¹³⁸Ce IT decay (8.73 ms) 1977Go15

		History						
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017					

Parent: ¹³⁸Ce: E=2129.7 *15*; $J^{\pi}=7^-$; $T_{1/2}=8.73$ ms *20*; %IT decay=100.0 ¹³⁸Ce-E, J^{π} , $T_{1/2}$: From Adopted Levels. ¹³⁸Ce-T_{1/2}: From 1977Go15. 1977Go15: Measured E γ , I γ . Deduced σ for isomer production.

Others: 1960Mo19, 1963Re02, 1964Ra09, 1964Re10.

¹³⁸Ce Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
789.2 8	2+		
1826.8 <i>12</i>	4+		
2129.7 15	7-	8.73 ms 20	$T_{1/2}$: weighted average of 8.65 ms 20 (1977Go15) and 9.2 ms 5 (1960Mo19) from γ (t), the same value adopted in Adopted Levels.

 † From a least-squares fit to $\gamma\text{-ray energies}.$

[‡] From Adopted Levels.

 $\gamma(^{138}\text{Ce})$

I γ normalization: from I(γ +ce)(303 γ)=I(γ +ce)(1038 γ)=I(γ +ce)(789 γ)=100.

E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [†]	$\alpha^{\#}$	$I_{(\gamma+ce)}$ ‡	Comments
302.9 8	84.5 5	2129.7	7-	1826.8 4+	E3	0.182 4	100	ce(K)/(γ+ce)=0.1044 <i>I6</i> ; ce(L)/(γ+ce)=0.0390 <i>8</i> ; ce(M)/(γ+ce)=0.00873 <i>I7</i> ce(N)/(γ+ce)=0.00189 <i>4</i> ; ce(O)/(γ+ce)=0.000274 <i>6</i> ; ce(P)/(γ+ce)=7.02×10 ⁻⁶ <i>I2</i> α (K)=0.1234 <i>21</i> ; α (L)=0.0461 <i>9</i> ; α (M)=0.01032 <i>20</i> α (N)=0.00223 <i>5</i> ; α (O)=0.000324 <i>6</i> ; α (P)=8.30×10 ⁻⁶ <i>I4</i> Mult.: α (K)exp≈0.1, α (exp)=0.30 <i>5</i> (1963Re02), K/L=2.44 <i>20</i> (1964Ra09), E3 is based on more reliable data from ¹³⁸ Pr ε decay (2.03 h). L: from I(α+ce) and α
789.2 8	99.66 11	789.2	2+	0.0 0+	E2	0.00342	100	ce(K)/(γ +ce)=0.00290 4; ce(L)/(γ +ce)=0.00290 4; ce(M)/(γ +ce)=0.000405 6; ce(M)/(γ +ce)=0.000405 6; ce(N)/(γ +ce)=1.87×10 ⁻⁵ 3; ce(O)/(γ +ce)=2.99×10 ⁻⁶ 5; ce(P)/(γ +ce)=2.09×10 ⁻⁷ 3 α (K)=0.00291 5; α (L)=0.000406 6; α (M)=8.51×10 ⁻⁵ 13 α (N)=1.88×10 ⁻⁵ 3; α (O)=3.00×10 ⁻⁶ 5; α (P)=2.10×10 ⁻⁷ 3

Continued on next page (footnotes at end of table)

				¹³⁸ Ce I	T decay (8.73 ms)	1977Go15	(continued)
	$\gamma(^{138}\text{Ce})$ (continued)							
E_{γ}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [†]	α #	$I_{(\gamma+ce)}$ ‡	Comments
1037.6 9	99.81 1	1826.8	4+	789.2 2+	E2	0.00186	100	$\begin{array}{c} {\rm ce}({\rm K})/(\gamma+{\rm ce})=0.001592\ 23;\\ {\rm ce}({\rm L})/(\gamma+{\rm ce})=0.000213\ 3;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce})=4.44\times10^{-5}\ 7\\ {\rm ce}({\rm N})/(\gamma+{\rm ce})=9.82\times10^{-6}\ 14;\\ {\rm ce}({\rm O})/(\gamma+{\rm ce})=1.580\times10^{-6}\ 23;\\ {\rm ce}({\rm P})/(\gamma+{\rm ce})=1.155\times10^{-7}\ 17\\ \alpha({\rm K})=0.001595\ 23;\ \alpha({\rm L})=0.000213\ 3;\\ \alpha({\rm M})=4.45\times10^{-5}\ 7\\ \alpha({\rm N})=9.84\times10^{-6}\ 14;\ \alpha({\rm O})=1.583\times10^{-6}\ 23;\\ \alpha({\rm P})=1.157\times10^{-7}\ 17\\ \end{array}$

[†] From Adopted Gammas.

 ‡ For absolute intensity per 100 decays, multiply by 1.0 *l*.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

