¹³⁹La(**p**,2**n**γ) **1987Lo12**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

1987Lo12: E=17 MeV proton beam was produced from the Cologne FN tandem accelerator. Target was 2 mg/cm² thick natural lanthanum, 99.9% in ¹³⁹La (E=16 MeV, target thickness of 0.5 mg/cm² on a 12 μ g/cm² carbon backing for ce measurement). γ rays were detected with Ge detectors and conversion electrons were detected with a spectrometer. Measured ce, E γ , I γ , $\gamma\gamma$ -coin, γ (t). Deduced levels, J, π , γ -ray multipolarities, conversion coefficients. Comparisons with shell-model calculations. 1987Lo12 also reports data from ¹³⁶Ba(α ,2n γ) measurement. Refer to that dataset for details. 1987Lo12 supersedes 1984Lo14.

Others: 1970Sm05, 1973Wy01.

All data are from 1987Lo12, unless otherwise noted.

Others: 1965Ej01, 1966Ej02.

¹³⁸Ce Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	0+		2765.0 4	6-
788.82 16	2+ #		2899.2 <i>3</i>	6-
1476.8 <i>3</i>	0+ #		2907.2 <i>3</i>	(3,4,5)
1510.90 16	2+ #		2950.4 4	$(2^{-}, 3^{-}, 4^{-})$
1826.50 23	4+ #		2995.7 <i>3</i>	$(2,4,6)^+$
2129.18 25	7-	8.73 ms 20	3109.0 <i>3</i>	8+
2136.94 23	4+		3176.1 <i>3</i>	
2177.46 20	(3-)		3214.0 <i>3</i>	(5,6,7)
2217.34 24	5-		3229.6 4	
2293.75 23	6+		3430.4 4	$(7)^{+}$
2393.8 4	(3 ⁻)		3539.1 4	10+
2396.1 <i>3</i>	6+		3942.2 <i>4</i>	11^{+}
2444.0 <i>3</i>	4+		4050.0?	
2471.5 3	$(4^+, 5^+, 6^+)$		4359.7 5	12+
2733.3 3	6+		5214.3 5	13-
2748.6 <i>3</i>	5+			

[†] From a least-squares fit to γ -ray energies.

[‡] From 1987Lo12, based on deduced γ -ray multipolarities, unless otherwise noted.

From Adopted Levels.

$\gamma(^{138}\text{Ce})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	α #	Comments
76.4 2 80.4 2 156.8 2 164.6 2 176.5 2 177.8 2 302.7 2	0.40 2 5.0 2 2.5 <i>I</i> 1.20 5 19.1 7	2293.75 2217.34 2293.75 2293.75 2393.8 2471.5 2129.18	6^+ 5^- 6^+ (3^-) $(4^+,5^+,6^+)$ 7^-	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
334.6 2	2.1 1	2471.5	(4 ⁺ ,5 ⁺ ,6 ⁺)	2136.94 4+	(M1,E2)	0.039 5	$\begin{array}{l} \alpha(\text{K}) \exp = 0.005 \ l \\ \alpha(\text{K}) = 0.033 \ 5; \ \alpha(\text{L}) = 0.00504 \ l4; \\ \alpha(\text{M}) = 0.00107 \ 4 \\ \alpha(\text{N}) = 0.000235 \ 8; \ \alpha(\text{O}) = 3.70 \times 10^{-5} \ 6; \\ \alpha(\text{P}) = 2.4 \times 10^{-6} \ 5 \end{array}$

Continued on next page (footnotes at end of table)

¹³⁹La(**p**,2**n**γ) **1987Lo12** (continued)

$\gamma(^{138}\text{Ce})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. [‡]	$\alpha^{\#}$	Comments
390.8 2 403.1 2 417.5 2 430.1 2	15.3 6 0.84 4 0.25 2 1.13 5	2217.34 3942.2 4359.7 3539.1	5 ⁻ 11 ⁺ 12 ⁺ 10 ⁺	1826.50 3539.1 3942.2 3109.0	4 ⁺ 10 ⁺ 11 ⁺ 8 ⁺	E2	0.01643	α (K)exp=0.013 2 α (K)=0.01359 20; α (L)=0.00224 4; α (M)=0.000477 7
439.5 2	0.43 <i>3</i>	2733.3	6+	2293.75	6+	M1+E2	0.018 <i>3</i>	$\alpha(M)=0.0004777$ $\alpha(N)=0.0001046 \ 15; \ \alpha(O)=1.626\times10^{-5} \ 23;$ $\alpha(P)=9.41\times10^{-7} \ 14$ $\alpha(K)\exp=0.016 \ 2$ $\alpha(K)=0.016 \ 3; \ \alpha(L)=0.00226 \ 17; \ \alpha(M)=0.00048$ 4
454.9 2	0.80 6	2748.6	5+	2293.75	6+	M1+E2	0.017 3	$\begin{array}{l} \alpha(\mathrm{N}) = 0.000105 \ 8; \ \alpha(\mathrm{O}) = 1.67 \times 10^{-5} \ 16; \\ \alpha(\mathrm{P}) = 1.1 \times 10^{-6} \ 3 \\ \alpha(\mathrm{K}) = 0.010 \ 1 \\ \alpha(\mathrm{K}) = 0.014 \ 3; \ \alpha(\mathrm{L}) = 0.00205 \ 18; \ \alpha(\mathrm{M}) = 0.00043 \\ 4 \end{array}$
467.2 2	1.8 <i>1</i>	2293.75	6+	1826.50	4+	E2	0.01300	$\begin{aligned} &\alpha(\mathbf{N}) = 9.5 \times 10^{-5} \ 8; \ \alpha(\mathbf{O}) = 1.52 \times 10^{-5} \ 16; \\ &\alpha(\mathbf{P}) = 1.05 \times 10^{-6} \ 24 \\ &\alpha(\mathbf{K}) \exp = 0.0100 \ 1 \\ &\alpha(\mathbf{K}) = 0.01081 \ 16; \ \alpha(\mathbf{L}) = 0.001733 \ 25; \\ &\alpha(\mathbf{M}) = 0.000368 \ 6 \end{aligned}$
547.7 2	1.72 2	2765.0	6-	2217.34	5-	M1	0.01238	$\alpha(N)=8.07\times10^{-5} 12; \ \alpha(O)=1.261\times10^{-5} 18; \\ \alpha(P)=7.55\times10^{-7} 11 \\ \alpha(K)=0.01063 15; \ \alpha(L)=0.001388 20; \\ \alpha(M)=0.000289 4$
556.6 2	0.84 5	2950.4	(2 ⁻ ,3 ⁻ ,4 ⁻)	2393.8	(3 ⁻)	M1	0.01189	$\alpha(N)=6.42\times10^{-5} \ 9; \ \alpha(O)=1.044\times10^{-5} \ 15; \alpha(P)=8.06\times10^{-7} \ 12 \alpha(K)=0.01021 \ 15; \ \alpha(L)=0.001333 \ 19; \alpha(M)=0.000278 \ 4 $
569.6 2	1.2 <i>1</i>	2396.1	6+	1826.50	4+	E2	0.00762	$\alpha(N)=6.17\times10^{-5} \ 9; \ \alpha(O)=1.003\times10^{-5} \ 14; \alpha(P)=7.74\times10^{-7} \ 11 \alpha(K)\exp=0.007 \ 1 \alpha(K)=0.00640 \ 9; \ \alpha(L)=0.000965 \ 14; \alpha(M)=0.000204 \ 3 $
611.7 2	1.15 7	2748.6	5+	2136.94	4+	M1	0.00943	$\begin{aligned} &\alpha(N) = 4.48 \times 10^{-5} \ 7; \ \alpha(O) = 7.07 \times 10^{-6} \ 10; \\ &\alpha(P) = 4.54 \times 10^{-7} \ 7 \\ &\alpha(K) \exp[=0.009 \ l \\ &\alpha(K) = 0.00810 \ 12; \ \alpha(L) = 0.001054 \ 15; \\ &\alpha(M) = 0.000220 \ 3 \\ &\alpha(N) = 4.87 \times 10^{-5} \ 7; \ \alpha(O) = 7.93 \times 10^{-6} \ 12; \end{aligned}$
666.6 2 681.8 2 688.0 2	0.68 <i>4</i> 0.64 <i>4</i> 0.80 <i>4</i>	2177.46 2899.2 1476.8	(3 ⁻) 6 ⁻ 0 ⁺	1510.90 2217.34 788.82	2+ 5 ⁻ 2+			$\alpha(P)=6.13\times10^{-7}$ 9
697.1 2	0.78 4	3430.4	(7)*	2733.3	6+	M1	0.00686	$\begin{array}{l} \alpha(\text{K}) \exp = 0.006 \ 9 \\ \alpha(\text{K}) = 0.00589 \ 9; \ \alpha(\text{L}) = 0.000763 \ 11; \\ \alpha(\text{M}) = 0.0001590 \ 23 \\ \alpha(\text{N}) = 3.53 \times 10^{-5} \ 5; \ \alpha(\text{O}) = 5.74 \times 10^{-6} \ 8; \end{array}$
722.1 2	5.0 2	1510.90	2+	788.82	2+	M1	0.00630	$\alpha(P)=4.45\times10^{-7} 7$ $\alpha(K)\exp=0.0054 7$ $\alpha(K)=0.00541 8; \alpha(L)=0.000700 10;$

Continued on next page (footnotes at end of table)

¹³⁹La(p,2nγ) **1987Lo12** (continued)

$\gamma(^{138}\text{Ce})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. [‡]	α #	Comments
759 1 0	1 10 5	2020 6		2471.5	(4+ 5+ 4+)			$\begin{array}{l} \alpha(\mathrm{M}) = 0.0001459 \ 21 \\ \alpha(\mathrm{N}) = 3.24 \times 10^{-5} \ 5; \\ \alpha(\mathrm{O}) = 5.27 \times 10^{-6} \ 8; \\ \alpha(\mathrm{P}) = 4.09 \times 10^{-7} \ 6 \end{array}$
758.1 2 770.0 2	1.12 <i>3</i> 1.47 <i>7</i>	3229.6 2899.2	6-	2471.5 2129.18	(4',5',0') 7-	M1	0.00540	$\alpha(K) \exp = 0.0042 \ 6$ $\alpha(K) = 0.00464 \ 7;$ $\alpha(L) = 0.000599 \ 9;$ $\alpha(M) = 0.0001248 \ 18$ $\alpha(N) = 2.77 \times 10^{-5} \ 4;$ $\alpha(O) = 4.51 \times 10^{-6} \ 7;$ $\alpha(P) = 3.50 \times 10^{-7} \ 5$
788.8 2 815.3 2	100.0 29 2.3 <i>1</i>	788.82 3109.0	2+ 8+	0.0 2293.75	0+ 6+	E2	0.00317	$\alpha(K)\exp=0.0025 \ 3 \\ \alpha(K)=0.00270 \ 4; \\ \alpha(L)=0.000375 \ 6; \\ \alpha(M)=7.85\times10^{-5} \ 11 \\ \alpha(N)=1.734\times10^{-5} \ 25; \\ \alpha(O)=2.77\times10^{-6} \ 4; \\ \alpha(P)=1 \ 95\times10^{-7} \ 3$
854.6 2	0.55.3	5214.3	13-	4359.7	12^{+}			
906.9 2	2.6 1	2733.3	6+	1826.50	4+	E2	0.00250	$\alpha(K) \exp = 0.0020 \ I$ $\alpha(K) = 0.00213 \ 3;$ $\alpha(L) = 0.000290 \ 4;$ $\alpha(M) = 6.07 \times 10^{-5} \ 9$ $\alpha(N) = 1.341 \times 10^{-5} \ I9;$ $\alpha(O) = 2.15 \times 10^{-6} \ 3;$ $\alpha(P) = 1.541 \times 10^{-7} \ 22$
920.2 2 933.1 2	0.74 <i>4</i> 3.0 <i>1</i>	3214.0 2444.0	(5,6,7) 4 ⁺	2293.75 1510.90	6^+ 2 ⁺			
979.8 2	1.14 6	4050.07 3109.0	8+	2129.18	° 7-	E1	8.78×10 ⁻⁴	$\alpha(K) \exp=0.0008 \ l$ $\alpha(K)=0.000759 \ l1;$ $\alpha(L)=9.46 \times 10^{-5} \ l4;$ $\alpha(M)=1.96 \times 10^{-5} \ 3$ $\alpha(N)=4.34 \times 10^{-6} \ 6;$ $\alpha(O)=7.04 \times 10^{-7} \ l0;$ $\alpha(P)=5 \ 39 \times 10^{-8} \ 8$
1037.7 2 1080.7 2 1169 2 2	63.4 <i>31</i> 1.26 <i>7</i> 1.63 <i>8</i>	1826.50 2907.2 2995 7	4^+ (3,4,5) (2,4,6)^+	788.82 1826.50 1826.50	2^+ 4^+ 4^+			
1348.1 2	12.3 7	2136.94	(2,7,0) 4 ⁺	788.82	2+	E2	1.12×10 ⁻³	$\alpha(K)\exp=0.0009\ 2$ $\alpha(K)=0.000937\ 14;$ $\alpha(L)=0.0001213\ 17;$ $\alpha(M)=2.52\times10^{-5}\ 4$ $\alpha(N)=5.59\times10^{-6}\ 8;$ $\alpha(O)=9.05\times10^{-7}\ 13;$ $\alpha(P)=6.81\times10^{-8}\ 10;$ $\alpha(IPF)=3.17\times10^{-5}\ 5$
1388.6 2 1510.9 2	2.3 <i>1</i> 6.2 22	2177.46 1510.90	(3 ⁻) 2 ⁺	788.82 0.0	2^+ 0 ⁺			

Continued on next page (footnotes at end of table)

139 La(p,2n γ) 1987Lo12 (continued)

$\gamma(^{138}\text{Ce})$ (continued)

[†] From 1987Lo12. Values of Eγ are from combination with data from ¹³⁶Ba(α,2nγ) measurement in 1987Lo12.
[‡] Deduced by 1987Lo12 based on α(K)exp.
[#] Additional information 1.
[@] Placement of transition in the level scheme is uncertain.

5