¹³⁸Cs β^- decay (2.91 min) 1971Ca21

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

Parent: ¹³⁸Cs: E=79.9 3; $J^{\pi}=6^-$; $T_{1/2}=2.91 \text{ min } 10$; $Q(\beta^-)=5375 9$; % β^- decay=19 3

 138 Cs-J^{π},T_{1/2}: From Adopted Levels of 138 Cs.

¹³⁸Cs-Q(β^{-}): From 2017Wa10.

¹³⁸Cs-%β⁻ decay: From %IT=81 *3*, weighted average of 81.5 +25-*30* (at 68.3% confidence level) from 1978Au08 and 75 8 from 1971Ca21, deduced from growth curves of 463γ, 1436γ, and 1010γ. Other: %IT=81.5 +50-140 from 1978Au08 at 99.7% confidence level. The 1010γ is not fed in β⁻ decay of 2.9-min ¹³⁸Cs, but follows the β⁻ decay of the ¹³⁸Cs ground state (1978Au08,1971Ca21).

1971Ca21: Source of ¹³⁸Cs was produced via the thermal-neutron induced fissions of ²³⁵U and also the ¹³⁸Ba(n,p) reaction, at CEN, Grenoble. γ and X rays were detected with Ge(Li) detectors (FWHM=1.2 keV at 122 keV, 3-4 keV at 1333 keV) and NaI(TI) detectors; β particles and conversion electrons were detected by a β detector. Measured E γ , I γ , E β , $\beta\gamma$ -coin, $\gamma\gamma$ -coin, $\beta\gamma$ (t). Deduced levels, J, π , half-life, decay branching, conversion coefficient, γ -ray multipolarity. Systematics of neighboring isotones.

1978Au08: Measured $E\gamma$, $I\gamma$. Deduced levels.

Additional information 1.

Others: 1997Gr09, 1994He33, 1992Gr21.

See also ¹³⁸Cs IT decay (2.91 min).

All data are from 1971Ca21, unless otherwise noted.

¹³⁸Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}		Comments	
0.0	0^{+}	stable			
1436.0 2	2^{+}				
1899.0 2	4^{+}				
2090.7 2	6+	0.8 µs 1	$T_{1/2}$: from $\beta \gamma(t)$ in 1971Ca21.		
2203.2 <i>3</i>	6+	-			
2307.8 <i>3</i>	4^{+}				
2415.2 <i>3</i>	5+				

[†] From a least-squares fit to γ -ray energies.

[‡] From Adopted Levels.

β^- radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft		Comments
(3040 9)	2415.2	2.8 6	7.3 <i>1</i>	av $E\beta$ =1250.7 42	
(3252 9)	2203.2	2.0 5	7.5 <i>1</i>	av $E\beta$ =1349.1 42	
(3364 9)	2090.7	14.4 25	6.73 8	av $E\beta$ =1401.4 42	

[†] From I(γ +ce) intensity balance at each level, with conversion coefficients calculated using the BrIcc program.

[‡] Absolute intensity per 100 decays.

1971Ca21 (continued)

 138 Cs β^- decay (2.91 min)

						$\gamma(^{138}\text{Ba})$		
Eγ	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [#]	$\delta^{\#}$	α^{\dagger}	Comments
107.5 3	1.0 5	2415.2	5+	2307.8 4+	[M1]		0.803 13	$\alpha(K)=0.687 \ 11;$ $\alpha(L)=0.0922 \ 15;$ $\alpha(M)=0.0190 \ 3$ $\alpha(N)=0.00411 \ 7;$ $\alpha(O)=0.000628 \ 11;$ $\alpha(O)=0.000628 \ 11;$
112.5 3	8 1	2203.2	6+	2090.7 6+	M1+E2	-0.25 2	0.739 <i>13</i>	$\alpha(P)=4.35\times10^{-6}8$ $\alpha(K)=0.618 \ 11; \ \alpha(L)=0.096$ $3; \ \alpha(M)=0.0200 \ 6$ $\alpha(N)=0.000638 \ 17;$ $\alpha(O)=0.000638 \ 17;$
191.7 2	80 4	2090.7	6+	1899.0 4+	E2		0.199	$\alpha(P)=3.98\times10^{-6} 7$ $\alpha(K)=0.1531 22;$ $\alpha(L)=0.0361 6;$ $\alpha(M)=0.00773 12$ $\alpha(N)=0.001623 24;$ $\alpha(O)=0.000226 4;$ $\alpha(P)=8.05\times10^{-6} 12$
212.0 3	2.8 5	2415.2	5+	2203.2 6+	(M1)		0.1221	$\alpha(K)=0.1047 \ 16;$ $\alpha(L)=0.01384 \ 21;$ $\alpha(M)=0.00285 \ 5;$ $\alpha(N)=0.000616 \ 9;$ $\alpha(O)=9.43\times10^{-5} \ 14;$ $\alpha(P)=6.87\times10^{-6} \ 10$
324.5 3	6.2 10	2415.2	5+	2090.7 6+	M1+E2	-7.8 +17-26	0.0353	$\alpha(K)=0.0290 5; \alpha(L)=0.00505 8; \alpha(M)=0.001063 16 \alpha(N)=0.000226 4; \alpha(O)=3.26\times10^{-5} 5; \alpha(P)=1.666\times10^{-6} 25$
408.8 2		2307.8	4+	1899.0 4+	M1+E2	-0.23 +7-10	0.0216 4	$\alpha(\mathbf{K})=0.0186\ 4;$ $\alpha(\mathbf{L})=0.00243\ 4;$ $\alpha(\mathbf{M})=0.000500\ 7$ $\alpha(\mathbf{N})=0.0001078\ 16;$ $\alpha(\mathbf{O})=1.650\times10^{-5}\ 24;$ $\alpha(\mathbf{P})=1.202\times10^{-6}\ 25$
463.0 2	99 5	1899.0	4+	1436.0 2+	E2		0.01221	$\alpha(K) = 0.01023 \ 15;$ $\alpha(L) = 0.001576 \ 23;$ $\alpha(M) = 0.000329 \ 5;$ $\alpha(N) = 7.01 \times 10^{-5} \ 10;$ $\alpha(O) = 1.035 \times 10^{-5} \ 15;$ $\alpha(P) = 6.11 \times 10^{-7} \ 9;$
516.2 5	3.2 10	2415.2	5+	1899.0 4+	M1+E2	-0.11 4	0.01212 18	$\alpha(\mathbf{K})=0.01043 \ I5; \alpha(\mathbf{L})=0.001343 \ 20; \alpha(\mathbf{M})=0.000276 \ 4 \alpha(\mathbf{N})=5.96 \times 10^{-5} \ 9; \alpha(\mathbf{O})=9.14 \times 10^{-6} \ I4; \alpha(\mathbf{P})=6.75 \times 10^{-7} \ I0$
871.8 <i>3</i>		2307.8	4+	1436.0 2+	E2		0.00245	$\alpha(K)=0.00210 \ 3;$ $\alpha(L)=0.000281 \ 4;$ $\alpha(M)=5.79\times10^{-5} \ 9$ $\alpha(N)=1.243\times10^{-5} \ 18;$ $\alpha(O)=1.88\times10^{-6} \ 3;$ $\alpha(P)=1.298\times10^{-7} \ 19$
1436.0 2	100	1436.0	2^{+}	$0.0 \ 0^+$	E2		9.17×10^{-4}	$\alpha(K)=0.000742$ 11;

Continued on next page (footnotes at end of table)

138 Cs β^- decay (2.91 min) 1971Ca21 (continued)

 $\gamma(^{138}\text{Ba})$ (continued)

 E_{γ} E_i(level) Comments

 $\frac{\alpha(L)=9.37\times10^{-5} \ 14; \ \alpha(M)=1.92\times10^{-5} \ 3}{\alpha(N)=4.14\times10^{-6} \ 6; \ \alpha(O)=6.34\times10^{-7} \ 9; \ \alpha(P)=4.62\times10^{-8} \ 7; \ \alpha(IPF)=5.73\times10^{-5} \ 8}$

[†] Additional information 2.
[‡] Absolute intensity per 100 decays through this branch.
[#] From Adopted Gammas.

[@] For absolute intensity per 100 decays, multiply by 0.19 3.

138 Cs β^- decay (2.91 min) 1971Ca21

Decay Scheme

