$,
					$J^{\pi}(2137)=4^+$ and $J^{\pi}(2217)=5^-$.
2142.9 7	(2^{+})	123 fs 7		K	J^{π} : 1354 γ (M1+E2) to 2 ⁺ , 2143 γ to 0 ⁺ .
					$T_{1/2}$: from Coulomb excitation by DSAM.
2177.37 16	(3 ⁻)		GΙ	K	$B(E3)\uparrow=0.163 \ 9 \ (2006Ra08)$
					J ^{π} : suggested by 2006Ra08 in Coulomb excitation based on $\gamma(\theta)$.
					$J^{\pi}=(3^+)$ suggested by 1987Lo12 in $(\alpha, 2n\gamma)$ but no experimental
					evidence.
					B(E3)↑ from Coulomb excitation (2006Ra08).
2217.41 12	5-	450 ps <i>30</i>	C EFGHI	J	J^{π} : L(p,t)=5,6; 390.9 γ E1 to 4 ⁺ . See J^{π} comment for 2137 level.
					$T_{1/2}$: from $\gamma\gamma(t)$ in ¹³⁰ Te(¹² C,4n γ). Other: <0.3 ns from $\gamma\gamma(t)$ in
					138 Pr ε decay (2.03 h).
2236.54 15	2^{+}	56.8 fs 35	В	K	J^{π} : 2236.5 γ E2 to 0 ⁺ , 1447.8 γ M1+E2 to 2 ⁺ .
					$T_{1/2}$: from Coulomb excitation by DSAM.
2293.97 [@] 12	6+	880 ps 19	FGHT		I^{π} : 467.5 γ E2 to 4 ⁺ . 157.0 γ E2 to 4 ⁺ . 164.7 γ (E1) to 7 ⁻ .
	-	F			$T_{1/2}$: from $\gamma \gamma(t)$ in $^{130}Te(^{12}C 4n\gamma)$
2339.85 10	0^{+}		R	1	$I_{1/2}^{\pi}$. I (n t)-0: log $t_{t-5.7}^{\pi}$ from 1 ⁺ narent in ¹³⁸ Pr s decay (1.45 m)
2393.05.10	(3^{-})		бст	ן ו	I^{π} : I (n t)-(2 3): 176 5v to 5 ⁻
2396 11 22	(J) 6 ⁺		GI	5	I^{π} : 569 by F2 to A^{+} no y to I<4
2390.11 22	$\frac{0}{4^{+}}$		GI	1	I^{π} : 933 1 γ O to 2 ⁺ I (n t)=4 or 5
2470 99 15	(12^+)	109 fs 6	R	л У	I^{π} : 1682 1v to 2 ⁺ 2471 1v to 0 ⁺
2471 68 18	$(1,2^{+})$ $(4^{+}5^{+})$	107 13 0	Б G Т	ĸ	I^{π} : 334 6v (M1+F2) to 4^+ 177 8v to 6^+
2642 4 3	2+	66 fs 32	R	אר	I^{π} : I (n t)=2 or 3 2642 0v to 0 ⁺
2012.13	2	00 15 52	D	JIC	$T_{1/2}$: from Coulomb excitation by DSAM
2719 15	$(4^+, 5^-)$			1	$I_{1/2}^{\pi}$: L(n,t)=4.5.
2733.09.18	6 ⁺		FG T	-	I^{π} : 906.6v E2 to 4 ⁺ , 439.1v M1+E2 to 6 ⁺ .
2748.78 18	5+		GI		J^{π} : 611.7 γ M1 to 4 ⁺ and 454.9 γ M1+E2 to 6 ⁺ .
2764.94 13	6-		C FGHI		J^{π} : 547.5 γ M1 to 5 ⁻ , 635.7 γ M1 to 7 ⁻ .
2885 16	$(2^+, 3^-)$			J	J^{π} : L(p,t)=2.3.
2899.25 18	6-		C G I		J^{π} : 770.1 γ M1 to 7 ⁻ , 681.7 γ $\Delta J=1$ to 5 ⁻ .
2903.21 20	$(1,2^{+})$		В		J^{π} : 1426.9 γ to 0 ⁺ , 2114.4 γ to 2 ⁺ .
2907.22 22	(3,4,5)		GΙ		J^{π} : 1080.7 γ D+O to 4 ⁺ .
2942 16	$(4^+, 5^-)$			J	J^{π} : L(p,t)=4,5.
2950.5 3	$(2^{-}, 3^{-}, 4^{-})$		GΙ		J^{π} : 556.6 γ M1 to (3 ⁻).
2995.72 22	6+		GΙ		J^{π} : 1169.2 γ E2, $\Delta J=2$ to 4 ⁺ .
3005 16	$(4^+, 5^-)$			J	J^{π} : L(p,t)=4,5.
3082 19	$(4^+, 5^-)$			J	J^{π} : L(p,t)=4,5.
3109.02 [@] 13	8+		FGHI		J^{π} : 979.7 γ E1 to 7 ⁻ . 815.1 γ E2 to 6 ⁺ .
3176.27 23			GI		
3177.4? 7			В		
3214.17 23	(5,6,7)		GΙ		J^{π} : 920.2 γ to 6 ⁺ , $\Delta J < 2$ from $\gamma(\theta)$ in (α .2n γ).
3220 16	$(2^+, 3^-)$			J	J^{π} : L(p,t)=2,3.
3229.8 <i>3</i>			GΙ		
3277 16	(3 ⁻)			J	J^{π} : L(p,t)=(3).
3331.59 20	8-		F		J^{π} : 1202.3 γ M1 to 7 ⁻ .
3356 18	$(2^+, 3^-)$			J	J^{π} : L(p,t)=2,3.
3367.8 4			С		
3429 16	$(4^+, 5^-)$			J	J^{π} : L=4,5 in (p,t) dataset.
3430.2 3	$(7)^+$		FG I		J^{π} : 697.1 γ M1(+E2) to 6 ⁺ ; no γ to J<6. 2009Bh04 in (¹² C,4n γ)
					assigned (8 ⁺) assuming 697.1 γ (E2) to 6 ⁺ but no experimental support is presented.
3507 30 ^b 17	9-		F		I^{π} · 1378 0v E2 to 7^{-} 175 7v to 8^{-} 398 3v to 8^{+}
3531 16	1		•	J	
3539 21 @ 15	10^{+}	82 ns 2	FEGHT		%IT=100
2007.21 10	10	02 110 2	LI GILL		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁸Ce Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}$	XREF	Comments
				μ =-1.70 3 (1980Ba68,2014StZZ); Q=0.77 (1983Da29,2016St14)
				J^{π} : 430.2 γ E2 to 8 ⁺ , band structure.
				$T_{1/2}$: weighted average of 81 ns 2 from (¹² C,4n γ), 81 ns 5 from (α ,4n γ), 82
				ns 2 from $(^{10}\text{U},4n\gamma)$.
				μ : from 1980Me11 in (¹² C 4ng)
				MOMM2: estimated by 1983Da29 using an effective charge of 1.87
				Configuration= $vh_{i,i}^{-2}$ (1976Lu05).
3545.79 23	(9 ⁻)		F	E(level): this level is constructed by 2009Bh04 in $({}^{12}C,4n\gamma)$ from the
				placement of the 396.7 γ -1416.5 γ cascade from the 3942, 11 ⁺ level to the
				2129, 7 ⁻ level. 1999Zh28 in (^{18}O ,4n γ) placed the cascade in opposite order,
				making a level at E=2526 level instead. A 1416.5 γ is also observed but
				unplaced in ¹⁵⁸ Pr ε decay (2.03 h) from 7 ⁻ parent decay and it could
				indicate that the placement of this γ from the 3942, 11' level in (10,4n γ) is less likely and its placement from the 3546 (0 ⁻) level is favored
				J^{π} : 1416.5 γ (E2) to 7 ⁻ .
3646 16	(7^{-})		J	J^{π} : L(p,t)=(7).
3670.6 <i>3</i>	$(6,7^{-})$		С	J^{π} : 1453.3 γ to 5 ⁻ , 1540.9 γ to 7 ⁻ , log <i>ft</i> =7.1 from 7 ⁻ parent.
3800.6 4	$(6,7^{-})$		C	J^{π} : 1671.2 γ to 7 ⁻ , 1583.2 γ to 5 ⁻ , log <i>ft</i> =7.2 from 7 ⁻ parent.
3926.7 5	(6,7)	140 11	C	J^{*} : 1/9/.5 γ to 7, 1/09.2 γ to 5, log $ft=7.2$ from 7 parent.
3942.42° 18	11+	140 ps 11	EFGHI	J^{π} : 403.2 γ M1+E2 to 10 ⁺ , 396.7 γ (M2) to (9 ⁻), band structure.
4050.02.3			СТ	$I_{1/2}$: from $\gamma\gamma(t)$ in (*-C,4n γ). Other: <1.5 ns from 19/6Lu0/.
4139.3 3	(10^{-})		F	J^{π} : 632.0y (M1) to 9 ⁻ .
4157.0 5	6,7,8		С	J^{π} : 2026.6 γ to 7 ⁻ , 1392.6 γ to 6 ⁻ , log <i>ft</i> =6.7 from 7 ⁻ parent.
4204.0 3	(10^{-})		F	J ^{π} : proposed in (¹² C,4n γ).
4248.1 7	$(6,7^{-})$		C	J^{π} : 2119.3 γ to 7 ⁻ , 2030.2 γ to 5 ⁻ , log <i>ft</i> =7.1 from 7 ⁻ parent.
4359.93 ^{⁽⁰⁾} 23	12+		EFGHI	J^{π} : 417.5 γ M1 to 11 ⁺ , band structure.
4401.9 ^{<i>b</i>} 3	10-		F	J^{π} : 894.6 γ M1 to 9 ⁻ , band structure.
4781.51 25	(12^{+}) 13 ⁻		F	J^{π} : 839.1 γ (M1+E2) to 11 ⁺ .
4974.64 25	13 ⁺		EF H	J^{π} : 614.7 ν M1 to 12 ⁺ : no ν to J<12.
5071.3 4	(11 ⁻)		F	J^{π} : 932.0 γ (M1) to (10 ⁻).
5089.32 24	12^{-}		EF H	J^{π} : 1146.9 γ E1 to 11 ⁺ , 729.3 γ to 12 ⁺ .
5214.30 [@] 24	13-		EFGHI	J^{π} : 854.4 γ E1 to 12 ⁺ , 124.8 γ M1+E2 to 12 ⁻ , band structure.
5312.39 [@] 25	14 ⁺	80 ps 9	EF H	J^{π} : 337.7 γ M1 to 13 ⁺ , band structure.
1				$T_{1/2}$: from $\gamma\gamma(t)$ in (¹² C,4n γ).
5387.7 ⁰ 4	11-		F	J^{π} : 985.8 γ M1 to 10 ⁻ , band structure.
5411.5 [°] 3	14-		FΗ	J^{π} : 197.9 γ M1 to 13 ⁻ , 568.5 γ M1 to 13 ⁻ , 99.1 γ to 14 ⁺ , band structure.
5566.4 ^{^w} 3	15+		FH	J^{π} : 254.0 γ M1+E2 to 14 ⁺ , band structure.
5714.4 3	(14)		F	J [*] : 500.1 γ (M1) to 13.
5720.0° 5	14 15 ⁻		r F U	J . 1500.77 E2 to 12 , band structure. I^{π} : 210 54 M1 to 14 ⁻ band structure
5751.0 5 5871 2 ^{<i>a</i>} 3	15 15 ⁺		F	I^{π} : 896 6v F2 to 13 ⁺ 144 6v to 14 ⁺ hand structure
5955.3 4	10		F	
6014.4 [@] 3	16+		EF H	J^{π} : 448.0 γ M1 to 15 ⁺ , band structure.
6134.7 <i>3</i>	(14^{+})		F	J^{π} : 1291.7 γ (E1) to 13 ⁻ .
6328.7 ^b 4	(12 ⁻)		F	J^{π} : 941.0 γ (M1) to 11 ⁻ , band structure.
6363.4 ^{&} 4	16-		F	J ^{π} : 632.4 γ M1 to 15 ⁻ , band structure.
6408.6 4	(15 ⁻)		F	J ^{π} : proposed in (¹² C,4n γ) assuming 997.1 γ (M1) to 14 ⁻ .
6451.0 4	16		F	17 500 0 M1 (15+ 1 1 ()
0451.2^{4} 4	10 ⁺		F	J ^{$+$} : 580.07 MI to 15 ⁺ , band structure.
0330.4" 3	15()		F	J [*] : 1224.0 γ (E1+M2), Δ J=1 to 14 ⁺ , 9/0.0 γ to 15 ⁺ , 149.1 γ Δ J=1 from 16 ⁻ .
			C	

Continued on next page (footnotes at end of table)

¹³⁸Ce Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
6597.6 5		F	
6606.3 ^{<i>a</i>} 4	17^{+}	F	J^{π} : 155.1 γ M1 to 16 ⁺ , band structure.
6685.5 [#] 3	16-	EF	J ^{π} : 1119.1 γ E1 to 15 ⁺ , band structure. J ^{π} =16 ⁺ assigned by 1999Zh28 in (¹⁸ O,4n γ) is inconsistent with γ (DCO) and γ (pol) data in (¹² C,4n γ) and not adopted.
6738.3 4	(16 ⁻)	F	J^{π} : proposed in (¹² C,4n γ) assuming 1007.3 γ (M1) to 15 ⁻ .
6841.7 [@] 3	17^{+}	EF	J^{π} : 827.3 γ M1 to 16 ⁺ , 1275.3 γ $\Delta J=2$ to 15 ⁺ , band structure.
6859.7 5		F	
6889.0 [#] 3	17^{-}	EF	J^{π} : 874.6 γ E1 to 16 ⁺ , 203.5 γ M1 to 16 ⁻ , band structure.
7074.0 ^{&} 4	(17^{-})	F	J^{π} : proposed in (¹² C,4n γ) assuming 710.6 γ (M1) to 16 ⁻ and 1343.0 γ (E2) to 15 ⁻ .
7104.7 [@] 3	18^{+}	EF	J^{π} : 1090.3 γ E2 to 16 ⁺ , 263.0 γ M1 to 17 ⁺ , band structure.
7185.3 4	(16 ⁻)	F	J^{π} : proposed in (¹² C,4n γ).
7211.3 [#] 3	18^{-}	EF	J^{π} : 322.3 γ M1 to 17 ⁻ , band structure.
7225.2 3	(16 ⁻)	F	J^{π} : proposed in (¹² C,4n γ).
7392.3 ^a 5	(18^{+})	F	J^{π} : proposed in (¹² C,4n γ) assuming 786.0 γ (M1) to 17 ⁺ .
7427.6 4		F	
7532.4 <i>3</i>	(17^{-})	F	J^{π} : 347.1 γ (M1) to (16 ⁻), 1518.0 γ (E1) to 16 ⁺ .
7682.9 4	19+	EF	J^{π} : 578.2 γ M1 to 18 ⁺ .
7685.8 [#] 4	19-	EF	J^{π} : 474.5 γ M1 to 18 ⁻ , band structure.
7744.2 <i>4</i>	(18^{-})	F	J^{π} : 211.8 γ (M1+E2) to (17 ⁻).
7803.2 [@] 4	20^{+}	EF	J^{π} : 120.3 γ M1+E2 to 19 ⁺ , 698.5 γ to 18 ⁺ , band structure.
8322.3 4	(20^{+})	F	J^{π} : 211.8 γ (M1) to 19 ⁺ .
8350.3 [#] 4	20^{-}	EF	J^{π} : 664.5 γ M1 to 19 ⁻ , 1139.0 γ to 18 ⁻ , band structure.
8709.6 [#] 4	21^{-}	F	J^{π} : 359.3 γ M1 to 20 ⁻ , band structure.
8873.5 [@] 4	22+	EF	J^{π} : 1070.3 γ E2 to 20 ⁺ , band structure.
8921.1 4		F	
8957.9 [#] 5	$22^{(-)}$	F	J^{π} : 248.3 γ (M1), $\Delta J=1$ to 21 ⁻ , band structure.
8978.3 4		F	
9430.9 [@] 5	(23^{+})	F	J^{π} : 557.4 γ (M1) to 22 ⁺ , band structure.
9511.4 <i>4</i>		F	

[†] From least-squares fit to $E\gamma$, assuming $\Delta E\gamma$ =1 keV when unknown.

[‡] From Coulomb excitation by DSAM and (¹²C,4n γ) by $\gamma\gamma(t)$, unless otherwise noted.

[#] Band(A): Band based on 15⁻. Possible magnetic-rotational band with proposed configuration= $\pi g_{7/2} \otimes \pi h_{11/2} \otimes \nu h_{11/2}^{-2}$

[@] Seq.(E): Yrast sequence. Configurations: $[\pi(g_{7/2}^6 d_{5/2}^2) \otimes v h_{11/2}^{-2} + \pi(g_{7/2}^5 d_{5/2}^3) \otimes v h_{11/2}^{-2}]$ for positive-parity states and $[\pi(g_{7/2}^6 d_{5/2}^1 h_{11/2}^1) \otimes v h_{11/2}^{-2}] + [\pi(g_{7/2}^5 d_{5/2}^2 h_{11/2}^1) \otimes v h_{11/2}^{-2}] + [\pi(g_{7/2}^5 d_{5/2}^3) \otimes v (s_{1/2}^{-1} h_{11/2}^{-1}]]$ for negative-parity states. Above 6 MeV excitation, configuration= $\pi h_{11/2}^2 \otimes v h_{11/2}^{-2}$.

& Band(B): Band based on 14⁻. Possible configuration= $\pi(g_{7/2}d_{5/2}) \otimes \nu(h_{11/2}^{-1}d_{3/2}^{-1})$.

^{*a*} Band(C): Band based on 14⁺. ^{*b*} Band(D): Band based on 9⁻. Possible configuration= $vh_{11/2} \otimes vd_{3/2}$ or $vh_{11/2} \otimes vs_{1/2}$.

							Adopted Lev	vels, Gamr	nas (continued)
								<u>γ(¹³⁸Ce</u>	<u>)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
788.744	2+	788.742 8	100	0.0	0+	E2 [@]	0.00342		$\alpha(K)=0.00291 \ 4; \ \alpha(L)=0.000406 \ 6; \ \alpha(M)=8.52\times10^{-5} \ 12$ $\alpha(N)=1.88\times10^{-5} \ 3; \ \alpha(O)=3.01\times10^{-6} \ 5; \ \alpha(P)=2.10\times10^{-7} \ 3$ $B(E2)(W.u.)=21.2 \ +16-14$ Ex: from ¹³⁸ La β^- decay.
1476.93	0+	688.2 1	100	788.744	2+	E2&	0.00473		$\alpha(K)=0.00400 \ 6; \ \alpha(L)=0.000576 \ 8; \ \alpha(M)=0.0001211 \ 17 \ \alpha(N)=2.67\times10^{-5} \ 4; \ \alpha(O)=4.24\times10^{-6} \ 6; \ \alpha(P)=2.87\times10^{-7} \ 4 \ E_{\gamma}: \ from \ ^{138}Pr \ \varepsilon \ decay \ (1.45 \ m).$
		1476.9 2		0.0	0^+	E0 <mark>&</mark>		3.1 3	$E_{\gamma}, I_{(\gamma+ce)}$: from ¹³⁸ Pr ε decay (1.45 m).
1510.80	2+	722.2 2	75.9 9	788.744	2+	M1 [#]	0.00630		$\begin{aligned} &\alpha(K) = 0.00541 \ 8; \ \alpha(L) = 0.000700 \ 10; \ \alpha(M) = 0.0001458 \ 21 \\ &\alpha(N) = 3.24 \times 10^{-5} \ 5; \ \alpha(O) = 5.27 \times 10^{-6} \ 8; \ \alpha(P) = 4.09 \times 10^{-7} \ 6 \\ &B(M1)(W.u.) = 0.0301 \ 11 \\ &E_{\gamma}: \text{ weighted average of } 722.3 \ 3 \ \text{from } ^{138}\text{Pr } \varepsilon \text{ decay } (1.45 \ \text{m}), \ 722.1 \\ &2 \ \text{from } ^{136}\text{Ba}(\alpha, 2n\gamma), \ \text{and } 722 \ 1 \ \text{from Coulomb excitation.} \end{aligned}$
		1510.5 3	100.0 <i>6</i>	0.0	0+	E2	9.54×10 ⁻⁴		I _γ : weighted average of 89 <i>11</i> from ¹³⁸ Pr ε decay (1.45 m), 81 <i>3</i> from ¹³⁹ La(p,2nγ), and 75.7 <i>6</i> Coulomb Excitation. Other: 90 <i>3</i> from ¹³⁶ Ba(α,2nγ). Mult.: Other: M1+E2 from Coulomb Excitation with δ=−1.97 +32–25 based on γ(θ). $\alpha(K)=0.000751 11; \alpha(L)=9.63×10^{-5} 14; \alpha(M)=2.00×10^{-5} 3$
									$\begin{aligned} \alpha(N) &= 4.44 \times 10^{-5} ?; \ \alpha(O) &= 7.19 \times 10^{-5} I0; \ \alpha(P) &= 5.47 \times 10^{-5} 8; \\ \alpha(IPF) &= 8.10 \times 10^{-5} I2 \\ B(E2)(W.u.) &= 1.15 4 \\ E_{\gamma}: \text{ weighted average of } 1510.2 2 \text{ from } ^{138}\text{Pr } \varepsilon \text{ decay } (1.45 \text{ m}), \\ 1510.9 2 \text{ from } ^{136}\text{Ba}(\alpha, 2n\gamma), \text{ and } 1510 I \text{ from Coulomb excitation.} \\ I_{\gamma}: \text{ from Coulomb excitation.} \\ Mult.: Q \text{ from } \gamma(\theta) \text{ in } ^{136}\text{Ba}(\alpha, 2n\gamma) \text{ and Coulomb excitation; M2 is } \\ \text{ruled out by RUL.} \end{aligned}$
1826.51	4+	1037.8 <i>1</i>	100	788.744	2+	E2	0.00186		
2129.28	7-	302.8 <i>1</i>	100	1826.51	4+	E3	0.183		¹³⁶ Ba(α ,2n γ), ¹³⁸ Ba(α ,4n γ) and Coulomb excitation, and γ (DCO) and γ (pol) in ¹³⁰ Te(¹² C,4n γ). α (K)=0.1236 <i>18</i> ; α (L)=0.0462 <i>7</i> ; α (M)=0.01033 <i>15</i> α (N)=0.00223 <i>4</i> ; α (O)=0.000324 <i>5</i> ; α (P)=8.31×10 ⁻⁶ <i>12</i> B(E3)(W.u.)=0.450 <i>12</i>

S

							A	dopted Levels, Gar	nmas (contin	ued)
								$\gamma(^{138}\text{Ce})$ (co	ontinued)	
	E _i (level)	\mathbf{J}_i^{π}	Eγ [‡]	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult.	δ	α^{\dagger}	Comments
	2137.00	4+	1348.1 2	100	788.744	2 ⁺	E2		1.12×10 ⁻³	E _γ : weighted average of 302.7 <i>I</i> from ¹³⁸ Pr ε decay, 302.9 8 from ¹³⁸ Ce IT decay, 302.9 <i>I</i> from ¹³⁰ Te(¹² C,4nγ), 302.7 2 from ¹³⁶ Ba(α,2nγ), and 302.7 3 from ¹³⁸ Ba(α,4nγ). Mult.: based on ce data in ¹³⁸ Pr ε decay (2.03 h) and ¹³⁸ Ce IT decay. $\alpha(K)=0.000937 \ I4; \alpha(L)=0.0001213 \ I7;$ $\alpha(M)=2.52\times10^{-5} \ 4$ $\alpha(N)=5.59\times10^{-6} \ 8; \alpha(O)=9.05\times10^{-7} \ I3; \alpha(P)=6.81\times10^{-8} \ I0; \alpha(IPF)=3.17\times10^{-5} \ 5$ E _γ : weighted average of 1347.8 $I0$ from ¹³⁸ Pr ε decay (1.45 m), 1348.0 3 from ¹³⁸ Pr ε decay (2.03 h), 1348.1 2 from ¹³⁰ Te(¹² C,4nγ), 1348.1 2 from ¹³⁶ Ba(α,2nγ). Mult: based on ce data in (n 2nα) and (α 2nα) $\alpha(\theta)$ in
9	2142.9	(2+)	1354 <i>1</i>	100 <i>1</i>	788.744	2+	(M1+E2)	-0.83 +6-8	0.00133 <i>3</i>	Mult.: based on ce data in $(p,2n\gamma)$ and $(\alpha,2n\gamma)$, $\gamma(\theta)$ in $^{136}Ba(\alpha,2n\gamma)$, $\gamma(DCO)$ and $\gamma(pol)$ in $^{130}Te(^{12}C,4n\gamma)$. $\alpha(K)=0.001120\ 22;\ \alpha(L)=0.000143\ 3;\ \alpha(M)=2.97\times10^{-5}\ 6$ $\alpha(N)=6.60\times10^{-6}\ 13;\ \alpha(O)=1.073\times10^{-6}\ 21;$ $\alpha(P)=8.29\times10^{-8}\ 17;\ \alpha(IPF)=3.33\times10^{-5}\ 6$ $B(M1)(W.u.)=0.032\ +6-4;\ B(E2)(W.u.)=7.4\ +12-13$ E. L. a form Combune negative set of the set
			2143 <i>I</i>	32.2 7	0.0	0+	[E2]		8.16×10 ⁻⁴	E _γ , I _γ : from Coulomb excitation. Mult.,δ: from Coulomb excitation based on $\gamma(\theta)$; bracket is added by evaluator. $\alpha(K)=0.000392 \ 6$; $\alpha(L)=4.91\times10^{-5} \ 7$; $\alpha(M)=1.018\times10^{-5} \ 15$
	2177.37	(3 ⁻)	666.6 2 1388.6 2	48.1 7 100.0 7	1510.80 788.744	2+ 2+	(E1+M2)	-0.025 +12-19	0.00063 <i>3</i>	$ α(N)=2.26\times10^{-6} 4; α(O)=3.67\times10^{-7} 6; α(P)=2.85\times10^{-8} 4; α(IPF)=0.000362 5 B(E2)(W.u.)=0.58 +6-5 Eγ, Iγ: from Coulomb excitation. Eγ: from (α,2nγ). Iγ: from Coulomb excitation. Other: 30 2 from (p,2nγ). α(K)=0.000427 24; α(L)=5.3\times10^{-5} 3; α(M)=1.10\times10^{-5} 7 α(N)=2.43\times10^{-6} 15; α(O)=3.95\times10^{-7} 24; α(P)=3.06\times10^{-8} 19; α(IPF)=0.0001339 23 Eγ: from Coulomb excitation. Mult.,δ: from Coulomb excitation based on γ(θ), bracket added by evaluator. Other: δ=-2.2 2 for Mult=M1+E2 in (α,2nγ). [α,2nγ). [α,2nγ). [α(α,2nγ). [α(α,2nγ). $

							Adopted Leve	els, Gammas (continued)
							$\gamma(^{138}$	Ce) (continue	<u>d)</u>
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π}	Mult.	δ	α^{\dagger}	Comments
2217.41	5-	80.4 2	2.4 10	2137.00	4+	[E1]		0.442	$\begin{aligned} \alpha(\text{K}) = 0.375 \ 6; \ \alpha(\text{L}) = 0.0536 \ 9; \ \alpha(\text{M}) = 0.01117 \ 18 \\ \alpha(\text{N}) = 0.00243 \ 4; \ \alpha(\text{O}) = 0.000375 \ 6; \ \alpha(\text{P}) = 2.19 \times 10^{-5} \ 4 \\ \text{B}(\text{E1})(\text{W.u.}) = 2.0 \times 10^{-5} \ + 13 - 10 \\ \text{E}_{\gamma}: \text{ weighted average of } 79.4 \ 6 \ \text{from } ^{138}\text{Pr} \ \varepsilon \ \text{decay } (2.03 \ \text{h}), \ 80.4 \\ 2 \ \text{from } ^{130}\text{Te}(^{12}\text{C}, 4n\gamma), \ \text{and } 80.4 \ 2 \ \text{from } ^{136}\text{Ba}(\alpha, 2n\gamma). \end{aligned}$
		88.0	5.6 14	2129.28	7-	[E2]		3.25	I_{γ} : from ¹³⁶ Pr ε decay (2.03 h). Other: ≤5 from (α,4nγ). $\alpha(K)$ =1.756 25; $\alpha(L)$ =1.167 17; $\alpha(M)$ =0.261 4 $\alpha(N)$ =0.0559 8; $\alpha(O)$ =0.00784 11; $\alpha(P)$ =9.11×10 ⁻⁵ 13 B(E2)(W.u.)=2.5×10 ² 7 F. L : from (α 4nα) only
		390.9 1	100 4	1826.51	4+	E1		0.00642	$\begin{aligned} &\alpha(K) = 0.00552 \ 8; \ \alpha(L) = 0.000713 \ 10; \ \alpha(M) = 0.0001482 \ 21 \\ &\alpha(N) = 3.27 \times 10^{-5} \ 5; \ \alpha(O) = 5.25 \times 10^{-6} \ 8; \ \alpha(P) = 3.81 \times 10^{-7} \ 6 \\ &B(E1)(W.u.) = 7.4 \times 10^{-6} \ + 11 - 9 \\ &E_{\gamma}: \ weighted \ average \ of \ 390.9 \ 1 \ from \ ^{130} Te(^{12}C, 4n\gamma), \ 390.8 \ 2 \\ &from \ ^{136}Ba(\alpha, 2n\gamma), \ 390.7 \ 3 \ from \ ^{138}Ba(\alpha, 4n\gamma), \ and \ 390.9 \ 1 \\ &from \ ^{138}Pr \ \varepsilon \ decay \ (2.03 \ h). \\ &L_{\gamma}: \ from \ (\alpha, 2n\gamma). \\ &Mult.: \ based \ on \ ce \ data \ in \ (\alpha, 2n\gamma) \ and \ ^{138}Pr \ \varepsilon \ decay \ (2.03 \ h), \end{aligned}$
2236.54	2+	1447.8 2	100.0 7	788.744	2+	M1+E2	0.18 +5-4	1.30×10 ⁻³	$\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$, $\gamma(DCO)$ and $\gamma(pol)$ in $({}^{12}C, 4n\gamma)$. $\alpha(K)=0.001069 \ 16; \ \alpha(L)=0.0001354 \ 20; \ \alpha(M)=2.81\times10^{-5} \ 5$ $\alpha(N)=6.25\times10^{-6} \ 10; \ \alpha(O)=1.018\times10^{-6} \ 15; \ \alpha(P)=7.98\times10^{-8} \ 12; \ \alpha(IPF)=6.11\times10^{-5} \ 9$ $B(M1)(W.u.)=0.069 \ +7-6; \ B(E2)(W.u.)=0.6 \ +5-3$ E_{γ} : from ${}^{138}Pr \ \varepsilon \ decay \ (1.45 \ m).$ I_{γ} : from Coulomb excitation. What is from Coulomb excitation.
		2236.5 2	80.0 11	0.0	0+	E2		8.27×10 ⁻⁴	Mult.: from Coulomb excitation based on $\gamma(\theta)$ and RUL. $\alpha(K)=0.000363 5$; $\alpha(L)=4.54\times10^{-5} 7$; $\alpha(M)=9.41\times10^{-6} 14$ $\alpha(N)=2.09\times10^{-6} 3$; $\alpha(O)=3.39\times10^{-7} 5$; $\alpha(P)=2.64\times10^{-8} 4$; $\alpha(IPF)=0.000407 6$ B(E2)(W.u.)=1.87 +15-13 E _{γ} : from ¹³⁸ Pr ε decay (1.45 m). I _{γ} : from Coulomb excitation. Other: 61 9 from ¹³⁸ Pr ε decay (1.45 m). Mult.: Q from $\gamma(\theta)$ in Coulomb excitation; M2 is ruled out by RUL.
2293.97	6+	76.6 1	41 5	2217.41	5-	(E1)		0.505	$\alpha(K)=0.427 \ 7; \ \alpha(L)=0.0616 \ 9; \ \alpha(M)=0.01282 \ 19$ $\alpha(N)=0.00279 \ 4; \ \alpha(O)=0.000429 \ 7; \ \alpha(P)=2.48\times10^{-5} \ 4$ B(E1)(W.u.)=0.000123 \ 18 E _y : weighted average of 76.7 \ 1 from ¹³⁰ Te(¹² C,4ny), 76.4 \ 2

 \neg

							Adopted Lo	evels, Gammas (continued)
							<u> γ(</u>	¹³⁸ Ce) (continued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
2293.97	6+	157.0 2	8.2 4	2137.00	4+	E2	0.420	from ¹³⁶ Ba(α ,2n γ), and 76.5 3 from ¹³⁸ Ba(α ,4n γ). I _{γ} : weighted average of 43 5 from ¹³⁰ Te(¹² C,4n γ), 34 9 from ¹³⁶ Ba(α ,2n γ). Mult.: based on $\gamma(\theta)$ in (α ,2n γ) and (α ,4n γ). $\alpha(K)=0.302$ 5; $\alpha(L)=0.0932$ 14; $\alpha(M)=0.0205$ 3 $\alpha(N)=0.00442$ 7; $\alpha(O)=0.000642$ 10; $\alpha(P)=1.76\times10^{-5}$ 3 B(E2)(W.u.)=6.1 +9-8 E _{γ} : weighted average of 157.1 2 from ¹³⁰ Te(¹² C,4n γ), 156.8 2 from
		164.7 <i>1</i>	100 4	2129.28	7-	(E1)	0.0616	¹³⁰ Ba(α ,2n γ). I _{γ} : weighted average of 9.2 <i>10</i> from ¹³⁶ Ba(α ,2n γ) and 8.0 4 from ¹³⁹ La(p,2n γ). Other: 27.2 27 from ¹³⁰ Te(¹² C,4n γ). Mult.: from Coulomb excitation based on γ (DCO) and RUL. α (K)=0.0527 8; α (L)=0.00707 <i>10</i> ; α (M)=0.001470 <i>21</i> α (N)=0.000323 5; α (O)=5.09×10 ⁻⁵ 8; α (P)=3.38×10 ⁻⁶ 5 B(E1)(W.u.)=3.0×10 ⁻⁵ +4-3 E _{γ} : weighted average of 164.7 <i>1</i> from ¹³⁰ Te(¹² C,4n γ), 164.6 2 from
		467.5 2	33 <i>3</i>	1826.51	4+	E2	0.01298	¹³⁶ Ba(α,2nγ) and 164.6 <i>3</i> from ¹³⁸ Ba(α,4nγ). I _γ : from (p,2nγ). Mult.: based on $\gamma(\theta)$ in (α,4nγ) and (α,2nγ); also suggested in Coulomb excitation. $\alpha(K)=0.01079 \ 16$; $\alpha(L)=0.001729 \ 25$; $\alpha(M)=0.000367 \ 6$ $\alpha(N)=8.06\times10^{-5} \ 12$; $\alpha(O)=1.258\times10^{-5} \ 18$; $\alpha(P)=7.53\times10^{-7} \ 11$ B(E2)(W.u)=0.105 + 18-16 E _γ : weighted average of 467.6 1 from ¹³⁰ Te(¹² C,4nγ), 467.2 2 from
2339.85	0+	1551.1 <i>1</i>	100	788.744	2+	E2	9.25×10 ⁻⁴	¹³⁶ Ba(α ,2n γ), and 467.0 3 from ¹³⁸ Ba(α ,4n γ). I _{γ} : unweighted average of 29.6 <i>10</i> from (α ,2n γ) and 36 2 from (p,2n γ). Other: 56.9 30 from (¹² C,4n γ). Mult.: based on ce data in (α ,2n γ) and (p,2n γ), $\gamma(\theta)$ in (α ,2n γ) and (α ,4n γ), γ (DCO) and γ (pol) in ¹³⁰ Te(¹² C,4n γ). α (K)=0.000714 <i>10</i> ; α (L)=9.13×10 ⁻⁵ <i>13</i> ; α (M)=1.90×10 ⁻⁵ <i>3</i> α (N)=4.21×10 ⁻⁶ 6; α (O)=6.82×10 ⁻⁷ <i>10</i> ; α (P)=5.20×10 ⁻⁸ 8; α (IPF)=9.56×10 ⁻⁵ <i>14</i>
2393.91 2396.11	(3 ⁻) 6 ⁺	176.5 2 569.6 2	100 100	2217.41 1826.51	5- 4+	E2	0.00762	E _γ : from ^{1.5} Pr ε decay (1.45 m). Mult.: M1,E2 from ce data in ¹³⁸ Pr ε decay (1.45 m); M1 is ruled out by level-spin difference. E _γ : from (α,2nγ). $\alpha(K)=0.00640 \ 9; \ \alpha(L)=0.000965 \ 14; \ \alpha(M)=0.000204 \ 3$ $\alpha(N)=4.48\times10^{-5} \ 7; \ \alpha(O)=7.07\times10^{-6} \ 10; \ \alpha(P)=4.54\times10^{-7} \ 7$ E _γ : from (α,2nγ). Mult : based on $\gamma(\theta)$ in (α 2nγ) and ce data in (n 2nγ)
2443.90	4+	933.1 2	100	1510.80	2+	E2	0.00234	$\alpha(K)=0.00200 \ 3; \ \alpha(L)=0.000271 \ 4; \ \alpha(M)=5.67\times10^{-5} \ 8$

 ∞

						Adop	ted Levels,	Gammas (cor	ntinued)
							$\gamma(^{138}\text{Ce})$) (continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
									$\frac{\alpha(N)=1.254\times10^{-5} \ 18; \ \alpha(O)=2.01\times10^{-6} \ 3; \ \alpha(P)=1.449\times10^{-7}}{21}$
									E_{γ} : from $(\alpha, 2n\gamma)$. Mult.: Q from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and M2 is ruled out by no level-parity change.
2470.99	(1,2 ⁺)	1682.1 2	80.8 10	788.744	2+				E _y : from ¹³⁸ Pr ε decay (1.45 m). I _y : weighted average of 68 <i>14</i> from ¹³⁸ Pr ε decay (1.45 m) and 80.9 <i>10</i> from Coulomb excitation
		2471.1 2	100 3	0.0	0^+				E_{y} : from Coulomb excitation.
2471.68	$(4^+, 5^+)$	177.8 2	57.3 24	2293.97	6+				E_{γ} : from $(\alpha, 2n\gamma)$.
		334.6 2	100 5	2137.00	4+	(M1+E2)	-0.16 4	0.039 5	$\alpha(x)=0.033$ 5; $\alpha(L)=0.00504$ 14; $\alpha(M)=0.00107$ 4
									$\alpha(N)=0.000235 \ 8; \ \alpha(O)=3.70\times10^{-5} \ 6; \ \alpha(P)=2.4\times10^{-6} \ 5 \ E_{\gamma}, I_{\gamma}: \ \text{from } (\alpha, 2n\gamma).$ Mult. δ : from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. Other: (M1.E2) from ce data
2642 4	2+	1853 7 3	100 4	788 744	2+				in $(p,2n\gamma)$. E : from ¹³⁸ Pr s decay (1.45 m)
2042.4	2	1055.75	100 4	/00./++	2				I_{γ} : from Coulomb excitation.
		2642.0 7	35 14	0.0	0+	[E2]		9.10×10 ⁻⁴	$\begin{aligned} &\alpha(\mathbf{K}) = 0.000270 \ 4; \ \alpha(\mathbf{L}) = 3.35 \times 10^{-5} \ 5; \ \alpha(\mathbf{M}) = 6.94 \times 10^{-6} \ 10 \\ &\alpha(\mathbf{N}) = 1.541 \times 10^{-6} \ 22; \ \alpha(\mathbf{O}) = 2.51 \times 10^{-7} \ 4; \ \alpha(\mathbf{P}) = 1.96 \times 10^{-8} \ 3; \\ &\alpha(\mathbf{IPF}) = 0.000598 \ 9 \end{aligned}$
									B(E2)(W.u.)=0.41+63-23
									E_{γ} : from Coulomb excitation.
2733.09	6+	439.1 2	16.9 12	2293.97	6^+	M1+E2 [#]	1.6 3	0.0172 6	$\alpha(K)=0.0144$ 6; $\alpha(L)=0.00219$ 5; $\alpha(M)=0.000464$ 9
									α (N)=0.0001021 20; α (O)=1.61×10 ⁻⁵ 4; α (P)=1.03×10 ⁻⁶ 5 E _{γ} : weighted average of 438.7 2 from ¹³⁰ Te(¹² C,4n γ) and $439.5.2$ from ¹³⁶ Ba(α 2m γ)
									I_{γ} : weighted average of 52 8 from ¹³⁰ Te(¹² C,4n γ), 19 3 from ¹³⁶ Ba(α ,2n γ), and 16.5 <i>12</i> from ¹³⁹ La(p,2n γ).
			100.0		.+	#			δ: from (α,2nγ).
		906.6 2	100 3	1826.51	4+	E2"		0.00250	$\alpha(K)=0.00213 \ 3; \ \alpha(L)=0.000290 \ 4; \ \alpha(M)=6.07\times10^{-3} \ 9 \\ \alpha(N)=1.342\times10^{-5} \ 19; \ \alpha(O)=2.15\times10^{-6} \ 3; \ \alpha(P)=1.542\times10^{-7} \\ 22 $
									E _y : weighted average of 906.3 2 from ¹³⁰ Te(¹² C,4n γ) and 906.9 2 from ¹³⁶ Ba(α ,2n γ).
2748.78	5+	454.9 2	70 5	2293.97	6+	M1+E2 [#]	2.5 15	0.017 3	α (K)=0.014 3; α (L)=0.00205 18; α (M)=0.00043 4

$\gamma(^{138}\text{Ce})$ (continued)

	E _i (level)	J_i^π	Eγ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
			(11.5.2	100 (#		0.00040	
	2748.78	5*	611.7 2	100 6	2137.00	4+	M1"		0.00943	$\alpha(K)=0.00810 \ I2; \ \alpha(L)=0.001054 \ I5; \ \alpha(M)=0.000220 \ 3 \ \alpha(N)=4.87\times10^{-5} \ 7; \ \alpha(O)=7.93\times10^{-6} \ I2; \ \alpha(P)=6.13\times10^{-7} \ 9 \ E_{\gamma}: \ from \ (\alpha, 2n\gamma).$ $I_{\gamma}: \ from \ (p, 2n\gamma).$
	2764.94	6-	547.5 1	100 5	2217.41	5-	M1 ^{#a}		0.01239	α (K)=0.01064 <i>15</i> ; α (L)=0.001389 <i>20</i> ; α (M)=0.000290 <i>4</i> α (N)=6.43×10 ⁻⁵ <i>9</i> ; α (O)=1.045×10 ⁻⁵ <i>15</i> ; α (P)=8.07×10 ⁻⁷ <i>12</i>
										E _{γ} : weighted average of 547.5 <i>I</i> from ¹³⁰ Pr ε decay (2.03 h), 547.3 <i>2</i> from ¹³⁰ Te(¹² C,4n γ), and 547.7 <i>2</i> from ¹³⁶ Ba(α ,2n γ). L _i : from ¹³⁸ Pr ε decay (2.03 h)
			635.7 1	35 <i>3</i>	2129.28	7-	M1 ^{<i>a</i>}		0.00858	$\alpha(K)=0.00737 \ 11; \ \alpha(L)=0.000958 \ 14; \ \alpha(M)=0.000200 \ 3 \ \alpha(N)=4.43\times10^{-5} \ 7; \ \alpha(O)=7.21\times10^{-6} \ 10; \ \alpha(P)=5.58\times10^{-7} \ 8 \ E_{\rm ev}$ Ly: from ¹³⁸ Pr ε decay (2.03 h).
10	2899.25	6-	681.7 2	43 3	2217.41	5-	M1+E2	-2.5 3	0.00517 <i>11</i>	
			770.1 2	100 5	2129.28	7-	M1 [#]		0.00539	
	2903.21	(1,2 ⁺)	1426.9 7 2114.4 2	31 <i>16</i> 100 <i>19</i>	1476.93 788.744	$0^+ 2^+$				E_{γ}, I_{γ} : from ¹³⁸ Pr ε decay (1.45 m). E_{γ}, I_{γ} : from ¹³⁸ Pr ε decay (1.45 m).
	2907.22	(3,4,5)	1080.7 2	100	1826.51	4+	D+Q			E_{γ} : from (α ,2n γ). Mult.: deduced by evaluator based on $\gamma(\theta)$ in (α ,2n γ).
	2950.5	(2 ⁻ ,3 ⁻ ,4 ⁻)	556.6 2	100	2393.91	(3 ⁻)	M1 [#]		0.01189	$\alpha(K)=0.01021 \ 15; \ \alpha(L)=0.001333 \ 19; \ \alpha(M)=0.000278 \ 4 \\ \alpha(N)=6.17\times10^{-5} \ 9; \ \alpha(O)=1.003\times10^{-5} \ 14; \ \alpha(P)=7.74\times10^{-7} \\ 11 \\ \Gamma_{\rm efferm} \ (a, 2\pi))$
	2995.72	6+	1169.2 2	100	1826.51	4+	E2 [#]		1.46×10^{-3}	α_{γ} : from ($\alpha, 2n\gamma$). $\alpha(K)=0.001246 \ 18; \ \alpha(L)=0.0001638 \ 23; \ \alpha(M)=3.41\times10^{-5} \ 5$

						Adopted I	Levels, C	Sammas (cont	tinued)
						<u> </u>	(¹³⁸ Ce)	(continued)	
E_i (level)	\mathbf{J}_i^π	Eγ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
3109.02	8+	815.1 <i>I</i>	100 3	2293.97	6+	E2		0.00317	
		979.7 1	47.2 21	2129.28	7-	E1 [#]		8.78×10 ⁻⁴	I _γ : from (α,2nγ). I _γ : from (α,2nγ). Mult.: based on ce data in (α,2nγ) and (p,2nγ), γ(θ) in (α,2nγ) and (α,4nγ), γ(DCO) and γ(pol) in (12 C,4nγ). α(K)=0.000759 11; α(L)=9.46×10 ⁻⁵ 14; α(M)=1.96×10 ⁻⁵ 3 α(N)=4.34×10 ⁻⁶ 6; α(O)=7.04×10 ⁻⁷ 10; α(P)=5.39×10 ⁻⁸ 8 E _γ : weighted average of 979.7 1 from 130 Te(12 C,4nγ), 979.8 2 from 136 Ba(α,2nγ), and 979.3 3 from 138 Ba(α,4m)
3176.27		882.3 2	100	2293.97	6+				I _γ : weighted average of 45.7 2 <i>I</i> from ¹³⁶ Ba(α ,2n γ) and 49.6 26 from ¹³⁹ La(p,2n γ). Others: 36.9 19 from ¹³⁰ Te(¹² C,4n γ), 24 4 from ¹³⁸ Ba(α ,4n γ). Mult.: based on ce data in (α ,2n γ) and (p,2n γ), $\gamma(\theta)$ in (α ,2n γ) and (α ,4n γ), γ (DCO) and γ (pol) in (¹² C,4n γ). E _γ : from (α ,2n γ).
3177.4? 3214.17 3229.8	(5,6,7)	3177.4 7 920.2 2 758.1 2	100 100 100	0.0 2293.97 2471.68	0^+ 6^+ $(4^+,5^+)$				E _y : from ¹³⁸ Pr ε decay (1.45 m) only. E _y : from (α ,2n γ). E _y : from (α ,2n γ). Mult.: Δ J=1 from $\gamma(\theta)$ in (α ,2n γ).
3331.59	8-	1202.3 2	100	2129.28	7-	M1		0.00191	$ α(K) = 0.001638 23; α(L) = 0.000209 3; α(M) = 4.34 \times 10^{-5} 6 α(N) = 9.63 \times 10^{-6} 14; α(O) = 1.569 \times 10^{-6} 22; α(P) = 1.227 \times 10^{-7} 18; α(IPF) = 6.32 \times 10^{-6} 10 Eγ: from (12C,4nγ). A 1202.4γ is observed but unplaced in 138 Pr ε decay (2.03 h) from 7- parent. Mult.: based on γ(DCO) and γ(pol) in (12C,4nγ). $
3367.8		1239.0 6	100 6	2129.28	7-				E_{γ} , I_{γ} : from ¹³⁸ Pr ε decay (2.03 h).
3430.2	(7)+	1540.9 ^b 5 697.1 2	<16 ^b 100	1826.51 2733.09	4+ 6+	M1(+E2)	≤1.1	0.0062 7	E _γ ,I _γ : from ¹³⁸ Pr ε decay (2.03 h). $\alpha(K)=0.0053 6$; $\alpha(L)=0.00071 6$; $\alpha(M)=0.000148 12$ $\alpha(N)=3.3\times10^{-5} 3$; $\alpha(O)=5.3\times10^{-6} 5$; $\alpha(P)=4.0\times10^{-7} 5$ E _γ : from (α ,2nγ). Mult., δ : based on ce data in (α ,2nγ) and (p,2nγ) and $\gamma(\theta)$ in (α ,2nγ). Mult=(E2) suggested by 2009Bh04 in (12 C,4nγ) is inconsistent. Mixing ratio is deduced by evaluator from ce data using the BrIccMixing program;

					Ad	opted Levels,	Gammas (continued)
						γ (¹³⁸ Ce) (continued)
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
3507.30	9-	175.7 2	61 9	3331.59 8-	M1	0.243	$\alpha(K)=0.208 \ 3; \ \alpha(L)=0.0281 \ 4; \ \alpha(M)=0.00588 \ 9$ $\alpha(N)=0.001305 \ 19; \ \alpha(O)=0.000211 \ 3; \ \alpha(P)=1.602\times10^{-5} \ 23$ E. L.: from $\binom{12}{4}C \ 4px$
		398.3 2	17.3 27	3109.02 8+	[E1]	0.00613	Mult.: D from γ (DCO) in (¹² C,4n γ); polarity from no level-parity change. α (K)=0.00528 8; α (L)=0.000681 10; α (M)=0.0001415 20 α (N)=3.12×10 ⁻⁵ 5; α (O)=5.02×10 ⁻⁶ 7; α (P)=3.64×10 ⁻⁷ 6
		1378.0 2	100 15	2129.28 7-	E2	1.08×10 ⁻³	$\alpha(K)=0.000897 \ I3; \ \alpha(L)=0.0001159 \ I7; \ \alpha(M)=2.41\times10^{-5} \ 4 \ \alpha(N)=5.34\times10^{-6} \ 8; \ \alpha(O)=8.65\times10^{-7} \ I3; \ \alpha(P)=6.53\times10^{-8} \ I0; \ \alpha(IPF)=3.95\times10^{-5} \ 6$
3539.21	10+	31.9 ^c 2	0.081 <i>16</i>	3507.30 9-	(E1)	0.934 22	E _γ ,I _γ : from (¹² C,4nγ). Mult.: based on γ(DCO) and γ(pol) in (¹² C,4nγ). α (L)=0.741 <i>17</i> ; α (M)=0.155 <i>4</i> α (N)=0.0331 <i>8</i> ; α (O)=0.00481 <i>11</i> ; α (P)=0.000214 <i>5</i> B(E1)(Wn)=7.5×10 ⁻⁸ + 20-18
		109.0 [°] 2	0.081 16	3430.2 (7) ⁺		1.510 24	$E_{\gamma,I_{\gamma}},Mult.: \text{ from } {}^{12}C,4n\gamma) \text{ only.} \alpha(K)=0.940 \ 15; \ \alpha(L)=0.446 \ 8; \ \alpha(M)=0.0994 \ 17 \alpha(N)=0.0213 \ 4; \ \alpha(O)=0.00302 \ 5; \ \alpha(P)=5.07\times10^{-5} \ 8$
		430.2 <i>I</i>	100 4	3109.02 8+	E2	0.01642	E _γ ,I _γ ,Mult.: from (¹² C,4nγ) only. Mult.: (E2) from (¹² C,4nγ) given $J^{\pi}(3430.2)=(8)^+$ suggested by 2009Bh04. $\alpha(K)=0.01358\ 19;\ \alpha(L)=0.00224\ 4;\ \alpha(M)=0.000477\ 7$ $\alpha(N)=0.0001045\ 15;\ \alpha(O)=1.625\times10^{-5}\ 23;\ \alpha(P)=9.40\times10^{-7}\ 14$ B(E2)(W.u.)=0.0108 3 E _γ : weighted average of 430.2 1 from ¹³⁰ Te(¹² C,4nγ), 430.1 2 from
		1409.9 2	0.73 8	2129.28 7-	(E3)	0.00193	¹³⁶ Ba(α ,2n γ), and 430.0 <i>3</i> from ¹³⁸ Ba(α ,4n γ). I _{γ} : from (α ,2n γ). Other: 100 <i>5</i> from (¹² C,4n γ). Mult.: based on ce data in (α ,2n γ) and (p,2n γ), $\gamma(\theta)$ in (α ,2n γ) and (α ,4n γ), γ (DCO) and γ (pol) in (¹² C,4n γ). α (K)=0.001628 <i>23</i> ; α (L)=0.000226 <i>4</i> ; α (M)=4.74×10 ⁻⁵ <i>7</i> α (N)=1.050×10 ⁻⁵ <i>15</i> ; α (O)=1.688×10 ⁻⁶ <i>24</i> ; α (P)=1.218×10 ⁻⁷ <i>17</i> ; α (IPF)=1.80×10 ⁻⁵ <i>3</i>
3545.79	(9 ⁻)	1416.5 2	100	2129.28 7-	(E2)	1.04×10 ⁻³	B(E3)(W.u.)=0.0084 +16-14 E _γ ,I _γ ,Mult.: from (12 C,4nγ). Also observed in (18 O,4nγ). α(K)=0.000851 12; α(L)=0.0001096 16; α(M)=2.28×10 ⁻⁵ 4 α(N)=5.05×10 ⁻⁶ 7; α(O)=8.18×10 ⁻⁷ 12; α(P)=6.19×10 ⁻⁸ 9; α(IPF)=5.05×10 ⁻⁵ 7 E _γ : placed by 2009Bh04 in (12 C,4nγ). 1999Zh28 in (18 O,4nγ) placed this transition from the 3942 level, making a level at E=2526. See also the comment for 3546 level. Mult.: from (12 C,4nγ) based on γ(DCO).

$\gamma(^{138}Ce)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
3670.6	(6.7^{-})	1453.3.3	100.7	2217.41 5-			E. L.: from 138 Pr ε decay (2.03 h)
207010	(0,7)	$1540.9^{b}5$	<63 ^b	2129.28 7			$E_{\rm L}$ from ¹³⁸ Pr s decay (2.03 h)
3800.6	(6.7^{-})	1583.2.5	100 10	2129.20^{-7} 2217 41 5 ⁻			$E_{\gamma,1\gamma}$. Hom 11 2 decay (2.03 h). E. L.: from ¹³⁸ Pr s decay (2.03 h).
5600.0	(0,7)	1671.2.5	85.8	$2217.41 \ 5$ $2120 \ 28 \ 7^{-}$			$E_{\gamma,1\gamma}$. Hom 11 2 decay (2.03 h). E. L.: from ¹³⁸ Pr c decay (2.03 h).
3026.7	(6.7^{-})	1709 2 7	02 12	2129.20 7 2217.41 5 ⁻			$E_{\gamma,1\gamma}$. Hom 11 2 decay (2.03 h). E. L.: from ¹³⁸ Pr c decay (2.03 h).
3920.7	(0,7)	1707.5 7	92 12 100 11	2217.41 J 2120.28 7 ⁻			E_{γ}, r_{γ} . from 118 decay (2.05 fr). E. L. from ¹³⁸ Dr o decay (2.02 h)
30/12/12	11+	306 7 ^C 2	305	2129.20 / 3545.70 (0 ⁻)	(M2)	0 1020	E_{γ}, I_{γ} . If $O(II) = F F E decay (2.05 II). \alpha(K) = 0.0854 I_{2}; \alpha(I) = 0.01300 I_{2}; \alpha(M) = 0.00278 A$
3972.72	11	590.7 2	5.0 5	5545.79 (9)	(1V12)	0.1020	$\alpha(\mathbf{N}) = 0.0054 \ 12, \ \alpha(\mathbf{L}) = 0.01505 \ 15, \ \alpha(\mathbf{M}) = 0.00275 \ 4$ $\alpha(\mathbf{N}) = 0.000618 \ 0; \ \alpha(\mathbf{O}) = 0.05510^{-5} \ 14; \ \alpha(\mathbf{P}) = 7.27510^{-6} \ 11$
							B(M2)(W.u.)=24 + 8-6
							E_{γ} , I_{γ} : placed by 2009Bh04 in (¹² C, 4n γ). But this placement is still considered
							questionable since it wrould require an unreasonable large $B(M2)$ value.
							1999Zh28 in (¹⁸ O,4n γ) has placed this transition from a level at E=2526 to
							the 2129 level which is however unfavored. See also the comment for 3546
							Mult : from $({}^{12}C 4nv)$ based on $\gamma(DCO)$
		403 2 1	100.6	3539 21 10+	M1+E2	0.023.4	$\alpha(K) = 0.020 4$ · $\alpha(L) = 0.00289 14$ · $\alpha(M) = 0.000610.24$
		103.2 1	100 0	5557.21 10	1011 1 22	0.025 1	$\alpha(\mathbf{N}) = 0.000135 \ 6: \ \alpha(\mathbf{O}) = 2.14 \times 10^{-5} \ 15: \ \alpha(\mathbf{P}) = 1.4 \times 10^{-6} \ 4$
							E : weighted average of 403 3 1 from $^{130}\text{Te}(^{12}\text{C}4n\gamma)$ 403 1 2 from
							$^{136}Ba(\alpha 2n\gamma)$ and 403.0.3 from $^{138}Ba(\alpha 4n\gamma)$
							L: from $({}^{12}C 4ny)$
							Mult : from $^{130}\text{Te}(^{12}\text{C} 4\text{nv})$ based on $\gamma(\text{DCO})$ and $\gamma(\text{pol})$
4050.0?		941.0 ^c 2	100	3109.02 8+			$F_{\alpha'}$: from $(\alpha.2n\gamma)$.
4139.3	(10^{-})	632.0 2	100	3507.30 9-	(M1)	0.00870	$\alpha(K) = 0.00748 \ 11; \ \alpha(L) = 0.000972 \ 14; \ \alpha(M) = 0.000202 \ 3$
							$\alpha(N) = 4.49 \times 10^{-5}$ 7; $\alpha(O) = 7.31 \times 10^{-6}$ 11; $\alpha(P) = 5.66 \times 10^{-7}$ 8
							E_{γ} , Mult.: from (¹² C, 4n γ). Mult is based on γ (DCO) and γ (pol).
4157.0	6,7,8	1392.6 5	68 8	2764.94 6-			E_{γ} , I_{γ} : from ¹³⁸ Pr ε decay (2.03 h).
		2026.6 7	100 8	2129.28 7-			E_{v,I_v} : from ¹³⁸ Pr ε decay (2.03 h).
4204.0	(10^{-})	658.2 2	100	3545.79 (9 ⁻)	(M1)	0.00788	$\alpha(K)=0.00677 \ 10; \ \alpha(L)=0.000879 \ 13; \ \alpha(M)=0.000183 \ 3$
							$\alpha(N) = 4.07 \times 10^{-5} 6$; $\alpha(O) = 6.61 \times 10^{-6} 10$; $\alpha(P) = 5.12 \times 10^{-7} 8$
							E_{γ} , Mult.: from (¹² C, 4n γ). No γ (DCO) and γ (pols) data to support mult.
4248.1	$(6,7^{-})$	2030.2 9	100 67	2217.41 5-			$E_{\nu}I_{\nu}$: from ¹³⁸ Pr ε decay (2.03 h).
		2119.3 9	66 12	2129.28 7-			$E_{\nu}I_{\nu}$: from ¹³⁸ Pr ε decay (2.03 h).
4359.93	12^{+}	417.5 2	100	3942.42 11+	M1	0.0245	$\alpha(K)=0.0210 3; \alpha(L)=0.00277 4; \alpha(M)=0.000578 9$
							α (N)=0.0001282 18; α (O)=2.08×10 ⁻⁵ 3; α (P)=1.600×10 ⁻⁶ 23
							E_{γ} : weighted average of 417.6 <i>1</i> from ¹³⁰ Te(¹² C,4n γ), 417.5 2 from
							¹³⁰ Ba(α ,2n γ), and 417.4 3 from ¹³⁰ Ba(α ,4n γ).
							Nutre: based on ce data in $(\alpha, 2n\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and $(\alpha, 4n\gamma)$, $\gamma(DCO)$ and
4401.0	10-	00465	100	2505 20 6-		0.00075	γ (pol) in (*-C,4n γ).
4401.9	10	894.6 2	100	3507.30 9	MI	0.00378	$\alpha(K) = 0.00525$ 5; $\alpha(L) = 0.000418$ 6; $\alpha(M) = 8.69 \times 10^{-7}$ 13
							$\alpha(N)=1.95\times10^{-5} 5; \ \alpha(O)=3.14\times10^{-5} 5; \ \alpha(P)=2.45\times10^{-7} 4$
1701 51	(10)		100			0.0007	E_{γ} , Mult.: from (¹² C, 4n γ); mult is based on γ (DCO) and γ (pol).
4781.51	(12^{+})	839.1 2	100	3942.42 11+	(M1+E2)	0.0037 8	$\alpha(K)=0.0032$ 7; $\alpha(L)=0.00042$ 7; $\alpha(M)=8.7\times10^{-5}$ 15

$\gamma(^{138}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
								$\alpha(N)=1.9\times10^{-5}$ 4; $\alpha(O)=3.1\times10^{-6}$ 6; $\alpha(P)=2.3\times10^{-7}$ 6
								E_{γ} ,Mult.: from (¹² C,4n γ); mult is based on γ (DCO).
4843.0	13-	483.0 2	100	4359.93	12^{+}	E1	0.00388	$\alpha(K)=0.003345; \alpha(L)=0.0004286; \alpha(M)=8.89\times10^{-5}13$
								$\alpha(N) = 1.97 \times 10^{-5} 3; \ \alpha(O) = 3.17 \times 10^{-6} 5; \ \alpha(P) = 2.33 \times 10^{-7} 4$
	1.2+		100	1250.02	1.0+	1.01	0.00021	E_{γ} ,Mult.: from (¹² C,4n γ); mult is based on γ (DCO) and γ (pol).
4974.64	131	614.7 1	100	4359.93	121	MI	0.00931	$\alpha(\mathbf{K})=0.00800\ I2;\ \alpha(\mathbf{L})=0.001041\ I5;\ \alpha(\mathbf{M})=0.000217\ 3$
								$\alpha(N) = 4.81 \times 10^{-5}$ /; $\alpha(O) = 7.83 \times 10^{-5}$ II; $\alpha(P) = 6.06 \times 10^{-5}$ 9
								E_{γ} : Itolli (C,411 γ). Mult : based on $\alpha(DCO)$ and $\alpha(pol)$ in $\binom{12}{2}C$ (hav) and $\alpha(\theta)$ in $(\alpha$ (hav)
5071.3	(11^{-})	932.0.2	100	41393	(10^{-})	(M1)	0.00343	$\alpha(K) = 0.00295.5$; $\alpha(I) = 0.000379.6$; $\alpha(M) = 7.88 \times 10^{-5}.11$
5071.5	(11)	<i>)</i> 52.0 2	100	4157.5	(10)	(1911)	0.00545	$\alpha(\mathbf{N}) = 0.002535, \alpha(\mathbf{E}) = 0.0005750, \alpha(\mathbf{M}) = 7.00\times10^{-7} \text{ M}$ $\alpha(\mathbf{N}) = 1.751\times10^{-5} 25; \alpha(\mathbf{O}) = 2.85\times10^{-6} \text{ 4; } \alpha(\mathbf{P}) = 2.22\times10^{-7} \text{ 4}$
								$E_{\rm ev}$ L.: from (¹² C.4ny): mult is based on γ (DCO).
5089.32	12-	729.3 2	1.53 23	4359.93	12^{+}	E1	1.58×10^{-3}	$\alpha(K)=0.001359$ 19: $\alpha(L)=0.0001713$ 24: $\alpha(M)=3.55\times10^{-5}$ 5
								$\alpha(N) = 7.86 \times 10^{-6} \ II; \ \alpha(O) = 1.272 \times 10^{-6} \ I8; \ \alpha(P) = 9.60 \times 10^{-8} \ I4$
								E_{γ}, I_{γ} : from (¹² C, 4n γ) only.
								Mult.: D from $({}^{12}C, 4n\gamma)$ based on γ (DCO); polarity from level-parity
								change.
		1146.9 2	100 10	3942.42	11^{+}	E1	6.66×10^{-4}	$\alpha(K) = 0.000567 \ 8; \ \alpha(L) = 7.03 \times 10^{-5} \ 10; \ \alpha(M) = 1.456 \times 10^{-5} \ 21$
								$\alpha(N)=3.23\times10^{-6}$ 5; $\alpha(O)=5.24\times10^{-7}$ 8; $\alpha(P)=4.04\times10^{-6}$ 6;
								$\alpha(\text{IPF}) = 9.86 \times 10^{-6} \ 15$
								E_{γ}, I_{γ} : from (¹² C, 4n γ). Other: $E_{\gamma}=1146.93$ from (α , 4n γ).
								Mult.: based on γ (DCO) and γ (pol) in ("C,4n γ). Mult=(M1+E2) deduced by 1078Mu09 in (α 4n α) based on $\gamma(\theta)$ is inconsistent and not
								adopted.
5214.30	13-	124.8 <i>3</i>	11.4 18	5089.32	12-	M1+E2	0.78 16	$\alpha(K)=0.585; \alpha(L)=0.169; \alpha(M)=0.03520$
								α (N)=0.008 5; α (O)=0.0011 6; α (P)=3.8×10 ⁻⁵ 4
								E_{γ} : weighted average of 125.0 2 from ¹³⁰ Te(¹² C,4n γ) and 124.4 3 from
								138 Ba(α ,4n γ).
								I _{γ} : weighted average of 10.8 <i>16</i> from ¹³⁰ Te(¹² C,4n γ) and 17 5 from
								¹⁵⁶ Ba(α ,4n γ).
		122 0 2	167	4701 51	(12^{+})	(E1)	0.00502	Mult.: based on γ (DCO) and γ (pol) in (¹² C,4n γ) and γ (θ) in (α ,4n γ).
		432.0 2	4.0 /	4/01.31	(12)	(E1)	0.00302	$\alpha(\mathbf{N}) = 0.00452 0, \alpha(\mathbf{L}) = 0.000550 0, \alpha(\mathbf{M}) = 0.0001155 17$ $\alpha(\mathbf{N}) = 2.55 \times 10^{-5} 4; \alpha(\mathbf{O}) = 4.10 \times 10^{-6} 6; \alpha(\mathbf{P}) = 3.00 \times 10^{-7} 5$
								$E_{\rm H}$ L. Mult : from (¹² C 4n γ) only
		854.4 1	100.5	4359.93	12^{+}	E1	1.14×10^{-3}	$\alpha(K) = 0.000988 \ 14: \ \alpha(L) = 0.0001238 \ 18: \ \alpha(M) = 2.57 \times 10^{-5} \ 4$
								$\alpha(N) = 5.68 \times 10^{-6} 8; \alpha(O) = 9.21 \times 10^{-7} 13; \alpha(P) = 7.01 \times 10^{-8} 10$
								E_{γ} : weighted average of 854.3 <i>I</i> from ¹³⁰ Te(¹² C,4n\gamma), 854.6 2 from
								¹³⁶ Ba(α ,2n γ), and 854.2 3 from ¹³⁸ Ba(α ,4n γ).
								I_{γ} : from (¹² C,4n γ).
								Mult.: based on γ (DCO) and γ (pol) in (¹² C,4n γ). Mult=(M1+E2)
								deduced by 1978Mu09 in $(\alpha, 4n\gamma)$ based on $\gamma(\theta)$ is inconsistent and not
								adopted.

							A	dopted Lev	vels, Gammas (continued)
								$\gamma(^{12}$	³⁸ Ce) (continued)
	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
	5312.39	14+	98.1 <i>1</i>	100 10	5214.30	13-	(E1)	0.256	$\alpha(K)=0.218 \ 4; \ \alpha(L)=0.0304 \ 5; \ \alpha(M)=0.00634 \ 9$ $\alpha(N)=0.001384 \ 20; \ \alpha(O)=0.000215 \ 3; \ \alpha(P)=1.310\times10^{-5} \ 19$ B(E1)(W.u.)=0.0014 +4-3
			337.7 2	91 9	4974.64	13+	M1	0.0423	E _γ ,I _γ : from (¹² C,4nγ). Other: E _γ =98.3 <i>3</i> from (α,4nγ). Mult.: from (¹² C,4nγ) with bracket added by evaluator since no γ(DCO) and γ(pol) data. This assignment is consistent with $\gamma(\theta)$ in (α,4nγ). $\alpha(K)=0.0362 5$; $\alpha(L)=0.00481 7$; $\alpha(M)=0.001004 15$ $\alpha(N)=0.000223 4$; $\alpha(O)=3.62\times10^{-5} 5$; $\alpha(P)=2.77\times10^{-6} 4$ B(M1)(W.u.)=0.0028 +8-6
			469.4 2	11.3 <i>1</i> 9	4843.0	13-	(E1)	0.00415	E _γ ,I _γ : from (¹² C,4nγ). Other: E _γ =337.7 <i>3</i> from (α,4nγ). Mult.: based on γ(DCO) and γ(pol) in (¹² C,4nγ) and γ(θ) in (α,4nγ). α (K)=0.00357 <i>5</i> ; α (L)=0.000458 <i>7</i> ; α (M)=9.51×10 ⁻⁵ <i>14</i> α (N)=2.10×10 ⁻⁵ <i>3</i> ; α (O)=3.38×10 ⁻⁶ <i>5</i> ; α (P)=2.49×10 ⁻⁷ <i>4</i> B(E1)(W.u.)=1.5×10 ⁻⁶ +7-5 E _γ ,I _γ : from (¹² C,4nγ) only. Mult.: from (¹² C,4nγ) with bracket added by evaluator since no γ(DCO) and γ(pol)
15	5387.7	11-	985.8 2	100	4401.9	10-	M1	0.00301	data. $\alpha(K)=0.00259 \ 4; \ \alpha(L)=0.000332 \ 5; \ \alpha(M)=6.90\times10^{-5} \ 10$ $\alpha(N)=1.532\times10^{-5} \ 22; \ \alpha(O)=2.50\times10^{-6} \ 4; \ \alpha(P)=1.95\times10^{-7} \ 3$
	5411.5	14-	99.1 2	2.5 4	5312.39	14+	(E1)	0.249	E _γ ,Mult.: from (¹² C,4nγ); mult is based on γ(DCO) and γ(pol). α (K)=0.212 4; α (L)=0.0296 5; α (M)=0.00616 10 α (N)=0.001345 21; α (O)=0.000209 4; α (P)=1.276×10 ⁻⁵ 19 E _γ ,I _γ : from (¹² C,4nγ) only. Mult.: from (¹² C,4nγ) with bracket added by evaluator since no γ(DCO) and γ(pol)
			197.9 7	100 10	5214.30	13-	M1	0.176 3	data. $\alpha(K)=0.150 \ 3; \ \alpha(L)=0.0202 \ 4; \ \alpha(M)=0.00423 \ 8$ $\alpha(N)=0.000939 \ 16; \ \alpha(O)=0.000152 \ 3; \ \alpha(P)=1.156\times10^{-5} \ 20$ $E_{\gamma}:$ unweighted average of 197.2 2 from 130 Te(12 C,4n γ) and 198.6 3 from 138 Ba(α ,4n γ).
			568.5 2	5.1 9	4843.0	13-	M1	0.01129	I _γ : from (¹² C,4nγ). Mult.: from (¹² C,4nγ) based on γ(DCO) and γ(pol). α (K)=0.00969 14; α (L)=0.001264 18; α (M)=0.000264 4 α (N)=5.85×10 ⁻⁵ 9; α (O)=9.51×10 ⁻⁶ 14; α (P)=7.35×10 ⁻⁷ 11 E _γ ,I _γ : from (¹² C,4nγ) only.
	5566.4	15+	254.0 <i>1</i>	100	5312.39	14+	M1+E2	0.086 4	Mult.: from $({}^{12}C, 4n\gamma)$ based on γ (DCO) and γ (pol). α (K)=0.071 6; α (L)=0.0121 19; α (M)=0.0026 5 α (N)=0.00056 9; α (O)=8.8×10 ⁻⁵ 11; α (P)=5.0×10 ⁻⁶ 9 F, i from $({}^{12}C, 4n\alpha)$ Other: 254 1.3 from $(\alpha, 4n\alpha)$
	5714.4	(14 ⁻)	500.1 2	100	5214.30	13-	(M1)	0.01553	Mult.: from (¹² C,4n γ) based on γ (DCO) and γ (pol). α (K)=0.01332 <i>19</i> ; α (L)=0.001745 <i>25</i> ; α (M)=0.000364 <i>6</i> α (N)=8.08×10 ⁻⁵ <i>12</i> ; α (O)=1.313×10 ⁻⁵ <i>19</i> ; α (P)=1.012×10 ⁻⁶ <i>15</i> E _{γ} ,Mult.: from (¹² C,4n γ); mult is based on γ (DCO).

$\gamma(^{138}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{\ddagger}$	Ι _γ ‡	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
5726.6	14+	1366.7 2	100	4359.93	12+	E2	1.10×10 ⁻³	$\begin{aligned} \alpha(\text{K}) &= 0.000912 \ 13; \ \alpha(\text{L}) = 0.0001179 \ 17; \ \alpha(\text{M}) = 2.45 \times 10^{-5} \ 4 \\ \alpha(\text{N}) &= 5.44 \times 10^{-6} \ 8; \ \alpha(\text{O}) = 8.80 \times 10^{-7} \ 13; \ \alpha(\text{P}) = 6.63 \times 10^{-8} \ 10; \\ \alpha(\text{IPF}) &= 3.64 \times 10^{-5} \ 6 \end{aligned}$
5731.0	15-	319.5 2	100	5411.5	14-	M1	0.0488	E _γ : from (¹² C,4nγ) only. E _γ ,Mult.: from (¹² C,4nγ); mult is based on γ(DCO). α (K)=0.0418 <i>6</i> ; α (L)=0.00556 <i>8</i> ; α (M)=0.001162 <i>17</i> α (N)=0.000258 <i>4</i> ; α (O)=4.19×10 ⁻⁵ <i>6</i> ; α (P)=3.20×10 ⁻⁶ <i>5</i> E _γ : weighted average of 319.6 2 from ¹³⁰ Te(¹² C,4nγ) and 319.3 <i>3</i> from ¹³⁸ Ba(α 4nγ)
5871.2	15+	144.6 2	6.2 8	5726.6	14+	M1	0.417	Mult.: based on γ (DCO) and γ (pol) in (¹² C,4n γ) and γ (θ) in (α ,4n γ). α (K)=0.356 6; α (L)=0.0484 7; α (M)=0.01014 15 α (N)=0.00225 4; α (O)=0.000364 6; α (P)=2.75×10 ⁻⁵ 4 E. L is from (¹² C,4n γ) only.
		896.6 2	100 10	4974.64	13+	E2	0.00256	E _{γ} , I _{γ} : from (¹⁻ C, 4n γ) only. Mult.: D from γ (DCO) in (¹² C, 4n γ); polarity from no level-parity change. α (K)=0.00218 3; α (L)=0.000298 5; α (M)=6.23×10 ⁻⁵ 9 α (N)=1.378×10 ⁻⁵ 20; α (O)=2.21×10 ⁻⁶ 3; α (P)=1.580×10 ⁻⁷ 23 E _{γ} , I _{γ} : from (¹² C, 4n γ) only.
5955.3 6014.4	16+	388.9 2 448.0 <i>1</i>	100 100	5566.4 5566.4	15 ⁺ 15 ⁺	M1	0.0205	Mult.: from (${}^{12}C,4n\gamma$) based on γ (DCO) and γ (DCO). E_{γ} : from (${}^{12}C,4n\gamma$) only. α (K)=0.01756 25; α (L)=0.00231 4; α (M)=0.000482 7 α (N)=0.0001069 15; α (O)=1.737×10 ⁻⁵ 25; α (P)=1.336×10 ⁻⁶ 19 E_{γ} : from (${}^{12}C,4n\gamma$) Other: 447.5 3 from (α 4ny)
6134.7	(14+)	1291.7 2	100	4843.0	13-	(E1)	6.05×10^{-4}	E _γ : from (²⁻ C,4nγ). Other: 447.5.5 from (α ,4nγ). Mult.: based on γ (DCO) and γ (pol) in (¹² C,4n γ) and γ (θ) in (α ,4n γ). α (K)=0.000459 7; α (L)=5.67×10 ⁻⁵ 8; α (M)=1.173×10 ⁻⁵ 17 α (N)=2.60×10 ⁻⁶ 4; α (O)=4.23×10 ⁻⁷ 6; α (P)=3.27×10 ⁻⁸ 5; α (IPF)=7.43×10 ⁻⁵ 11
6328.7	(12 ⁻)	941.0 2	100	5387.7	11-	(M1)	0.00335	E _γ : from (¹² C,4nγ) only. Mult.: based on γ(DCO) and γ(pol) in (¹² C,4nγ). $\alpha(K)=0.00289$ 4; $\alpha(L)=0.000370$ 6; $\alpha(M)=7.71\times10^{-5}$ 11 $\alpha(N)=1.711\times10^{-5}$ 24; $\alpha(O)=2.79\times10^{-6}$ 4; $\alpha(P)=2.17\times10^{-7}$ 3 E ₁ = (¹² C,4nγ)
6363.4	16-	632.4 2	100	5731.0	15-	M1	0.00869	E _{γ} : from (¹⁻ C,4n γ) only. Mult.: based on γ (DCO) and in (¹² C,4n γ). α (K)=0.00746 <i>11</i> ; α (L)=0.000970 <i>14</i> ; α (M)=0.000202 <i>3</i> α (N)=4.49×10 ⁻⁵ <i>7</i> ; α (O)=7.30×10 ⁻⁶ <i>11</i> ; α (P)=5.65×10 ⁻⁷ <i>8</i> E _{γ} : from (¹² C,4n γ) only.
6408.6	(15 ⁻)	997.1 2	100	5411.5	14-	(M1)	0.00293	Mult.: based on γ (DCO) and γ (pol) in (¹² C,4n γ). α (K)=0.00252 4; α (L)=0.000323 5; α (M)=6.72×10 ⁻⁵ 10 α (N)=1.492×10 ⁻⁵ 21; α (O)=2.43×10 ⁻⁶ 4; α (P)=1.89×10 ⁻⁷ 3 F. Mult. from (¹² C,4n γ). No α (DCO) or α (no) data for mult
6451.0 6451.2	16+	495.7 2 580.0 2	100 100	5955.3 5871.2	15+	M1	0.01074	E_{γ} , which from (= C,4n γ). No γ (DCO) of γ (por) data for mult. E_{γ} : from (^{12}C ,4n γ) only. α (K)=0.00923 <i>13</i> ; α (L)=0.001203 <i>17</i> ; α (M)=0.000251 <i>4</i>

γ (¹³⁸Ce) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} [‡]	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
6536.4	15 ⁽⁻⁾	970.0 2	40 6	5566.4	15+	(E1)	8.95×10 ⁻⁴	$\begin{aligned} \alpha(N) &= 5.56 \times 10^{-5} \ 8; \ \alpha(O) &= 9.05 \times 10^{-6} \ 13; \ \alpha(P) &= 6.99 \times 10^{-7} \ 10 \\ E_{\gamma}: \ from \ (^{12}C, 4n\gamma) \ only. \\ Mult.: \ based \ on \ \gamma(DCO) \ and \ \gamma(pol) \ in \ (^{12}C, 4n\gamma). \\ \alpha(K) &= 0.000774 \ 11; \ \alpha(L) &= 9.65 \times 10^{-5} \ 14; \ \alpha(M) &= 2.00 \times 10^{-5} \ 3 \\ \alpha(N) &= 4.43 \times 10^{-6} \ 7; \ \alpha(O) &= 7.18 \times 10^{-7} \ 10; \ \alpha(P) &= 5.49 \times 10^{-8} \ 8 \\ E_{\gamma}.I_{\gamma}: \ from \ (^{12}C, 4n\gamma) \ only. \end{aligned}$
		1224.0 2	100 20	5312.39	14+	(E1+M2)	0.00066 4	Mult.: from ($^{12}C,4n\gamma$) with bracket added by evaluator since no γ (DCO) or γ (pol) data. α (K)=0.00054 4; α (L)=6.7×10 ⁻⁵ 5; α (M)=1.38×10 ⁻⁵ 9 α (N)=3.06×10 ⁻⁶ 21; α (O)=5.0×10 ⁻⁷ 4; α (P)=3.8×10 ⁻⁸ 3; α (IPF)=3.95×10 ⁻⁵ 7 F. J.: from ($^{12}C,4mz$) only
6597.6 6606.3	17 ⁺	146.6 2 155.1 2	100 100	6451.0 6451.2	16+	M1	0.343	Mult.: from ($^{12}C,_{4n\gamma}$) based on γ (DCO), with bracket added by evaluator since no γ (pol) data. E _{γ} : from ($^{12}C,_{4n\gamma}$) only. α (K)=0.293 5; α (L)=0.0398 6; α (M)=0.00833 12 α (N)=0.00185 3; α (O)=0.000299 5; α (P)=2.26×10 ⁻⁵ 4
6685.5	16-	149.1 2	12.9 22	6536.4	15 ⁽⁻⁾	(M1)	0.383	E _γ : from (¹² C,4nγ) only. Mult.: based on γ(DCO) and γ(pol) in (¹² C,4nγ). α (K)=0.327 5; α (L)=0.0444 7; α (M)=0.00930 14 α (N)=0.00206 3; α (O)=0.000334 5; α (P)=2.53×10 ⁻⁵ 4 E _γ ,I _γ : from (¹² C,4nγ) only.
		550.8 2	6.5 11	6134.7	(14+)	(M2)	0.0379	Mult.: D from γ (DCO) in (¹² C,4n γ); polarity from no level-parity change. α (K)=0.0320 5; α (L)=0.00465 7; α (M)=0.000982 14 α (N)=0.000218 3; α (O)=3.53×10 ⁻⁵ 5; α (P)=2.63×10 ⁻⁶ 4 E_{γ} ,I _{γ} ,Mult.: from (¹² C,4n γ) only. No γ (DCO) or γ (pol) data for
		671.1 2	4.3 7	6014.4	16+	E1+M2	0.00207 20	mult. $\alpha(K)=0.00178 \ 17; \ \alpha(L)=0.000228 \ 24; \ \alpha(M)=4.7\times10^{-5} \ 5$ $\alpha(N)=1.05\times10^{-5} \ 11; \ \alpha(O)=1.69\times10^{-6} \ 18; \ \alpha(P)=1.27\times10^{-7} \ 14$ $E_{\gamma},I_{\gamma}: \text{ from } (^{12}C,4n\gamma) \text{ only.}$ Mult.: from $\gamma(DCO)$ in $(^{12}C,4n\gamma)$; polarity from no level-parity
		1119.1 2	100 <i>15</i>	5566.4	15+	E1	6.90×10 ⁻⁴	change. $\alpha(K)=0.000593 \ 9; \ \alpha(L)=7.36\times10^{-5} \ 11; \ \alpha(M)=1.524\times10^{-5} \ 22$ $\alpha(N)=3.38\times10^{-6} \ 5; \ \alpha(O)=5.48\times10^{-7} \ 8; \ \alpha(P)=4.22\times10^{-8} \ 6; \ \alpha(IPF)=4.61\times10^{-6} \ 7$ $E_{\gamma},I_{\gamma}: \text{ from } (^{12}C,4n\gamma).$
6738.3	(16 ⁻)	1007.3 2	100	5731.0	15-	(M1)	0.00286	Mult.: based on γ (DCO) and γ (pol) in (${}^{12}C,4n\gamma$). α (K)=0.00246 4; α (L)=0.000315 5; α (M)=6.56×10 ⁻⁵ 10 α (N)=1.456×10 ⁻⁵ 21; α (O)=2.37×10 ⁻⁶ 4; α (P)=1.85×10 ⁻⁷ 3 E_{γ} ,Mult.: from (${}^{12}C,4n\gamma$). No γ (DCO) or γ (pol) data for mult.

$\gamma(^{138}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ ‡	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	$lpha^\dagger$	Comments
6841.7	17+	827.3 2	100 11	6014.4 16+	M1	0.00455	$\alpha(K)=0.00391$ 6; $\alpha(L)=0.000504$ 7; $\alpha(M)=0.0001049$ 15
							$\alpha(N)=2.33\times10^{-5}$ 4; $\alpha(O)=3.79\times10^{-6}$ 6; $\alpha(P)=2.95\times10^{-7}$ 5
		1275 3 2	32.5	5566 / 15+	F2	1.23×10^{-3}	$E_{\gamma}, I_{\gamma}, Mult.:$ from (*°C, 4n γ). Mult is based γ (DCO) and γ (pol).
		1275.5 2	52 5	5500.4 15	12	1.25×10	$\alpha(N)=6.28\times10^{-6} \ 9; \ \alpha(O)=1.015\times10^{-6} \ 15; \ \alpha(P)=7.60\times10^{-8} \ 11; \\ \alpha(IPF)=1.688\times10^{-5} \ 24$
							E_{γ} , I_{γ} : from (¹² C, 4n γ).
							Mult.: Q from γ (DCO) in (¹² C,4n γ); polarity from no level-parity change.
6859.7	17-	262.1 2	100	6597.6	1.41	0.1/07	E_{γ} : from (¹² C,4n γ) only.
6889.0	17	203.5 2	81 12	6685.5 16	MI	0.1627	$\alpha(K)=0.1390\ 20;\ \alpha(L)=0.0187\ 3;\ \alpha(M)=0.00392\ 6$
							$\alpha(N)=0.000870 13; \alpha(O)=0.0001410 21; \alpha(P)=1.071X10 - 10$ E. J. Mult : from $\binom{12}{2}C$ (ma). Mult is based $\alpha(DCO)$ and $\alpha(nol)$
		87462	100.75	6014 4 16+	E1	1.09×10^{-3}	$\alpha(K) = 0.000944.14$; $\alpha(L) = 0.0001182.17$; $\alpha(M) = 2.45 \times 10^{-5} A$
		074.0 2	100 15	0014.4 10	LI	1.09×10	$\alpha(\mathbf{N}) = 5.000944747, \alpha(\mathbf{L}) = 0.000118277, \alpha(\mathbf{M}) = 2.45 \times 10^{-6} 4$ $\alpha(\mathbf{N}) = 5.42 \times 10^{-6} 8; \alpha(\mathbf{O}) = 8.79 \times 10^{-7} 13; \alpha(\mathbf{P}) = 6.70 \times 10^{-8} 10$
							F_{rr} Ly Mult : from (¹² C 4ny) Mult is based γ (DCO) and γ (nol)
7074.0	(17-)	710.6 2	54 8	6363.4 16-	(M1)	0.00655	$\alpha(K)=0.00563 \ 8; \ \alpha(L)=0.000729 \ 11; \ \alpha(M)=0.0001517 \ 22$
							$\alpha(N)=3.37\times10^{-5}$ 5; $\alpha(O)=5.48\times10^{-6}$ 8; $\alpha(P)=4.25\times10^{-7}$ 6
							E_{γ} , I_{γ} , Mult.: from (¹² C, 4n γ) only. No γ (DCO) or γ (pol) data for mult.
		1343.0 2	100 15	5731.0 15-	(E2)	1.13×10^{-3}	$\alpha(K)=0.000944$ 14; $\alpha(L)=0.0001222$ 18; $\alpha(M)=2.54\times10^{-5}$ 4
							α (N)=5.64×10 ⁻⁶ 8; α (O)=9.12×10 ⁻⁷ 13; α (P)=6.86×10 ⁻⁸ 10; α (IPF)=3.05×10 ⁻⁵
							5
7104 7	10+	262.0.2	100 10	69417 17+	MI	0.0916	$E_{\gamma}, I_{\gamma}, Mult.$: from (¹² C, 4n γ) only. No γ (DCO) or γ (pol) data for mult.
/104./	18	203.0 2	100 10	0841.7 17	IVI I	0.0816	$\alpha(\mathbf{K})=0.0098\ 10;\ \alpha(\mathbf{L})=0.00934\ 14;\ \alpha(\mathbf{M})=0.00195\ 3$
							$u(N)=0.0004557$, $u(O)=7.05\times10^{-10}$, $u(F)=5.50\times10^{-10}$
		1090 3 2	29 4	6014.4 16+	F2	1.68×10^{-3}	$\alpha(K) = 0.001438 21$; $\alpha(L) = 0.000191 3$; $\alpha(M) = 3.98 \times 10^{-5} 6$
		1070.5 2	2) 7	0014.4 10		1.00×10	$\alpha(\mathbf{N}) = 0.001450 \ 21, \ \alpha(\mathbf{L}) = 0.000171 \ 5, \ \alpha(\mathbf{M}) = 5.00010 \ 0$ $\alpha(\mathbf{N}) = 8.81 \times 10^{-6} \ 13; \ \alpha(\mathbf{O}) = 1.419 \times 10^{-6} \ 20; \ \alpha(\mathbf{P}) = 1.044 \times 10^{-7} \ 15$
							$E_{\rm res}$ J. Mult.: from (¹² C.4ny). Mult is based γ (DCO) and γ (pol).
7185.3	(16^{-})	1170.9 2	100	6014.4 16+	(E1)	6.49×10^{-4}	$\alpha(K) = 0.000546 \ 8; \ \alpha(L) = 6.77 \times 10^{-5} \ 10; \ \alpha(M) = 1.402 \times 10^{-5} \ 20$
							α (N)=3.11×10 ⁻⁶ 5; α (O)=5.04×10 ⁻⁷ 7; α (P)=3.89×10 ⁻⁸ 6; α (IPF)=1.696×10 ⁻⁵ 25
							E_{γ} ,Mult.: from (¹² C,4n γ). Mult is based γ (DCO) and γ (pol).
7211.3	18-	322.3 1	100 10	6889.0 17-	M1	0.0477	$\alpha(K)=0.0409~6; \ \alpha(L)=0.00544~8; \ \alpha(M)=0.001135~16$
							$\alpha(N)=0.000252 4; \alpha(O)=4.09\times10^{-5} 6; \alpha(P)=3.13\times10^{-6} 5$
			(0.11	(041 7 17+	(E1)	0.00727	E_{γ} , I_{γ} , Mult.: from (¹² C, 4n γ). Mult is based γ (DCO) and γ (pol).
		369.6 2	6.2 11	6841./ 1/'	(EI)	0.00737	$\alpha(\mathbf{K}) = 0.00633 \ 9; \ \alpha(\mathbf{L}) = 0.000820 \ 12; \ \alpha(\mathbf{M}) = 0.0001 \ 103 \ 24$
							$\alpha(1N) = 5.70 \times 10^{\circ}$ 0; $\alpha(U) = 0.05 \times 10^{\circ}$ 9; $\alpha(P) = 4.35 \times 10^{\circ}$ /
7225 2	(16^{-})	1210 8 2	100 14	6014 4 16+	(E1)	6.28×10^{-4}	$E_{\gamma, k\gamma, N}$ unit. For $(-C, 4n\gamma)$ only. No $\gamma(DCO)$ or $\gamma(por)$ data for mult. $\alpha(K) = 0.000514.8$; $\alpha(L) = 6.27 \times 10^{-5}$ 0; $\alpha(M) = 1.218 \times 10^{-5}$ 10
1223.2	(10)	1210.0 2	100 14	0014.4 10	(E1)	0.20×10	$\alpha(\mathbf{N}) = 0.000514.0, \alpha(\mathbf{L}) = 0.57\times10^{-9}, \alpha(\mathbf{N}) = 1.510\times10^{-19}$ $\alpha(\mathbf{N}) = 2.92\times10^{-6} 4 \cdot \alpha(\mathbf{O}) = 4.75\times10^{-7} 7 \cdot \alpha(\mathbf{D}) = 2.66\times10^{-8} 6 \cdot \alpha(\mathbf{IDE}) = 2.26\times10^{-5} 5$
							$F_{\rm ev}$ L. Mult : from (¹² C.4ny). Mult is based v(DCO)
,	(10)	121010 2	100 11		(21)	0.20/(10	$\alpha(N) = 2.92 \times 10^{-6} 4$; $\alpha(O) = 4.75 \times 10^{-7} 7$; $\alpha(P) = 3.66 \times 10^{-8} 6$; $\alpha(IPF) = 3.36 \times 10^{-5} 5$ E _{γ} ,I _{γ} ,Mult.: from (¹² C,4n γ). Mult is based $\gamma(DCO)$.

18

From ENSDF

Adopted Levels, Gammas (continued)											
						$\gamma(^{138}\text{Ce})$	(continued)				
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments				
7225.2	(16 ⁻)	1494.1 2	86 14	5731.0 15-	(M1)	1.24×10 ⁻³	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.001004 \ 14; \ \alpha(\mathrm{L}) = 0.0001271 \ 18; \ \alpha(\mathrm{M}) = 2.64 \times 10^{-5} \ 4 \\ \alpha(\mathrm{N}) = 5.86 \times 10^{-6} \ 9; \ \alpha(\mathrm{O}) = 9.55 \times 10^{-7} \ 14; \ \alpha(\mathrm{P}) = 7.50 \times 10^{-8} \ 11; \\ \alpha(\mathrm{IPF}) = 7.69 \times 10^{-5} \ 11 \end{array} $				
7392.3	(18 ⁺)	786.0 2	100	6606.3 17+	(M1)	0.00514	E _γ ,I _γ ,Mult.: from (¹² C,4nγ) only. No γ(DCO) or γ(pol) data for mult. α (K)=0.00442 7; α (L)=0.000570 8; α (M)=0.0001187 17 α (N)=2.64×10 ⁻⁵ 4; α (O)=4.29×10 ⁻⁶ 6; α (P)=3.33×10 ⁻⁷ 5 F. J. Mult.: from (¹² C,4nα) only. No α (DCO) or α (pol) data for mult				
7427.6 7532.4	(17 ⁻)	585.9 2 307.2 2	100 40 <i>6</i>	6841.7 17 ⁺ 7225.2 (16 ⁻)	(M1)	0.0541	E_{γ} , E				
		347.1 2	100 20	7185.3 (16 ⁻)	(M1)	0.0394	E _γ ,I _γ ,Mult.: from (¹² C,4nγ) only. No γ(DCO) or γ(pol) data for mult. α (K)=0.0337 5; α (L)=0.00447 7; α (M)=0.000934 <i>I</i> 4 α (N)=0.000207 3; α (O)=3.37×10 ⁻⁵ 5; α (P)=2.58×10 ⁻⁶ 4				
		1518.0 2	80 12	6014.4 16+	(E1)	6.31×10 ⁻⁴	E _γ ,I _γ ,Mult.: from (¹² C,4nγ). Mult is based γ(DCO). α (K)=0.000348 5; α (L)=4.28×10 ⁻⁵ 6; α (M)=8.85×10 ⁻⁶ 13 α (N)=1.96×10 ⁻⁶ 3; α (O)=3.19×10 ⁻⁷ 5; α (P)=2.48×10 ⁻⁸ 4; α (IPF)=0.000229 4				
7682.9	19+	578.2 2	100	7104.7 18+	M1	0.01083	E _γ ,I _γ ,Mult.: from (¹² C,4nγ). Mult is based γ(DCO). α (K)=0.00930 <i>13</i> ; α (L)=0.001212 <i>17</i> ; α (M)=0.000253 <i>4</i> α (N)=5.61×10 ⁻⁵ <i>8</i> ; α (O)=9.12×10 ⁻⁶ <i>13</i> ; α (P)=7.04×10 ⁻⁷ <i>10</i>				
7685.8	19-	474.5 2	100	7211.3 18-	M1	0.01771	E _γ ,Mult.: from (¹² C,4nγ). Mult is based γ(DCO) and γ(pol). α (K)=0.01519 22; α (L)=0.00199 3; α (M)=0.000416 6 α (N)=9.23×10 ⁻⁵ 13; α (O)=1.500×10 ⁻⁵ 21; α (P)=1.155×10 ⁻⁶ 17				
7744.2	(18 ⁻)	211.8 2	100	7532.4 (17 ⁻)	(M1+E2)	0.149 4	E _{γ} ,Mult.: from (¹² C,4n γ). Mult is based γ (DCO) and γ (pol). α (K)=0.120 5; α (L)=0.022 6; α (M)=0.0048 13 α (N)=0.0010 3; α (O)=0.00016 4; α (P)=8.4×10 ⁻⁶ 12 F. Mult : from (¹² C,4n γ) Mult is based γ (DCO)				
7803.2	20+	120.3 2	100 17	7682.9 19+	M1+E2	0.88 19	$\alpha(K)=0.65\ 5;\ \alpha(L)=0.19\ 11;\ \alpha(M)=0.041\ 24$ $\alpha(N)=0.009\ 5;\ \alpha(O)=0.0013\ 7;\ \alpha(P)=4.2\times10^{-5}\ 4$ E. L. Mult : from (¹² C 4ny). Mult is based $\gamma(DCO)$ and $\gamma(pol)$				
		698.5 2	96 <i>13</i>	7104.7 18+	(E2)	0.00457	$\alpha(K)=0.00387 6; \alpha(L)=0.000554 8; \alpha(M)=0.0001164 17$ $\alpha(N)=2.57\times10^{-5} 4; \alpha(O)=4.08\times10^{-6} 6; \alpha(P)=2.77\times10^{-7} 4$ $E_{\gamma},I_{\gamma},Mult.:$ from (¹² C,4n γ) only. No $\gamma(DCO)$ or $\gamma(pol)$ data for mult.				
8322.3	(20+)	639.4 2	100	7682.9 19+	(M1)	0.00846	Bracket is added by evaluator. $\alpha(K)=0.00727 \ 11; \ \alpha(L)=0.000944 \ 14; \ \alpha(M)=0.000197 \ 3$ $\alpha(N)=4.37\times10^{-5} \ 7; \ \alpha(O)=7.10\times10^{-6} \ 10; \ \alpha(P)=5.50\times10^{-7} \ 8$ E. Mult is from (¹² C 4mi). Mult is based of (DCO)				
8350.3	20-	664.5 2	100 15	7685.8 19-	M1	0.00770	$\alpha(K)=0.00662 \ 10; \ \alpha(L)=0.000859 \ 12; \ \alpha(M)=0.000179 \ 3 \ \alpha(N)=3.97\times10^{-5} \ 6; \ \alpha(O)=6.46\times10^{-6} \ 9; \ \alpha(P)=5.00\times10^{-7} \ 7 \ F_{\rm e}$ L. Mult : from (¹² C 4nx) Mult is based $\alpha(DCO)$ and $\alpha({\rm pol})$				
		1139.0 2	12.2 24	7211.3 18-	(E2)	1.53×10^{-3}	$\alpha(K)=0.001314 \ 19; \ \alpha(L)=0.0001733 \ 25; \ \alpha(M)=3.61\times10^{-5} \ 5$				

From ENSDF

¹³⁸₅₈Ce₈₀-19

Adopted Levels, Gammas (continued) $\gamma(^{138}\text{Ce})$ (continued) α^{\dagger} E_{γ}^{\ddagger} E_i (level) I_{γ} \mathbf{E}_{f} J_{f}^{π} Mult. Comments $\alpha(N) = 8.00 \times 10^{-6} 12; \alpha(O) = 1.290 \times 10^{-6} 18; \alpha(P) = 9.55 \times 10^{-8} 14;$ α (IPF)=1.394×10⁻⁶ 22 E_{γ} , I_{γ} , Mult.: from (¹²C, 4n γ) only. No γ (DCO) or γ (pol) data for mult. Bracket is added by evaluator. 8709.6 21^{-} 359.3 2 100 14 8350.3 20-M1 0.0360 $\alpha(K)=0.0308$ 5; $\alpha(L)=0.00409$ 6; $\alpha(M)=0.000853$ 12 $\alpha(N)=0.000189 3; \alpha(O)=3.07\times10^{-5} 5; \alpha(P)=2.36\times10^{-6} 4$ E_{γ} , I_{γ} , Mult.: from (¹²C, 4n γ). Mult is based γ (DCO) and γ (pol). $\alpha(K)=0.001641\ 23;\ \alpha(L)=0.000219\ 3;\ \alpha(M)=4.58\times10^{-5}\ 7$ 1023.8 2 4.59 7685.8 19-(E2) 0.00192 $\alpha(N)=1.014\times10^{-5}$ 15; $\alpha(O)=1.631\times10^{-6}$ 23; $\alpha(P)=1.190\times10^{-7}$ 17 E_{γ} , I_{γ} , Mult.; from (¹²C, 4n γ) only. No γ (DCO) or γ (pol) data for mult. Bracket is added by evaluator. 1.75×10^{-3} α (K)=0.001495 21; α (L)=0.000199 3; α (M)=4.15×10⁻⁵ 6 8873.5 22^{+} 1070.3 2 100 7803.2 20+ E2 $\alpha(N)=9.18\times10^{-6}$ 13; $\alpha(O)=1.478\times10^{-6}$ 21; $\alpha(P)=1.085\times10^{-7}$ 16 E_{γ} , Mult.: from (¹²C, 4n γ). Mult is based γ (DCO) and γ (pol). 8921.1 570.8 2 100 8350.3 20- E_{γ} : from (¹²C,4n γ) only. $22^{(-)}$ $\alpha(K)=0.0813$ 12; $\alpha(L)=0.01091$ 16; $\alpha(M)=0.00228$ 4 8957.9 248.3 2 100 8709.6 21-(M1) 0.0951 α (N)=0.000506 8; α (O)=8.21×10⁻⁵ 12; α (P)=6.25×10⁻⁶ 9 E_{γ} ,Mult.: from (¹²C,4n γ). Mult is based γ (DCO) with bracket added by evaluator. E_{γ} : from (¹²C,4n γ) only. 8978.3 628.0 2 100 8350.3 20- $\alpha(K)=0.01017 \ 15; \ \alpha(L)=0.001328 \ 19; \ \alpha(M)=0.000277 \ 4$ 9430.9 (23^{+}) 557.4 2 100 8873.5 22+ (M1) 0.01185 $\alpha(N)=6.15\times10^{-5}$ 9; $\alpha(O)=9.99\times10^{-6}$ 14; $\alpha(P)=7.72\times10^{-7}$ 11 E_{γ} , Mult.: from (¹²C, 4n γ). Mult is based γ (DCO). E_{γ} : from (¹²C,4n γ) only. 1161.1 2 9511.4 100 8350.3 20-

[†] Additional information 1.

20

[‡] Primarily from (¹²C,4n γ), ¹³⁸Pr ε decay and (α ,2n γ). Weighted average is taken when available.

[#] From (p,2n γ) and (α ,2n γ) (1987Lo12) based on ce data.

[@] From $(\alpha, 4n\gamma)$ based on $\gamma(\theta)$.

[&] From ¹³⁸Pr ε decay (1.45 min) based on ce data.

^{*a*} From ¹³⁸Pr ε decay (2.1 h) based on ce data.

^b Multiply placed with undivided intensity.

^c Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹³⁸₅₈Ce₈₀

Legend
<u>Level Scheme (continued)</u>
Intensities: Relative photon branching from each level
& Multiply placed: undivided intensity given

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹³⁸₅₈Ce₈₀