		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017

 $Q(\beta^{-})=-1742 3$; S(n)=8611.72 4; S(p)=9005.00 18; $Q(\alpha)=-2560.7 3$ 2017Wa10 S(2n)=15517.35 8, S(2p)=16410.4 3 (2017Wa10).

First identification of ¹³⁸Ba nuclide by F. W. Aston in 1925: Philos Mag 49, 1191 (1925). See 2010Sh20. Nuclear Structure Theory: 2011To17, 2001An05, 2001Sh06, 2001Ty03, 2000Vr04, 2000Yo08, 1997Ho05.

Other measurements: 2015Wa30: ¹⁹⁸Pt(¹³⁶Xe,X γ) E=7.98 MeV/nucleon. Measured σ . 2004Va03: ¹⁹⁸Pt(¹³⁶Xe,X γ) E=850 MeV. Measured T_{1/2}.

Double giant-dipole resonance: 1990Au01, 1991Au04, 1992Ba02.

Giant quadrupole resonance: 1991BeZT.

Giant dipole resonance: 1996Be30.

Isotope shift, $\Delta < r^2 >$ measurements: 2000Ga58, 1995Va36, 1995Zh57. Neutron induced reactions on ¹³⁷Ba and ¹³⁸Ba: 2000ZhZV, 1999ZhZR, 1998Ko07.

¹³⁸Ba Levels

Cross Reference (XREF) Flags

A B C D E	¹³⁸ Cs β^- decay (32.5 min) ¹³⁸ Cs β^- decay (2.91 min) ¹³⁸ La ε decay ¹³⁶ Xe(³ He,n) ¹³⁶ Xe(α ,2n γ)	G H J K	$^{137}Ba(n,\gamma)$ E=thermal $^{137}Ba(d,p)$ $^{138}Ba(\gamma,\gamma'),(pol \gamma,\gamma')$ $^{138}Ba(e,e')$ $^{138}Ba(n,n'\gamma)$	M N O P Q	¹³⁸ Ba($\alpha, \alpha' \gamma$) ¹³⁸ Ba(α, α') ¹³⁹ La(d, ³ He) ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ) Coulomb excitation
F	¹³⁶ Ba(t,p)	L	¹³⁸ Ba(p,p')		

E(level) [†]	J^{π}	$T_{1/2}^{(a)}$	XREF		Comments			
0.0	0^{+}	stable	ABCDEFGHI	JKLMNOPQ	Evaluated nuclear charge radius $\langle r^2 \rangle^{1/2} = 4.838$ fm 5 (2013An02).			
1435.805 ^{&} 10	2+	0.199 ps 6	ABCDE GHI	IJKL NOPQ	$\mu = +1.44 \ 22 \ (1987Ba65,2014StZZ)$ $Q = -0.14 \ 7 \ (1989Bu07,2016St14)$ $B(E2)\uparrow = 0.231 \ 9$ $J^{\pi}: 1435.795\gamma \ E2 \ to \ 0^+ \ g.s.; \ L(d,p)=0 \ from \ 3/2^+; \ L(p,p')=L(\alpha,\alpha')=2.$ $T_{1/2}: weighted average of 0.204 \ ps \ 6 \ from \ B(E2)\uparrow \ in \ Coulomb excitation, \ 0.186 \ ps \ 10 \ from \ B(E2)\uparrow \ in \ (e,e'), \ 0.193 \ ps \ +15-13 \ from \ measured \ width \ in \ (\gamma,\gamma'). \ Other: \ 0.19 \ ps \ +12-6 \ in \ (n,n'\gamma) \ by \ DSAM.$ $\mu: \ from \ g-factor=0.72 \ 11 \ (1987Ba65) \ in \ Coulomb \ excitation.$ $Q: \ -0.14 \ 7 \ is \ for \ constructive \ interference \ from \ second \ 2^+ \ state, \ +0.08 \ 7 \ for \ destructive \ interference \ (1989Bu07) \ in \ Coulomb \ excitation.$ $B(E2)\uparrow: \ weighted \ average \ of \ 0.249 \ 13 \ from \ (e,e') \ and \ 0.227 \ 6 \ from$			
1898.588 ^{&} 11	4+	2.160 ns 11	AB EG	KL NOP	Coulomb excitation. μ =+3.2 6 (2014StZZ,1985Be04) J ^{π} : L(α , α')=L(p,p')=4; L(d, ³ He)=4 from 7/2 ⁺ ; 462.796 γ E2 to 2 ⁺ .			
2090.536 ^{&} 21	6+	0.85 μs 10	AB EG	KL NOP	T _{1/2} : from βγγ(t) in ¹³⁸ Cs β ⁻ decay (32.5 m), weighted average of 2.164 ns <i>11</i> (1995Ma75), 2.13 ns <i>3</i> (2011Ro42) and 2.17 ns 8 (1963Cu04). Other: 2.3 ns <i>1</i> from γ(t) in (α,2nγ). μ : from g-factor=0.80 <i>14</i> (1985Be04) in ¹³⁸ Cs β ⁻ decay (32.5 m). μ =+5.88 <i>12</i> (1976Ik04) XREF: N(2120).			

¹³⁸Ba Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{(0)}$	XREF	Comments
				J^{π} : L(p,p')=6.
				T _{1/2} : weighted average of 0.8 μs 1 from βγ(t) in ¹³⁸ Cs β ⁻ decay (2.91 m), 0.8 μs 2 from γ(t) in (α,2nγ) and 1.25 μs 25 from γ(t) 2004Va03 via ¹⁹⁸ Pt(¹³⁶ Xe,Xγ) reaction.
2189.861 22	(1,2 ⁺)	≥0.8 ps	G K	Additional information 1. J^{π} : possible 2189.2 γ to 0 ⁺ ; strong primary feeding from 2 ⁺ in (n, γ) E=thermal. J^{π} =0 ⁺ from (n,n' γ) based on 754.12 γ isotropic is inconsistent.
2203.05 3	6+	55 ps 17	AB E G KL OP	$T_{1/2}$: from (n,n' γ) using DSAM. J ^{π} : 112.52 γ M1+E2 to 6 ⁺ and 980.6 γ stretched E2 from 8 ⁺ .
2217.874 18	2+	0.130 ps <i>10</i>	A EGIKL NoQ	$T_{1/2}$: from $\beta\gamma\gamma(1)$ in $2-Cs\beta$ decay (32.5 m). J^{π} : 2217.86 γ E2 to 0 ⁺ ; L(p,p')=2. $T_{1/2}$: weighted average of 0.135 ps +21-16 from B(E2) \uparrow in Coulomb excitation, 0.114 ps +14-12 from width in (γ,γ'), and 0.137 ps 10 in (n p' γ) wing DSAM
2307.515 17	4+	7 ps 3	ABEG KLNP	XREF: N(2270). J ^π : L(p,p')=4; L(d, ³ He)=4+2 from 7/2 ⁺ ; 871.68γ E2 to 2 ⁺ , 408.97γ M1+E2 to 4 ⁺ . T _{1/2} : from βγγ(t) in ¹³⁸ Cs β ⁻ decay (32.5 m). Other: ≤0.07
2240	0+		P	ns in $(\alpha, 2n\gamma)$ using DSAM.
2340 2415 337 <i>1</i> 9	0' 5+	16 ns 8	AR F.G. KL OP	$J^{*}: L({}^{\circ}He,n)=0+(2).$ XREF: $O(2440)$
	c	10 pb 0		J^{π} : 516.70 γ M1+E2 to 4 ⁺ , 324.84 γ M1+E2 to 6 ⁺ . T _{1/2} : from $\beta\gamma\gamma$ (t) in ¹³⁸ Cs β^- decay (32.5 m). Other: \leq 0.07
2445.550 15	3+	5 ps 4	A EG KL O	XREF: O(2470). J ^π : 1009.70γ M1+E2 to 2 ⁺ , 546.975γ M1+E2 to 4 ⁺ . T _{1/2} : from βγγ(t) in ¹³⁸ Cs β ⁻ decay (32.5 m). Other: ≥0.7 res (a p(x)) write DSAM
2582.18 <i>23</i> 2582.99 <i>3</i>	4+ 1+	0.13 ps +4-3	L A E G KL	J ^π : L=4 in (p,p'). J ^π : 1147.17γ M1+E2 to 2 ⁺ , 2583.03γ D to 0 ⁺ . T _{1/2} : from (n,n'γ) using DSAM. Other: ≤7 ps from βγγ(t) in
2639.39 4	2+	0.32 ps +10-5	A EGIKLN	¹³⁶ Cs β ⁻ decay (32.5 m). XREF: N(2650). J ^π : L(p,p')=2; 2639.35γ E2 to 0 ⁺ . T _{1/2} : weighted average of 0.26 ps +10-5 from width in (γ,γ')
2779.31 3	4+	≤6 ps	A E G KL	and 0.42 ps +12-8 using DSAM in $(n,n'\gamma)$. J^{π} : L(p,p')=4.
2795.2? 3	(1,2+)		G	T _{1/2} : from $\beta\gamma\gamma(t)$ in ¹⁵⁰ Cs β^- decay (32.5 m). E(level): This level is proposed in (n, γ) E=thermal (1995Bo05) based on the observation of the 2794-5817 coincidence, which, however, could also assume a level at 5817 instead of at 2794. A level at 5815 is proposed by 2006Vo11 in (γ,γ') from the observed 5817 γ and the 2794 γ is not observed in (n,n' γ), which makes this 2794 level questionable.
2851.444 22	4+	≤11 ps	A EG K	J ^π : 1415.71γ stretched E2 to 2 ⁺ , 952.86γ M1+E2 to 4 ⁺ . T _{1/2} : from βγγ(t) in ¹³⁸ Cs β ⁻ decay (32.5 m), T _{1/2} ≥1.5 ps
2880.66 8	3-	0.055 ps 6	A DE GH JKL N Q	from $(n,n'\gamma)$ using DSAM. B(E3) $\uparrow=0.133$ 13 (1985Bu01) XREF: D(2850). J ^{π} : L(α,α')=L(p,p')=3; L(d,p)=3 from 3/2 ⁺ . T _{1/2} : from $(n,n'\gamma)$ using DSAM. Other: ≤ 11 ps from $\beta\gamma\gamma(t)$ in ¹³⁸ Cs β^- decay (32.5 m).

¹³⁸Ba Levels (continued)

E(level) [†]	evel) [†] J^{π} $T_{1/2}^{@}$ XREF		Comments					
								B(E3) \uparrow : from 1985Bu01 in Coulomb excitation. Other: 0.195 /2 from 1972L eXB in (e e')
≈2900				н				0.195 12 Hom 1972Let B m (e,e).
2916.61? 18	(1,2 ⁺)			G				E(level): This level is proposed in (n,γ) E=thermal (1995B005) based on the observation of the 2917-5695 coincidence, which, however, could also assume a level at 5695 instead of at 2794. A level at 5695 is proposed by 2006Vo11 in (γ,γ') from the observed 5695 γ and the 2717 γ is not observed in $(n,n'\gamma)$, which makes this 2917 level questionable.
2931.40 4	2+	0.19 ps +5-4	A	EG	KL			J^{π_1} : possible 2910.989 to 0 ⁺ . J^{π_2} : 2931.39 E2 to 0 ⁺ .
2991.07 4	3+	≤11 ps	A	G	KL			J^{π} : 773.20 γ and 1555.25 γ M1+E2 to 2 ⁺ , 683.70 γ D+Q to 4 ⁺ .
3049.91 <i>3</i>	2+	0.33 ps +14-8	A	EG	KL			$T_{1/2}$: from $\beta \gamma \gamma$ (t) in ¹³⁶ Cs β^- decay (32.5 m). J ^{π} : 1614.08 γ M1+E2 to 2 ⁺ , 3049.6 γ to 0 ⁺ , 1151.26 γ to 4 ⁺ .
3154.71 6	4+			EG	KL			T _{1/2} : from $(n,n'\gamma)$ using DSAM. J ^{π} : L(p,p')=4; 1256.23 γ D+Q to 4 ⁺ , 1064.14 γ to 6 ⁺ , 739 31 γ to 3 ⁺
3163.27 7	(2)+	0.28 ps +55-12	A	EG	K			J^{π} : 1727.3 γ M1(+E2) to 2 ⁺ , 1264.70 γ (Q) to 4 ⁺ , strong primary γ from 2 ⁺ in (n, γ) E=thermal. T _{1/2} : from (n,n' γ) using DSAM.
3183.60 ^{&} 22	8+	20 ps +20-14		Е	K		Р	J^{π} : 1093.0 γ stretched E2 to 6 ⁺ ; band structure.
3243.06.8	3		Δ	G	к			$I_{1/2}^{\pi}$. 1011 ($u, 2n\gamma$) using DS/AW. I^{π} . 935 85 γ D+O to 4 ⁺ 1806 81 γ D+O to 2 ⁺
3257.24 7	3		A	EG	KI.			I^{π} : 1358.80v D+O to 4 ⁺ , 1821.33v to 2 ⁺ .
3309.4 3	(5.6.7)			Е	ĸ			J^{π} : 1106.3 γ D.O to 6 ⁺ .
3338.72 6	2+	31 fs 9	A	GHI	KL	N		J^{π} : L(p,p')=2; 3338.68 γ E2 to 0 ⁺ . T _{1/2} : weighted average of 31 fs 9 from width in (γ,γ') and
335263	$(1, 2^+)$		٨					J^{π} : 3352 6y to 0 ⁺
3359 7 3	(1,2) 7+	25 ps 10	л	F	ĸ		P	$J : 3332.07 \text{ to } 0^{-1}$ $I^{\pi} \cdot 944.27 \text{ F2 to } 5^{+1}$
5557.1 5	/	25 ps 10		L	ĸ		1	$T_{1/\alpha}$: from (α 2n α) using DSAM
3366.71 7	2+	31 fs +10-8	A	GI	KL			J^{π} : L(p,p')=2; 3366.72 γ E2 to 0 ⁺ . T _{1/2} : weighted average of 29 fs +21–13 from width in
3376.63 8	3			G	K			(γ, γ') and 31 fs +10-8 from $(n, n'\gamma)$ using DSAM. J ^{π} : 1940.74 γ D+Q to 2 ⁺ , 1478.28 γ D+Q to 4 ⁺ .
3437.5 6	$(1,2^{+})$		Α					J^{π} : 3437.5 γ to 0 ⁺ .
3442.18 12	$2^{(+)}$		Α	G	К			J^{π} : 3442.25 γ Q to 0 ⁺ .
3485.98 <i>5</i>					K			J^{π} : 1587.6 γ to 4 ⁺ , 1040.42 γ to 3 ⁺ .
≈3500	(4^{+})					N		$\mathbf{J}^{\pi}: \mathbf{L}(\alpha, \alpha') = (4).$
3504.28 10	2^{-}	≥0.2 ps		GH	K			J^{π} : L(d,p)=3; 3504.91 γ Q to 0 ⁺ .
3534	-			н				J^{π} : L(d,p)=3 from 3/2 ⁺ .
3562.25 8	(4)-			H	KL			J^{π} : L(d,p)=3 from 3/2 ⁺ ; 1116.71 γ D+Q to 3 ⁺ , 1663.2 γ to 4 ⁺ ; (4) ⁻ from analysis of p-decay of IAR in ¹³⁸ Ba+p and in ¹³⁷ Ba(d p) (1967Mol5)
3600.73 10	1	≥0.09 ps		G	K			J^{π} : 3600.56 γ D to 0 ⁺ , 2164.96 γ to 2 ⁺ .
3610.1.3				F	ĸ			$1_{1/2}$. Hom (ii,ii γ) using DSAW. $1^{\pi} \cdot 1407 0_{\gamma} D \Omega$ to 6^+
3617.8 /	0^{+}			F	K			J = I = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3622.1.3	10+	0.51 ns 7		Ē	K			$J^{\pi} \cdot 4385 \gamma E^{2} \gamma \text{ to } 8^{+}$
5022.1 5	10	0.51 115 /		-				$T_{1/2}$: from $\gamma(t)$ in $(\alpha, 2n\gamma)$.

¹³⁸Ba Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{(a)}$	XREF				Comments
3632.8 ^e 4	9-	31 ps 18		E	K	Р	J^{π} : 449.2 γ E1 to 8 ⁺ ; band structure.
3643.08 11	2^{+}	19 fs +16–11	A	GΙ	Kl		$J_{1/2}^{\pi}$: 3643.10 γ E2 to 0 ⁺ .
3646.71 <i>13</i>	(3)-		A	GH	Kl		T _{1/2} : from (n,n' γ) using DSAM. Other: ≤ 15 fs from (γ,γ'). J ^{π} : L(d,p)=3 from 3/2 ⁺ ; 766.03 γ D+Q to 3 ⁻ ; (3) ⁻ from analysis of p-decay of IAR in ¹³⁸ Ba+p and in ¹³⁷ Ba(d,p)
3652.6 8 3678.2 5	(1,2 ⁺) 8 ⁻	≤0.07 ns	A	E			(1967Mo15). J^{π} : 3652.5 γ to 0 ⁺ . J^{π} : 318.5 γ E1 7 ⁺ .
3684.7 3	1				K		$I_{1/2}$: from $\gamma(t)$ in $(\alpha, 2n\gamma)$. J ^{π} : 3684.6 γ D to 0 ⁺ .
3693.92 <i>12</i> 3734.4 <i>3</i>	2+	0.08 ps +13-4	A	G	K K		J^{π} : 3734.3 γ E2 to 0 ⁺ .
3800.06 24	2+	0.09 ps +21-6			K		$\Gamma_{1/2}$: from (n, n' γ) using DSAM. J ^{π} : 3800.1 γ E2 to 0 ⁺ .
3837.50 <i>10</i> 3859.5 <i>3</i>	(2^+) (5) ⁻			G H	KL.		$I_{1/2}$: from (n,n' γ) using DSAM. J^{π} : 3837 γ to 0 ⁺ , 957.6 γ to 3 ⁻ . J^{π} : L(d,p)=3 from 3/2 ⁺ : 1960.9 γ (D) to 4 ⁺ .
3910.5 ^{&} 4	10+	≤14 ps		E		Р	J^{π} : 726.9 γ E2 to 8 ⁺ , 288.4 γ D+Q to 10 ⁺ , band structure.
3922.13 6	(3)-		A	GH	KL		J^{π} : L(d,p)=1 from 3/2 ⁺ ; 2486.51 γ to 2 ⁺ , 2023.62 γ (D) to 4 ⁺ .
3931.18 24 3934.87 <i>11</i>	2+		A	G	K K		J ^π : 3935.2γ to 0 ⁺ , 2499.4γ to 2 ⁺ , 1054.36γ to 3 ⁻ , primary transition from 2 ⁺ in (n,γ) E=thermal, log <i>ft</i> =7.8 from 3 ⁻
4001.47 <i>11</i> 4011.9? <i>3</i> 4013.7 <i>3</i> 4026.00 <i>11</i>	$2^{(+)}$ (2 ⁺ ,3,4 ⁺) (1,2 ⁺) 1 ⁻	2.11 fs + <i>17–15</i>	A	G G GHI	K KL		parent. J^{π} : 4001.40 γ Q to 0 ⁺ . J^{π} : 2114.3 γ to 4 ⁺ , 745.5 γ to 3, 368.7 γ to 2 ⁺ . J^{π} : 4012.7 γ to 0 ⁺ . J^{π} : 4025.80 γ E1 to 0 ⁺ . Interpreted as 2 ⁺ \otimes 3 ⁻ two-phonon
4043 4079.88 <i>23</i> 4083.4 <i>4</i>	2^+ (1) ⁻ (1,2 ⁺)		A	F GH G	L		state (1994KnZZ,1995He25,1996Zi02). $T_{1/2}$: from width in (γ, γ') . Other: ≤ 35 fs from $(n, n'\gamma)$ using DSAM. J^{π} : L(t,p)=2. J^{π} : L(d,p)=1 from $3/2^+$; 4080.1 γ to 0 ⁺ . J^{π} : 4083.3 γ to 0 ⁺ .
4114.8 5 4115.42 8 4120.55 20	(1,2 ⁺)			E G			J^{π} : 4114.5 γ to 0 ⁺ .
4150.55 20 4143.3 3	(1) ⁻			GH			J ^{π} : L(d,p)=1 from 3/2 ⁺ ; 4143.2 γ to 0 ⁺ ; fed by primary transition from 2 ⁺ in (n, γ) E=thermal.
4157.5 <i>5</i> 4165.1 <i>3</i>	(4) ⁻			E H	KL N	4	XREF: N(?). J ^{π} : L(d,p)=3, 1284.4 γ to 3 ⁻ ; (4) ⁻ from analysis of p-decay of IAP in ¹³⁸ Ba+p and in ¹³⁷ Ba(d,p) (1967Mo15)
4197.15 <i>10</i> 4242.11 <i>18</i>	(1,2,3) $(1,2^+)$		A	G GH	KL		J^{π} : fed by primary transition from 2 ⁺ in (n, γ) E=thermal. J^{π} : fed by primary transition from 2 ⁺ in (n, γ) E=thermal; 4242 γ to 0 ⁺ .
4280.24 8	(1,2) ⁻			GH	L		J ^{π} : L(d,p)=1 from 3/2; 1398.46 γ to 3 ⁻ , 1695.9 γ to 1 ⁺ , 4280.31 γ to 0 ⁺ . 2 ⁻ is not excluded since 1995Bo05 in (n, γ) E=thermal observed that the 4280.31 γ in the 4332-4280 cascade is very weak and Mult(4280 γ)=M2 is possible
4323.56 7 4332.27 6	1^{-} (1,2 ⁺)	3.6 fs +19-12		GHI G	L		J^{π} : 4323.50 γ D to 0 ⁺ ; L(d,p)=1 from 3/2 ⁺ . J^{π} : 4332.23 γ to 0 ⁺ .

¹³⁸Ba Levels (continued)

E(level) [†]	\mathbf{J}^{π}	$T_{1/2}^{(0)}$	XREF			Comments	
4359.47 10	(1+,2,3)			G			J^{π} : 1913.9 γ to 3 ⁺ ; fed by primary transition from 2 ⁺ in (n γ) E=thermal
4445.48 7	1-	10.4 fs +20-14		GHI	L		J^{π} : L(d,p)=1; strong 4445.40 γ to 0 ⁺ ; fed by primary transition from 2 ⁺ in (n, γ) E=thermal.
4508.09 15	(2+,3)		A	G			J^{π} : 2609.54 γ to 4 ⁺ , 3073.4 γ to 2 ⁺ ; fed by primary transition from 2 ⁺ in (n, γ) E=thermal.
4535.99 8	1-	2.5 fs +5-4		GHI	M		J^{π} : L(d,p)=1; 4535.93 γ to 0 ⁺ ; J=1 from intensity ratio in (γ, γ') .
4564.45 9	(2,3) ⁻			GH			J ^{π} : L(d,p)=1 from 3/2 ⁺ ; 1981.55 γ to 1 ⁺ , 2257.31 γ to 4 ⁺ , 3129.5 γ to 2 ⁺ . 1995B005 in (n, γ) thermal assign J ^{π} =(3) ⁻ but state that it is not conclusive.
4580.19 <i>16</i> 4584 2 5	(1,2,3)			G F			J^{π} : fed by primary transition from 2 ⁺ .
4586.3 <i>4</i> 4615.46 <i>15</i>	(1) ⁻			GH	L K		J ^{π} : L(d,p)=1 from 3/2 ⁺ ; 3150.6 γ to 2 ⁺ , 4585.6 γ to 0 ⁺ .
4629.73 13 4645.72 10	$(1.2.3)^{-}$		A	GH	K L		J^{π} : L(d,p)=1 from 3/2 ⁺ : fed by primary transition from 2 ⁺ .
4665.14 18	$(1^{-},2^{+})$			G			J^{π} : 4664.12 γ to 0 ⁺ , 2082.95 γ to 1 ⁺ , 1784.7 γ to 3 ⁻ .
4689.0 ^{&} 4	12+	≤14 ps		Е		Р	J ^{π} : 778.5 γ E2 to 10 ⁺ , band structure. T _{1/2} : from (α ,2n γ) using DSAM.
4704.2 ^e 4	(11^{-})	$75f_{-}$, 22, 14		CUT		Р	J^{π} : 1071.3 γ to 9 ⁻ , 1082.1 γ to 10 ⁺ , band structure.
4/0/.41 9	1	7.5 IS $+22-14$		GHI	L		J [*] : L(d,p)=1 from $3/2^{-1}$; J=1 from scattering asymmetries in (γ, γ') ; 4707.21 γ to 0 ⁺ .
4743.44 12	(2,3) ⁻			GH	L		J^{π} : L(d,p)=1 from 3/2 ⁺ ; 3306.40 γ , 2525.9 γ and 2104.08 γ to 2 ⁺ , 1501.0 γ to 2525.9 γ to J=3; fed by primary transition from 2 ⁺ ; no a s, transition to 0 ⁺
4795.78 19	(2,3)-			GH	L		J^{π} : L(d,p)=1+3 from 3/2 ⁺ ; fed by primary transition from 2 ⁺ ; no g.s. transition to 0 ⁺ .
4855.52 12	1 ^{(-)‡}	0.28 fs +39-16		GΙ	M		
4860	+			D			J^{π} : L=0+(2) in (³ He,n).
4871.74 15	$(2,3)^{-}$			GH			J ^{π} : L(d,p)=1+3 from 3/2 ⁺ , primary transition, no γ to 0 ⁺ g.s.
5027.67 17	(2 ⁻ ,3)			G	L		J ^{π} : fed by primary transition from 2 ⁺ in (n, γ) E=thermal, no γ to g.s.
5128.4 5						Р	
5145.5 6	17	0.85 fs +17-12		I	Μ	_	
5186.0 5	(13)	166.4.2		-		Р	J^{*} : 481.8 γ to (11), band structure.
5358.3 5	1.	1.0 18 +4-5		1		Р	
5390.8 6	$1^{(-)}$	0.69 fs +16-11		I	м	-	
5394.2 ^d 5	(13^{-})					Р	J^{π} : proposed in ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).
5475.8 6	1 [‡]	1.43 fs +27-19		I	М		
5511.6 7	$1^{-\ddagger}$	0.23 fs +5-3		I	М		
5582.2 7	$1^{-\ddagger}$	1.38 fs +31-21		I			
5644.8 5	$1^{-\ddagger}$	0.29 fs +6-4		I	М		
5655.4 7	$1^{-\ddagger}$	0.85 fs +22-14		I	М		
5694.6 7	$1^{-\ddagger}$	1.30 fs +27-19		I	М		
5740	0^{+}			D			J^{π} : L=0 in (³ He,n).
5741.8 <mark>6</mark> 6	(11^{+})					Р	J^{π} : band structure.
5743.0 6	1-‡	0.88 fs +19-14		I			
5752.5 8	1#	2.1 fs +5-3		I			
5766.4 6	1-‡	0.79 fs +15-11		I			

¹³⁸Ba Levels (continued)

E(level) [†]	J^{π}	T _{1/2} @		XREF	7		Comments
5815.1 7	1-‡	1.09 fs +22-16		I	M		
5873.7 6	$1^{-\ddagger}$	0.44 fs +8-6		I	М		
5921.6 ^C 6	(14 ⁻)					Р	J^{π} : band structure.
5925.5 <mark>6</mark> 4	(12 ⁺)					Р	J^{π} : band structure.
5963.6 6	1-‡	0.56 fs +11-8		I	M		
6102.3 7	1-‡	0.42 fs +50–15		I			
6114.6 9	1-‡	0.72 fs +31-17		I			
6193.0 5	1-‡	0.25 fs +5-4		I			
6198.4 ^d 6	(15 ⁻)					Р	J^{π} : band structure.
6210.9 ^b 5	(13 ⁺)					Р	J^{π} : band structure.
6244.8 8	$1^{-\ddagger}$	0.82 fs +16-11		I			
6280	0+		D				J^{π} : L=0 in (³ He,n).
6348.0 7	1-7	0.42 fs +24-25		Ι			
6361.8 6	1-7	0.35 fs +6-5		Ι			
6410.3 6	1-7	0.19 fs +4-3		Ι			
6434.5 6	1-‡	0.20 fs +4-3		Ι			
6466.07	1#	0.76 fs +15-11		Ι			
6486.5 9	1#	1.8 fs +5-3		Ι			
6552.8 8	1#	0.75 fs +17-12		Ι			
6575.5 8	1#	0.66 fs +14-10		Ι			
6612.9 6	1#	0.16 fs +3-2		Ι	M		
6635.3 8	1#	0.95 fs +22-15		Ι			
6657.6 ⁰ 5	(14 ⁺)					Р	J^{π} : band structure.
6663.9 7	1#	0.63 fs +12-9		Ι			
6678.8 5	1#	0.18 fs +3-2		Ι			
6693.6 5	1#	0.17 fs +3-2		Ι			
6703.7 6	1#	0.43 fs +8-6		Ι		_	-T
6759.4° 7	(16^{-})			_		Р	J ^{<i>n</i>} : band structure.
6802.1 8	1" 1#	0.74 fs 13		1			
6813.6.6	1" 1#	0.21 fs + 5 - 3		1			
6821.8 11	1" 0 ⁺	0.99 fs +28-18	D	1			$I\pi$, I =0 in (311am)
6920.2.9	1#	$0.65 f_{0} + 14 = 10$	D	-			J = 0 III (He,II).
0039.3 0 6010 5 7	1 1#	0.03 IS +14-10 0.22 fs + 7 5		1 T			
686226	1 1#	$0.35 \text{ fs} \pm 5.4$			м		
6870.6.7	1 1#	$0.23 \text{ is } \pm 3-4$			n		
6805.0.6	1 1#	$0.40 \text{ is } \pm 3-0$		T			
6022.2.8	1 1#	$0.10 \text{ is } \pm 3 \pm 2$					
6057.0.12	1 1#	$0.42 \text{ IS } \pm 0 = 0$					
6081 1 8	1 1#	$0.05 18 \pm 10 \pm 11$ 0.74 fs $\pm 16 - 11$		T			
6988.8 ^{<i>a</i>} 5	(14^+)	0.74 18 +10-11		т		Р	J^{π} : band structure.
7040.3 9	1#	0.80 fs + 19 - 13		Ţ		-	
7106.1.75	1 [#]	0.76 fs + 17 - 12		Ť			
7144.0 9	1 [#]	0.97 fs + 26 - 17		ĩ			
7155.8 ^d 8	(17^{-})			-		Р	J^{π} : band structure.
	(1)					-	

¹³⁸Ba Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2} @	XREF		Comments
7211.8 8	1#	0.27 fs +6-4	I		τπ. Ν
1221.14 5	(15')			Р	J [*] : band structure.
7276.0 10	1#	0.18 fs +4-3	I		
7334.3 10	1 [#]	0.51 fs +11-8	I		
7376.8 9	1#	0.44 fs +9-7	I		
7403.6 8				Р	
7533.8 ^a 6	(16^{+})			Р	J^{π} : band structure.
7546.9 22	1#	0.75 fs +22-14	I		
7705.8 12	1 [#]	0.38 fs +8-6	I		
7774.2 7	1#	0.20 fs +4-3	I		
7805.5 8	1 [#]	0.33 fs +7-5	I		
7819.9 8	1#	0.30 fs +8-5	I		
7871.3 10	1 [#]	0.33 fs +9-6	I		
7980.5 ^a 8	(17^{+})			Р	J^{π} : band structure.
8012.7 9				Р	
8075.9 8	1 [#]	0.15 fs +3-2	I		
8281.9 ^a 9	(18 ⁺)			Р	J^{π} : band structure.
8433.5 14	1-#	0.52 fs +19-11	I		
8938.3 ^a 10	(19 ⁺)			Р	J^{π} : band structure.
9334.4 ^a 12	(20^{+})			Р	J^{π} : band structure.

[†] From a least-squares fit to γ -ray energies.

[‡] From γ scattering asymmetry in (γ, γ') .

[#] From γ intensity ratio in (γ, γ') .

[@] From $(n,n'\gamma)$ using DSAM for levels up to 4026 and from widths in (γ,γ') for levels above that, unless otherwise noted.

& Band(A): g.s. band.

^a Band(B): Band based on (14⁺).

^b Band(C): Band based on (11^+) .

^c Band(D): Band based on (14⁻).

^d Band(d): Band based on (13^{-}) .

^e Band(E): Band based on 9⁻.

Adopted Levels, Gammas (continued)												
						$\gamma(^{138}$	Ba)					
E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	I_{γ} #	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{\ddagger}	α^{\dagger}	Comments				
1435.805	2+	1435.795 10	100	0.0 0+	E2		9.17×10^{-4}	$\alpha(K)=0.000743 \ 11; \ \alpha(L)=9.37\times 10^{-5} \ 14; \ \alpha(M)=1.92\times 10^{-5}$				
1898.588	4+	462.785 5	100	1435.805 2+	E2		0.01223	3 $\alpha(N)=4.14\times10^{-6} 6; \alpha(O)=6.34\times10^{-7} 9; \alpha(P)=4.62\times10^{-8}$ 7; $\alpha(IPF)=5.72\times10^{-5} 8$ B(E2)(W.u.)=11.0 4 E _γ : from ¹³⁸ La ε decay. Mult.: from ce data in ¹³⁸ La ε decay, $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n' γ), and $\gamma(\theta)$ in (α ,2n γ). $\alpha(K)=0.01024 15; \alpha(L)=0.001578 22; \alpha(M)=0.000329 5$ $\alpha(N)=7.02\times10^{-5} 10; \alpha(O)=1.037\times10^{-5} 15;$ $\alpha(P)=6.12\times10^{-7} 9$ B(E2)(W.u.)=0.2878 15 E $\alpha(P)=6.267 - 4\alpha \exp(225 P)$				
2090.536	6+	191.95 2	100	1898.588 4+	[E2]		0.198	E _γ : from 1.5°Cs β ⁻ decay (32.5 m). Mult.: from ce data in ¹³⁸ Cs β ⁻ decay (32.5 m), γ(θ) and γ(pol) in (n,n'γ), and γ(θ) in (α,2nγ). α (K)=0.1525 22; α (L)=0.0359 5; α (M)=0.00769 11 α (N)=0.001615 23; α (O)=0.000224 4; α (P)=8.02×10 ⁻⁶ 12 B(E2)(W.u.)=0.053 +8-6 E _γ : from (n,n'γ). Others: 191.96 6 from ¹³⁸ Cs β ⁻ decay				
2189.861	(1,2 ⁺)	754.05 2 2189.2 <i>4</i>	100 <i>6</i> 4.4 <i>11</i>	$\begin{array}{ccc} 1435.805 & 2^+ \\ 0.0 & 0^+ \end{array}$				(32.5 m), 191.94 9 from (n,γ) E=thermal. E _{γ} : from $(n,n'\gamma)$. Other: 754.12 8 from (n,γ) E=thermal. E _{γ} ,I _{γ} : observed only in singles spectrum by 1995Bo05 in				
2203.05	6+	112.52 3	100 7	2090.536 6+	M1+E2	-0.25 2	0.739 12	$\alpha(K) = 0.618 \ 9; \ \alpha(L) = 0.096 \ 3; \ \alpha(M) = 0.0200 \ 6$ $\alpha(N) = 0.00428 \ 12; \ \alpha(O) = 0.000637 \ 16; \ \alpha(P) = 3.98 \times 10^{-5} \ 6$ $B(M1)(W.u.) = 0.15 \ +7 - 4; \ B(E2)(W.u.) = 4.5 \times 10^{2} \ +31 - 16$ E_{γ} : weighted average of 112.50 \ 10 from $^{138}Cs \ \beta^{-}$ decay (32.5 m), 112.5 \ 3 from $^{138}Cs \ \beta^{-}$ decay (2.91 m), 112.6 3 from (α ,2n γ), 112.84 \ 17 from (n, γ) E=thermal, 112.51 3 from (α ,n' γ), and 112.1 5 from $^{238}U(^{12}C,F\gamma),^{208}Pb(^{18}O,F\gamma).$				
2217.874	2+	304.0 <i>2</i> 782.09 <i>9</i>	2.0 <i>3</i> 2.6 <i>3</i>	1898.588 4 ⁺ 1435.805 2 ⁺	M1(+E2)	-0.02 8	0.00444	 I_γ: from (n,n'γ). Mult.: from ce data in β⁻ decay (32.5 m) and γ(θ) in (α,2nγ) and (n,n'γ). δ: from γ(θ) in (α,2nγ). Other: -0.27 +12-10 from (n,n'γ). E_γ,I_γ: from (n,n'γ) only. α(K)=0.00383 6; α(L)=0.000485 7; α(M)=9.95×10⁻⁵ 15 α(N)=2.15×10⁻⁵ 3; α(O)=3.31×10⁻⁶ 5; α(P)=2.46×10⁻⁷ 4 B(M1)(W.u.)=0.0090 +21-18 E_γ: weighted average of 782.08 9 from ¹³⁸Csβ⁻ decay 				

 ∞

							A	dopted Levels,	Gammas (cor	ntinued)
								γ ⁽¹³⁸ Ba)) (continued)	
	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [@]	δ^{\ddagger}	α^{\dagger}	Comments
		_				<u> </u>				(32.5 m), 782.8 4 from (n,γ) E=thermal, and 782.06 10 from
	2217.874	2+	2217.86 2	100.0 20	0.0	0+	E2		7.80×10 ⁻⁴	(n,n' γ). I _{γ} : unweighted average of 2.16 20 from ¹³⁸ Cs β^- decay (32.5 m), 2.57 14 from (n, γ) E=thermal, and 3.07 23 from (n,n' γ). δ : or +2.5 +7-4 (2003Go02) in (n,n' γ). Mult., δ : from $\gamma(\theta)$ and γ (pol) in (n,n' γ). α (K)=0.000330 5; α (L)=4.05×10 ⁻⁵ 6; α (M)=8.29×10 ⁻⁶ 12 α (N)=1.79×10 ⁻⁶ 3; α (O)=2.75×10 ⁻⁷ 4; α (P)=2.05×10 ⁻⁸ 3; α (JPE)=0.000400 6
										B(E2)(W.u.)=1.86 +17-14 E _γ : from (n,n'γ). Others: 2218.00 10 from ¹³⁸ Cs β ⁻ decay (32.5 m), 2217.76 7 from (n,γ) E=thermal, 2218.0 10 from (γ,γ'), and 2217.86 2 from (n,n'γ). I _γ : from ¹³⁸ Csβ ⁻ decay (32.5 m). Mult: from (n,n'γ) based on $\gamma(\theta)$ and RUL.
D	2307.515	4+	408.97 2	90 2	1898.588	4+	M1+E2	-0.23 +5-7	0.0216 4	$\alpha(K) = 0.0185 \ 3; \ \alpha(L) = 0.00242 \ 4; \ \alpha(M) = 0.000499 \ 7$ $\alpha(N) = 0.0001076 \ 16; \ \alpha(O) = 1.648 \times 10^{-5} \ 24; \ \alpha(P) = 1.201 \times 10^{-6} \ 21$ $B(M1)(W.u.) = 0.020 \ + 19 - 7; \ B(E2)(W.u.) = 4 \ + 7 - 3$ $E_{AB} = 1.0000 \ AB = 1.00000 \ AB = 1.00000 \ AB = 1.00000 \ AB = 1.000000 \ AB = 1.000000 \ AB = 1.000000000 \ AB = 1.00000000000000000000000000000000000$
										² m), 408.8 2 from ¹³⁸ Cs β^- decay (2.91 m), 408.9 3 from (α ,2 $n\gamma$), 409.02 6 from (n,γ) E=thermal, and 408.96 2 from ($n,n'\gamma$). I _{γ} : weighted average of 91.2 <i>18</i> from ¹³⁸ Cs β^- decay (32.5 m) and 86 4 from ($n,n'\gamma$). Others: 76.9 4 from (n,γ) E=thermal,
										52 3 from $(\alpha, 2n\gamma)$. Mult.: from ce data in ¹³⁸ Cs β^- decay (32.5 m), $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n, n'\gamma)$, $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. δ : from $(n, n'\gamma)$. Others: -0.23 7 in $(\alpha, 2n\gamma)$.
			871.68 2	100 3	1435.805	2+	E2		0.00245	$\alpha(K)=0.00210 \ 3; \ \alpha(L)=0.000281 \ 4; \ \alpha(M)=5.79\times10^{-5} \ 9 \ \alpha(N)=1.244\times10^{-5} \ 18; \ \alpha(O)=1.88\times10^{-6} \ 3; \ \alpha(P)=1.299\times10^{-7} \ 19 \ B(E2)(W.u.)=2.0 \ +17-7 \ E_{\gamma}: weighted average of 871.74 \ 9 \ from (n,\gamma) E=thermal,$
										871.68 2 from (n,n'γ), 871.72 7 from ¹³⁸ Cs β ⁻ decay (32.5 m). I _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m).
	2415.337	5+	107.7 <i>1</i>	7.8 12	2307.515	4+				Mult.: from ce data in ¹³⁸ Cs β decay (32.5 m), $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. E_{γ} : from $(n,n'\gamma)$. Others: 107.5 3 from ¹³⁸ Cs β^- decay (2.91 m), 107.3 3 $(\alpha, 2n\gamma)$. I_{γ} : weighted average of 16 8 from ¹³⁸ Cs β^- decay, 7.1 24
			212.28 3	38 <i>3</i>	2203.05	6+	M1+E2	-0.07 2	0.1217	from ¹³⁶ Xe(α ,2n γ), and 7.8 <i>12</i> from ¹³⁸ Ba(n,n' γ). α (K)=0.1043 <i>15</i> ; α (L)=0.01384 <i>20</i> ; α (M)=0.00285 <i>4</i>

	Adopted Levels, Gammas (continued)												
						γ (¹³⁸ E	Ba) (continued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{\ddagger}	$lpha^\dagger$	Comments					
	_												
2415.337	5+	324.84 11	54 7	2090.536 6*	M1+E2	-0.10 2	0.0394	$\begin{aligned} &\alpha(K) = 0.0338 \ 5; \ \alpha(L) = 0.00442 \ 7; \ \alpha(M) = 0.000911 \ 13 \\ &\alpha(N) = 0.000197 \ 3; \ \alpha(O) = 3.01 \times 10^{-5} \ 5; \ \alpha(P) = 2.20 \times 10^{-6} \ 3 \\ &B(M1)(W.u.) = 0.010 \ + 14 - 5; \ B(E2)(W.u.) = 0.6 \ + 14 - 4 \\ &E_{\gamma}: \ unweighted \ average \ of \ 325.16 \ 8 \ from \ (n,\gamma) \ E = thermal, \ 324.83 \ 2 \\ &from \ (n,n'\gamma), \ 324.90 \ 8 \ from \ ^{138}Cs \ \beta^- \ decay \ (32.5 \ m), \ 324.5 \ 3 \\ &from \ ^{138}Cs \ \beta^- \ decay \ (2.91 \ m), \ 324.8 \ 3 \ from \ (\alpha, 2n\gamma). \\ &I_{\gamma}: \ unweighted \ average \ of \ 44 \ 3 \ from \ (n,\gamma) \ E = thermal, \ 64 \ 4 \ from \\ &(n,n'\gamma), \ 68 \ 4 \ from \ ^{138}Cs \ \beta^- \ decay \ (32.5 \ m), \ 40.5 \ 24 \ from \\ &(\alpha, 2n\gamma). \end{aligned}$					
		516.70 2	100 5	1898.588 4 ⁺	M1+E2	-0.11 4	0.01209 <i>18</i>	Mult.: from ce data in ¹³⁸ Cs β^- decay (32.5 m), $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n' γ). δ : or -7.8 +16-18 in (n,n' γ). Others: -0.08 3 or -7.5 15 in (α ,2n γ). $\alpha(\text{K})$ =0.01041 15; $\alpha(\text{L})$ =0.001339 19; $\alpha(\text{M})$ =0.000275 4 $\alpha(\text{N})$ =5.94×10 ⁻⁵ 9; $\alpha(\text{O})$ =9.12×10 ⁻⁶ 13; $\alpha(\text{P})$ =6.74×10 ⁻⁷ 10 B(M1)(W.u.)=0.0047 +57-19; B(E2)(W.u.)=0.13 +39-10 E _{γ} : from (n,n' γ). Others: 516.71 12 from (n, γ) E=thermal, 516.74 12 from ¹³⁸ Cs β^- decay (32.5 m), 516.7 4 from ²³⁸ U(¹² C,F γ), 516.2 5 from ¹³⁸ Cs β^- decay (2.91 m), 516.6 3 from (α ,2n γ).					
2445.550	3+	138.10 6	7.5 25	2307.515 4*	M1,E2		0.51 11	I _γ : from (α,2nγ). Mult.: from γ(θ) and γ(pol) in (n,n'γ) and (α,2nγ). δ: from (α,2nγ). Other: +0.059 7 from (n,n'γ). α(K)=0.39 6; α(L)=0.09 5; α(M)=0.020 11 α(N)=0.0041 22; α(O)=0.0006 3; α(P)=2.20×10 ⁻⁵ 5 E _γ : weighted average of 138.08 6 from ¹³⁸ Cs β ⁻ decay (32.5 m), and 138.13 7 from (n,n'γ). E _γ : unweighted average of 5.0 3 from ¹³⁸ Cs β ⁻ decay (32.5 m),					
		227.73 6	5.08 22	2217.874 2*	M1(+E2)	+0.01 8	0.1007 15	Mult.: from ce data in ¹³⁸ Cs β^- decay (32.5 m). $\alpha(K)=0.0863 \ I3; \ \alpha(L)=0.01140 \ I7; \ \alpha(M)=0.00235 \ 4$ $\alpha(N)=0.000507 \ 8; \ \alpha(O)=7.76\times10^{-5} \ I2; \ \alpha(P)=5.66\times10^{-6} \ 8$ B(M1)(W.u.)=0.012 +56-7					

 $^{138}_{56}\mathrm{Ba}_{82}$ -10

 $^{138}_{56}\mathrm{Ba}_{82}$ -10

Adopted Levels, Gammas (continued)												
						$\gamma(^{138}\text{Ba})$	(continued)					
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{\ddagger}	α^{\dagger}	Comments				
	_							E _γ : weighted average of 227.76 6 from ¹³⁸ Cs β ⁻ decay (32.5 m), 227.7 3 from (α,2nγ), 227.7 3 from (n,γ) E=thermal, and 227.71 6 from (n,n'γ). I _γ : weighted average of 5.06 13 from ¹³⁸ Cs β ⁻ decay (32.5 m), 4 4 from (α,2nγ), 4.4 4 from (n,γ) E=thermal, and 6.4 5 from (n,n'γ). Mult.: from ce data in ¹³⁸ Cs β ⁻ decay (32.5 m) and γ(θ) in (n,n'γ). δ: or -5.6 +18-46 from (n,n'γ).				
2445.550	3+	546.975 16	35.7 13	1898.588 4+	M1+E2	-0.13 2	0.01049	α(K)=0.00903 13; α(L)=0.001160 17; α(M)=0.000238 4 α(N)=5.15×10-5 8; α(O)=7.90×10-6 11; α(P)=5.84×10-7 9 B(M1)(W.u.)=0.006 +27-3; B(E2)(W.u.)=0.21 +129-14 Eγ: weighted average of 546.990 15 from 138Cs β- decay (32.5 m), 546.9 3 from (α,2nγ), 546.89 8 from (n,γ) E=thermal, and 546.93 3 from (n,n'γ). Iγ: weighted average of 36.1 8 from 138Cs β- decay (32.5 m), 24 4 from (α,2nγ), 35.1 18 from (n,γ) E=thermal, and 39 3 from (n,n'γ). Mult.: from ce data and $γ(θ)$ in ¹³⁸ Cs β ⁻ decay (32.5 m), $γ(θ)$ and $γ(pol)$ in (n,n'γ).				
		1009.70 2	100.0 21	1435.805 2+	M1+E2	-2.90 15	0.00184	δ: from (n,n'γ). α (K)=0.001585 23; α (L)=0.000206 3; α (M)=4.24×10 ⁻⁵ 7 α (N)=9.13×10 ⁻⁶ 14; α (O)=1.391×10 ⁻⁶ 20; α (P)=9.87×10 ⁻⁸ 15 B(M1)(W.u.)=0.00030 +179−15; B(E2)(W.u.)=1.5 +81−7 E _γ : from (n,n'γ). Others: 1009.78 7 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1009.80 8 from (n,γ) E=thermal, 1009.7 3 from (α ,2nγ). I _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m). Mult.: from ce data in ¹³⁸ Cs β ⁻ decay (32.5 m), γ (θ) in (α ,2nγ), γ (θ) and γ (pol) in (n,n'γ). δ: or −0.14 3 from (α ,2nγ). Others: −2.9 1 (1984Di03) and +0.018 7 (2003Go02) in (n,n'γ).				
2582.99	1+	365.18 11	14.4 12	2217.874 2+	M1(+E2)	-0.1 6	0.0291 16	α(K)=0.0250 16; α(L)=0.00326 7; α(M)=0.000670 16 α(N)=0.000145 3; α(O)=2.22×10-5 4; α(P)=1.63×10-6 15 B(M1)(W.u.)=0.37 +18-20 Eγ: weighted average of 365.29 13 from 138Cs β- decay (32.5 m), and 365.10 11 from (n,n'γ). Other: 364.65 7 from (n,γ) E=thermal. Iγ: weighted average of 15.3 19 from 138Cs β- decay (32.5 m), and 14.0 12 from (n,n'γ). Other: 26.5 14 from (n,γ) E=thermal for doublet (also placed from 2779 level). Mult.: D(+Q) from γ(θ) in (n,n'γ), polarity from no level-parity change determined from other experimental evidence. δ: or δ= -2.6 +18-∞ in (n,n'γ).				

						Adop	pted Levels	, Gammas (co	ontinued)
							γ (¹³⁸ B	a) (continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f J	\int_{f}^{π} Mul	lt. [@]	δ^{\ddagger}	$lpha^{\dagger}$	Comments
2582.99	1+	1147.17 3	100 5	1435.805 2	+ M1+	-E2	-0.19 11	0.00181 4	$\begin{aligned} \alpha(\text{K}) = 0.00156 \ 3; \ \alpha(\text{L}) = 0.000196 \ 4; \ \alpha(\text{M}) = 4.01 \times 10^{-5} \ 8\\ \alpha(\text{N}) = 8.66 \times 10^{-6} \ 16; \ \alpha(\text{O}) = 1.332 \times 10^{-6} \ 25; \ \alpha(\text{P}) = 9.97 \times 10^{-8} \\ 20; \ \alpha(\text{IPF}) = 1.78 \times 10^{-6} \ 3\\ \text{B}(\text{M1})(\text{W.u.}) = 0.080 \ + 31 - 24; \ \text{B}(\text{E2})(\text{W.u.}) = 1.3 \ + 29 - 12\\ \text{E}_{\gamma}: \text{ weighted average of } 1147.22 \ 9 \ \text{from } ^{138} \text{Cs } \beta^- \text{ decay} \\ (32.5 \text{ m}), \ 1147.13 \ \text{from } (\alpha, 2n\gamma), \ 1147.20 \ 13 \ \text{from } (n, \gamma) \\ \text{F. thermal} \ nd \ 1147.16 \ 216 \ 2nmm \ (n, \gamma) \end{aligned}$
		2583.03 10	20.3 12	0.0 0	+ M1			9.16×10 ⁻⁴	E=thermal, and 1147.16 5 from (n, n γ). I _γ : from (n, γ) E=thermal. Mult.,δ: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n'γ). $\alpha(\text{K})=0.000273 \ 4; \ \alpha(\text{L})=3.35\times10^{-5} \ 5; \ \alpha(\text{M})=6.85\times10^{-6} \ 10$ $\alpha(\text{N})=1.480\times10^{-6} \ 21; \ \alpha(\text{O})=2.28\times10^{-7} \ 4; \ \alpha(\text{P})=1.726\times10^{-8}$ 25; $\alpha(\text{IPF})=0.000600 \ 9$ B(M1)(W.u.)=0.0015 +7-5 E _γ : weighted average of 2583.15 13 from ¹³⁸ Cs β ⁻ decay
2639.39	2+	193.89 8	4.5 3	2445.550 3	+ [M1,	,E2]		0.173 18	10 from $(n, n'\gamma)$. I _{γ} : weighted average of 19.2 <i>12</i> from ¹³⁸ Cs β^- decay (32.5 m), 25 5 from (n, γ) E=thermal, and 22.2 <i>19</i> from $(n, n'\gamma)$. Mult.: D from $\gamma(\theta)$ in $(n, n'\gamma)$, polarity from no level-parity change determined from other experimental evidence. $\alpha(K)=0.140 \ 8; \ \alpha(L)=0.026 \ 9; \ \alpha(M)=0.0055 \ 19$ $\alpha(N)=0.0012 \ 4; \ \alpha(O)=0.00017 \ 5; \ \alpha(P)=8.3\times10^{-6} \ 5$ E _{γ} : from ¹³⁸ Cs β^- decay (32.5 m). Other: 193.9.2 from
		421.62 <i>14</i>	6.5 11	2217.874 2	+ M1(-	+E2)	-0.08 12	0.0202 4	I _γ : weighted average of 4.3 <i>3</i> from ¹³⁸ Cs β ⁻ decay (32.5 m) and 4.9 <i>4</i> from ¹³⁸ Ba(n,n'γ). $\alpha(K)=0.0173$ <i>3</i> ; $\alpha(L)=0.00225$ <i>4</i> ; $\alpha(M)=0.000462$ <i>7</i> $\alpha(N)=9.97\times10^{-5}$ <i>14</i> ; $\alpha(O)=1.530\times10^{-5}$ <i>22</i> ; $\alpha(P)=1.126\times10^{-6}$ <i>20</i>
		1203.82 <i>15</i>	5.2 5	1435.805 2	+				B(M1)(W.u.)=0.051 +22-21 E _γ : unweighted average of 421.59 7 from ¹³⁸ Cs β ⁻ decay (32.5 m), 421.87 13 from (n,γ) E=thermal, and 421.41 11 from (n,n'γ). I _γ : unweighted average of 5.6 3 from ¹³⁸ Cs β ⁻ decay (32.5 m), 5.1 6 from (n,γ) E=thermal, and 8.7 7 from (n,n'γ). Mult: D(+Q) from $\gamma(\theta)$ in (n,n'γ), polarity from no level-parity change determined from other experimental evidence. δ : or +2.9 +18-9 in (n,n'γ). E _γ : weighted average of 1203.69 13 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1204.4 3 from (α,2nγ), 1203.1 20 from (n,γ) E=thermal 1204.0 4 from (n n'γ).

From ENSDF

					A	dopted Lev	els, Gammas	(continued)
						$\gamma(^{13}$	⁸ Ba) (continue	ed)
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{\ddagger}	$lpha^{\dagger}$	Comments
2639.39	2+	2639.35 4	100 3	0.0 0+	E2		8.78×10 ⁻⁴	I _γ : weighted average of 5.2 5 from ¹³⁸ Cs β ⁻ decay (32.5 m), 5.1 <i>I7</i> from (n,n'γ). $\alpha(K)=0.000242$ 4; $\alpha(L)=2.96\times10^{-5}$ 5; $\alpha(M)=6.04\times10^{-6}$ 9 $\alpha(N)=1.304\times10^{-6}$ <i>I9</i> ; $\alpha(O)=2.01\times10^{-7}$ 3; $\alpha(P)=1.506\times10^{-8}$ 2 <i>I</i> ; $\alpha(IPF)=0.000599$ 9 B(E2)(W.u.)=0.28 +6-7
2779.31	4+	333.79 10	9.3 8	2445.550 3+				E _γ : weighted average of 2639.59 13 from ¹³⁸ Cs β ⁻ decay (32.5 m), 2639.26 4 from (n,γ) E=thermal, 2639.7 10 from (γ,γ'), and 2639.38 3 from (n,n'γ). I _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m). Mult.: Q from $\gamma(\theta)$ in (n,n'γ), M2 ruled out by RUL. E _γ : weighted average of 333.86 16 from ¹³⁸ Cs β ⁻ decay (32.5 m), 334.01 12 from (n,γ) E=thermal, and 333.68 8 from (n,n'γ). I _γ : weighted average of 7.8 13 from ¹³⁸ Cs β ⁻ decay (32.5 m), 13 7
		363.91 <i>4</i>	22.2 10	2415.337 5+	M1+E2	-0.11 3	0.0293	rrom (n,γ) E=thermal, and 9.8 8 from (n,n γ). $\alpha(K)=0.0252 4$; $\alpha(L)=0.00329 5$; $\alpha(M)=0.000676 10$ $\alpha(N)=0.0001459 21$; $\alpha(O)=2.24\times10^{-5} 4$; $\alpha(P)=1.639\times10^{-6} 24$ B(M1)(W.u.)>0.012; B(E2)(W.u.)>0.35 E _γ : weighted average of 363.93 8 from ¹³⁸ Cs β ⁻ decay (32.5 m), 363.9 3 from (α ,2nγ), and 363.90 4 from (n,n'γ). Other: 364.65 7 from (n,γ) E=thermal.
								 I_γ: weighted average of 21.3 20 from ¹³⁸Cs β⁻ decay (32.5 m), and 26 4 from (n,n'γ). Other: 48 3 from (n,γ) E=thermal for doublet (also placed from 2583 level), 10 3 from (α,2nγ). Mult.: D+Q from γ(θ) in (n,n'γ), polarity from no level-parity change determined from other experimental evidence. δ: or -4.7 +6-9 in (n,n'γ).
		880.75 10	10.4 15	1898.588 4+				E _γ : weighted average of 880.8 <i>3</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 880.62 <i>23</i> from (n,γ) E=thermal, and 880.77 <i>10</i> from (n,n'γ). I _γ : weighted average of 10 <i>3</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 9.3 <i>17</i> from (n,γ) E=thermal and 11.3 <i>15</i> from (n, n'γ).
		1343.54 <i>3</i>	100 5	1435.805 2+	(E2)		1.01×10 ⁻³	$ a(K) = 0.00846 \ 12; \ \alpha(L) = 0.0001074 \ 15; \ \alpha(M) = 2.20 \times 10^{-5} \ 3 \\ α(N) = 4.75 \times 10^{-6} \ 7; \ \alpha(O) = 7.26 \times 10^{-7} \ 11; \ \alpha(P) = 5.26 \times 10^{-8} \ 8; \\ α(IPF) = 3.11 \times 10^{-5} \ 5 \\ B(E2)(W.u.) > 0.36 \\ E_{\gamma}: weighted average of 1343.59 \ 9 \ from \ ^{138}Cs \ \beta^{-} \ decay \ (32.5 \ m), \\ 1343.4 \ 3 \ from \ (\alpha, 2n\gamma), \ 1343.43 \ 10 \ from \ (n, \gamma) \ E= thermal, and \\ 1343.54 \ 3 \ from \ (\alpha, n'\gamma). \ This peak \ could \ be \ an \ unresolved \ doublet \\ with \ the \ second \ line \ associated \ with \ the \ de-excitation \ of \ the \ 3242 \\ level, \ but \ that \ placement \ is \ uncertain. \\ I_{\gamma}: \ from \ ^{138}Cs \ \beta^{-} \ decay \ (32.5 \ m). \\ Mult.: \ from \ \gamma(\theta) \ and \ \gamma(pol) \ in \ (n,n'\gamma). $

					Adopted I	Levels, Gan	nmas (continued)
					<u> </u>	v(¹³⁸ Ba) (co	ntinued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{\ddagger}	α^{\dagger}	Comments
2795.2?	(1,2 ⁺)	1359.4 ^b 3	<94	1435.805 2+				E_{γ} : placed only in (n,γ) E=thermal. See also 1359γ from 3258 level.
2851.444	4+	2794.9 ^b 8 436.07 2 952.86 11	100 25 2.6 3 14.7 12	0.0 0 ⁺ 2415.337 5 ⁺ 1898.588 4 ⁺	M1+E2	-1.5 5	0.00225 16	E _γ : observed only in (n,γ) E=thermal. E _γ ,I _γ : from (n,n'γ) only. α (K)=0.00194 <i>14</i> ; α (L)=0.000251 <i>15</i> ; α (M)=5.2×10 ⁻⁵ <i>3</i>
								$\begin{split} &\alpha(N) = 1.11 \times 10^{-5} \ 7; \ \alpha(O) = 1.70 \times 10^{-6} \ 11; \\ &\alpha(P) = 1.22 \times 10^{-7} \ 10 \\ &B(M1)(W.u.) > 5.8 \times 10^{-5}; \ B(E2)(W.u.) > 0.097 \\ &E_{\gamma}: \ weighted \ average \ of \ 953.0 \ 3 \ from \ ^{138}Cs \ \beta^{-} \ decay \\ &(32.5 \ m), \ 952.7 \ 3 \ from \ (\alpha, 2n\gamma), \ 952.87 \ 17 \ from \\ &(n,\gamma) \ E = thermal, \ and \ 952.85 \ 11 \ from \ (n,n'\gamma). \\ &I_{\gamma}: \ weighted \ average \ of \ 14 \ 4 \ from \ ^{138}Cs \ \beta^{-} \ decay \\ &(32.5 \ m), \ 17 \ 4 \ from \ (\alpha, 2n\gamma), \ 15.1 \ 12 \ from \ (n,\gamma) \\ &E = thermal, \ and \ 14.2 \ 12 \ from \ (n,n'\gamma). \\ &Mult.: \ from \ \gamma(\theta) \ and \ \gamma(pol) \ in \ (n,n'\gamma). \\ &\delta: \ or \ -5 \ +2-9 \ in \ (n,n'\gamma). \end{split}$
		1415.71 3	100 5	1435.805 2*	E2		9.35×10 ⁻⁴	$ α(K)=0.000763 11; α(L)=9.65×10^{-5} 14; α(M)=1.98×10^{-5} 3 α(N)=4.26×10^{-6} 6; α(O)=6.52×10^{-7} 10; α(P)=4.75×10^{-8} 7; α(IPF)=5.10×10^{-5} 8 B(E2)(W.u.)>0.18 Eγ: weighted average of 1415.68 13 from 138Cs β- decay (32.5 m), 1415.7 3 from (α,2nγ), 1415.66 11 from (n,γ) E=thermal, and 1415.71 3 from (n,n'γ). Iγ: from (n,γ) E=thermal. Mult: from χ(θ) and χ(pol) in (n,n'γ).$
2880.66	3-	982.14 ^{&} 2 1445.87 ^{&} 2	1.53 <i>21</i> 100 <i>13</i>	1898.588 4 ⁺ 1435.805 2 ⁺	E1(+M2)	+0.04 2	5.76×10 ⁻⁴ 9	Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. E_{γ},I_{γ} : from (n,γ) E=thermal only. $\alpha(K)=0.000344 \ 6; \ \alpha(L)=4.17\times10^{-5} \ 8; \ \alpha(M)=8.52\times10^{-6} \ 16$ $\alpha(N)=1.84\times10^{-6} \ 4; \ \alpha(O)=2.82\times10^{-7} \ 5; \ \alpha(P)=2.10\times10^{-8} \ 4; \ \alpha(IPF)=0.000179 \ 3$ $B(E1)(W.u.)=0.00150 \ +20-16$ E_{γ} : weighted average of 1445.04 25 from ¹³⁸ Cs β^{-1} decay (32.5 m), 1444.8 3 from $(\alpha,2n\gamma)$, 1444.97 6 from (n,γ) E=thermal, and 1444.86 2 from $(n,n'\gamma)$. I_{γ} : from (n,γ) E=thermal. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. δ : others: $-0.14 \ 6 \ or \ -3.0 \ 4$ from 1984Di03 in $(n,n'\gamma)$.
2916.61?	$(1,2^{+})$	1479.2^{b} 4 2916.98 ^b 20	100 <i>11</i> 89 <i>50</i>	1435.805 2 ⁺ 0.0 0 ⁺				E_{γ}, I_{γ} : from (n, γ) E=thermal only. E_{γ}, I_{γ} : from (n, γ) E=thermal only.

	Adopted Levels, Gammas (continued)												
						$\gamma(^{13}$	⁸ Ba) (continued	<u>)</u>					
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ^{\ddagger}	$lpha^{\dagger}$	Comments					
2931.40	2+	1495.59 3	100 7	1435.805 2+	M1+E2	-0.75 4	1.01×10 ⁻³ 2	$\begin{aligned} &\alpha(K) = 0.000804 \ 13; \ \alpha(L) = 0.0001003 \ 15; \ \alpha(M) = 2.05 \times 10^{-5} \ 3\\ &\alpha(N) = 4.44 \times 10^{-6} \ 7; \ \alpha(O) = 6.82 \times 10^{-7} \ 11; \ \alpha(P) = 5.08 \times 10^{-8} \ 8; \\ &\alpha(IPF) = 7.64 \times 10^{-5} \ 11\\ B(M1)(W.u.) = 0.020 \ +7 - 6; \ B(E2)(W.u.) = 3.1 \ +12 - 9\\ E_{\gamma}: \ weighted \ average \ of \ 1495.63 \ 23 \ from \ ^{138}Cs \ \beta^{-} \ decay\\ &(32.5 \ m), \ 1495.5 \ 3 \ from \ (\alpha, 2n\gamma), \ 1495.69 \ 11 \ from \ (n, \gamma)\\ E = thermal, \ and \ 1495.58 \ 3 \ from \ (n, n'\gamma).\\ I_{\gamma}: \ from \ (n, n'\gamma). \end{aligned}$					
		2931.3 <i>3</i>	10.1 <i>16</i>	0.0 0+	E2		9.63×10 ⁻⁴	Mult., δ : from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. $\alpha(\text{K})=0.000202 \ 3$; $\alpha(\text{L})=2.46\times10^{-5} \ 4$; $\alpha(\text{M})=5.02\times10^{-6} \ 7$ $\alpha(\text{N})=1.083\times10^{-6} \ 16$; $\alpha(\text{O})=1.668\times10^{-7} \ 24$; $\alpha(\text{P})=1.255\times10^{-8} \ 18$; $\alpha(\text{IPF})=0.000730 \ 11$ B(E2)(W.u.)=0.030 +17-11 E _{γ} : weighted average of 2931.4 4 from ¹³⁸ Cs β^- decay (32.5 m), 2930.9 8 from (n,γ) E=thermal, and 2931.3 3 from $(n,n'\gamma)$.					
2991.07	3+	575.7 <i>4</i> 683.70 <i>13</i>	5.6 23 32 9	2415.337 5 ⁺ 2307.515 4 ⁺	M1+E2	-2.5 5	0.00460 <i>13</i>	I _γ : unweighted average of 10.8 21 from ¹³⁸ Cs β [−] decay (32.5 m), 12.4 18 from (n,γ) E=thermal, and 7.2 11 from (n,n'γ). Mult.: Q from γ(θ) in (n,n'γ), M2 ruled out by RUL. E _γ ,I _γ : from ¹³⁸ Cs β [−] decay (32.5 m). Other: Eγ=575.7 20, Iγ=38 from (n,γ) E=thermal. α(K)=0.00392 12; α(L)=0.000538 13; α(M)=0.0001113 25 α(N)=2.39×10 ⁻⁵ 6; α(O)=3.60×10 ⁻⁶ 9; α(P)=2.43×10 ⁻⁷ 8 B(M1)(W.u.)>0.00010; B(E2)(W.u.)>1.1 E _γ : weighted average of 683.59 15 from ¹³⁸ Cs β [−] decay (32.5 m), 683.69 15 from (n,γ) E=thermal, and 683.78 13 from (n,n'γ).					
		773.20 7	56 3	2217.874 2+	M1+E2	-2.5 3	0.00342 7	I _γ : unweighted average of 30 <i>4</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 18.3 <i>17</i> from (n,γ) E=thermal, and 48 <i>3</i> from (n,n'γ). Mult.: D+Q from γ(θ) in (n,n'γ), polarity from no level-parity change determined from other experimental evidence in (n,n'γ). δ: or -0.27 6 in (n,n'γ). α(K)=0.00292 6; α(L)=0.000394 7; α(M)=8.12×10 ⁻⁵ <i>14</i> α(N)=1.74×10 ⁻⁵ <i>3</i> ; α(O)=2.64×10 ⁻⁶ <i>5</i> ; α(P)=1.82×10 ⁻⁷ <i>4</i> B(M1)(W.u.)>0.00014; B(E2)(W.u.)>1.1 E _γ : weighted average of 773.31 <i>10</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 773.42 <i>15</i> from (n,γ) E=thermal, and 773.15 <i>5</i> from (n,n'γ). I _γ : weighted average of 64 <i>5</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 53 <i>3</i> from (n,γ) E=thermal, and 58 <i>5</i> from (n,n'γ).					

	Adopted Levels, Gammas (continued)												
						γ ⁽¹³⁸ Ba) (co	ntinued)						
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.@	δ^{\ddagger}	α^{\dagger}	Comments					
2991.07	3+	1555.25 4	100 5	1435.805 2+	M1+E2	+9.8 +21-14	8.37×10 ⁻⁴	Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. δ : or $-0.18 \ 4 \ (2003\text{Go02})$ in $(n,n'\gamma)$. Other: $-2.0 \ +4-6$ (1984Di03) in $(n,n'\gamma)$. $\alpha(\text{K})=0.000638 \ 9; \ \alpha(\text{L})=8.01\times10^{-5} \ 12; \ \alpha(\text{M})=1.640\times10^{-5} \ 23$ $\alpha(\text{N})=3.54\times10^{-6} \ 5; \ \alpha(\text{O})=5.42\times10^{-7} \ 8; \ \alpha(\text{P})=3.97\times10^{-8} \ 6;$ $\alpha(\text{IPF})=9.83\times10^{-5} \ 14$ B(M1)(W n >1.9 \(10^{-6}); \(B(\text{F2})(W n >0.068))					
								B(M1)(w.t.)>1.9×10 ⁻¹ , B(E2)(w.t.)>0.008 E _γ : weighted average of 1555.31 <i>10</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 1555.54 <i>18</i> from (n,γ) E=thermal, and 1555.24 <i>3</i> from (n,n'γ). I _γ : from (n,γ) E=thermal. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (n,n'γ). δ: from (n,n'γ) (2003Go02). Other: or 0.21 +4-3 (1984Di03) in (n,n'γ).					
3049.91	2+	862.3 <i>20</i>	22 13 2 11	2189.861 (1,2 ⁺ 1898.588 4 ⁺)			$E_{\gamma}I_{\gamma}$: from (n,γ) E=thermal only. E. L: from $(n, n'\alpha)$. Also observed in (n, α) E=thermal					
		1614.08 <i>3</i>	100 5	1435.805 2+	M1+E2	+0.16 2	9.69×10 ⁻⁴						
								m), 1614.0 3 from $(\alpha, 2n\gamma)$, 1614.26 <i>12</i> from (n,γ) E=thermal, and 1614.07 3 from $(n,n'\gamma)$. This γ is also placed from 3911 level in (n,γ) E=thermal, but that placement is not confirmed in other γ studies. I _{γ} : from (n,γ) E=thermal. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n,n'\gamma)$. δ : from 2003Go02 in $(n,n'\gamma)$. Other: -008 5 or 3.1 +6-5 from					
		3049.6 <i>3</i>	26.2 11	0.0 0+				from 1984Di03 in $(n,n'\gamma)$. E_{γ} : unweighted average of 3049.9 3 from ¹³⁸ Cs β^{-} decay (32.5 m) and 3049.27 5 from (n,γ) E=thermal.					
								I _{γ} : weighted average of 23 <i>3</i> from ¹³⁶ Cs β^- decay (32.5 m) and 26.5 <i>10</i> from (n, γ) E=thermal.					
3154.71	4+	375.6 2 708.74 <i>18</i>	21 <i>3</i> 31 2	2779.31 4 ⁺ 2445.550 3 ⁺				E_{γ}, I_{γ} : from $(n, n'\gamma)$ only. E_{γ}, I_{γ} : from (n, γ) E=thermal only, I γ normalized to $I\gamma(1256\gamma)=100$.					
		739.31 20	44 10	2415.337 5+				E_{γ} : weighted average of 739.0 <i>3</i> from (n,γ) E=thermal and 739.44 <i>19</i> from $(n,n'\gamma)$.					
		1064.14 <i>10</i>	67 9	2090.536 6+				f_{γ} . Unweighted average of 54 6 from (n, γ) E=thermal and 54 5 from $(n, n'\gamma)$. E _{γ} : weighted average of 1064.0 <i>3</i> from $(\alpha, 2n\gamma)$, 1064.5 <i>3</i> from (n, γ) E=thermal, and 1064.11 <i>10</i> from $(n, n'\gamma)$. I _{γ} : unweighted average of 63 5 from (n, γ) E=thermal and 87 <i>12</i>					

 $^{138}_{56}\mathrm{Ba}_{82}$ -16

						Adop	oted Levels, Ga	ammas (conti	nued)
							$\gamma(^{138}\text{Ba})$ (continued)	
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	δ^{\ddagger}	$lpha^{\dagger}$	Comments
3154.71	4+	1256.23 10	100 9	1898.588	4+	M1+E2	-1.0 +2-3	0.00132 5	from (n,n'γ). 1995Bo05 in (n,γ) E=thermal also place this transition from the 4707 and 4115 levels but those placements are not confirmed in other γ studies. $\alpha(K)=0.00112 5$; $\alpha(L)=0.000142 5$; $\alpha(M)=2.91\times10^{-5} 11$ $\alpha(N)=6.28\times10^{-6} 23$; $\alpha(O)=9.6\times10^{-7} 4$; $\alpha(P)=7.1\times10^{-8} 3$; $\alpha(IPF)=1.385\times10^{-5} 21$ E_{γ} : weighted average of 1256.3 3 from (n,γ) E=thermal and 1256.22 10 from (n,n'γ). I_{γ} : from (n,n'γ), 100 8 from (n,γ) E=thermal. Mult., δ : D+Q from $\gamma(\theta)$ in (n,n'γ), polarity from no level-parity change determined from other experimental evidence.
3163.27	(2)+	1719.2 ^b 3 717.61 <i>13</i>	161 <i>13</i> 16.5 <i>13</i>	1435.805 2445.550	2+ 3+				E _{γ} , I _{γ} : observed in (n, γ) E=thermal only. E _{γ} : weighted average of 717.7 <i>3</i> from ¹³⁸ Cs β^- decay (32.5 m), 717.56 <i>13</i> from (n, γ) E=thermal, and 717.67 <i>17</i> from (n,n' γ). I _{γ} : weighted average of 16.9 <i>13</i> from (n, γ) E=thermal, and 15.8 <i>17</i> from (n, n' α)
		855.7 <i>3</i>	9.7 8	2307.515	4+				E _y : weighted average of 855.6 5 from ¹³⁸ Cs β^- decay (32.5 m), 855.6 4 from (n, γ) E=thermal, and 855.7 3 from (n, γ). I _y : weighted average of 9.2 8 from (n, γ) E=thermal, and 11.1 14 from (n, $n'\gamma$).
		945.5 <i>3</i>	12.6 7	2217.874	2+				E _{γ} : weighted average of 946.0 5 from ¹³⁸ Cs β^- decay (32.5 m) and 945.3 3 from (n, γ) E=thermal. Not observed in (n,n' γ).
		1264.70 <i>10</i>	60 <i>6</i>	1898.588	4+	(Q)			E _γ : weighted average of 1264.94 <i>16</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 1264.7 <i>3</i> from (α,2nγ), 1264.29 <i>25</i> from (n,γ) E=thermal, and 1264.67 <i>10</i> from (n,n'γ). I _γ : weighted average of 64 <i>4</i> from (n,γ) E=thermal, and 51 <i>6</i> from (n,n'γ). This transition is observed as the strongest one in ¹³⁸ Cs β ⁻ decay (32.5 m), with I(1264.7γ)/I(1727.3γ)=123 <i>15</i> /100 <i>12</i> . Mult : from $\gamma(\theta)$ in (n n'γ)
		1727.3 2	100 7	1435.805	2+	M1(+E2)	+0.05 5	9.06×10 ⁻⁴	a(K)=0.000636 9; α(L)=7.87×10 ⁻⁵ 11; α(M)=1.612×10 ⁻⁵ 23 α(N)=3.48×10 ⁻⁶ 5; α(O)=5.36×10 ⁻⁷ 8; α(P)=4.04×10 ⁻⁸ 6; α(IPF)=0.0001711 24 B(M1)(W.u.)=0.008 +7-6 E _γ : unweighted average of 1727.68 18 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1727.2 2 from (n,γ) E=thermal, and 1727.02 6 from (n,n'γ).

L

							A	dopted Lev	els, Gammas	(continued)
								$\gamma(^{130}$	³ Ba) (continue	ed)
	E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ^{\ddagger}	α^{\dagger}	Comments
	3183.60	8+	980.6 3	32.4 20	2203.05	6+	E2		0.00189	$I_{\gamma}: \text{ from } (n, \gamma) \text{ E=thermal. Others: } 100 9 \text{ from } (n, n' \gamma).$ Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(n, n' \gamma).$ $\delta: \text{ or } 2.0 + 5 - 3 \text{ in } (n, n' \gamma).$ $\alpha(\text{K})=0.001621 23; \alpha(\text{L})=0.000213 3; \alpha(\text{M})=4.39 \times 10^{-5} 7$ $\alpha(\text{N})=9.43 \times 10^{-6} 14; \alpha(\text{O})=1.433 \times 10^{-6} 20; \alpha(\text{P})=1.005 \times 10^{-7} 14$ B(E2)(W.u.)=0.18 +47-10 E : weighted suggrage of 080.7.3 from (α 2na) -080.7.3 from
			1093.0 <i>3</i>	100 4	2090.536	6+	E2		1.50×10 ⁻³	E _γ . weighted average of 960.7 5 from $(\alpha, 2n\gamma)$, 980.7 5 from (n,n'γ), and 980.3 3 from ²³⁸ U(¹² C,Fγ), ²⁰⁸ Pb(¹⁸ O,Fγ). I _γ : weighted average of 31.7 20 from (α,2nγ), 42 7 from (n,n'γ), and 32 7 from ²³⁸ U(¹² C,Fγ), ²⁰⁸ Pb(¹⁸ O,Fγ). Mult.: Q from γ(θ) in (α,2nγ) and M2 ruled out by RUL. $\alpha(K)=0.001287 \ 18; \alpha(L)=0.0001669 \ 24; \alpha(M)=3.43\times10^{-5} \ 5 \alpha(N)=7.38\times10^{-6} \ 11; \alpha(O)=1.125\times10^{-6} \ 16; \alpha(P)=7.99\times10^{-8} \ 12$
18	3243.06	3	362 796.7 <i>3</i> 935.85 9	20 <i>3</i> 100 <i>8</i>	2880.66 2445.550 2307.515	3 ⁻ 3 ⁺ 4 ⁺	D+Q	+0.25 7		$ \begin{array}{l} E_{\gamma}(w.u.) = 0.32 + \gamma 9 - 1\gamma \\ E_{\gamma}: \text{ weighted average of } 1093.3 \ 3 \ \text{from } (\alpha, 2n\gamma), \ 1093.1 \ 3 \ \text{from } \\ (n, n'\gamma), \ \text{and } 1092.7 \ 3 \ \text{from } ^{238}U(^{12}C,F\gamma), ^{208}Pb(^{18}O,F\gamma). \\ I_{\gamma}: \ \text{from } (\alpha, 2n\gamma). \\ Mult.: Q \ \text{from } \gamma(\theta) \ \text{and } \gamma(\text{pol}) \ \text{in } (\alpha, 2n\gamma), \ M2 \ \text{ruled out by RUL.} \\ E_{\gamma}: \ \text{observed in } (n, \gamma) \ E = \text{thermal only.} \\ E_{\gamma}, I_{\gamma}: \ \text{from } (n, n'\gamma) \ \text{only.} \\ E_{\gamma}: \ \text{weighted average of } 935.03 \ 12 \ \text{from } ^{138}Cs \ \beta^{-} \ \text{decay } (32.5 \ \text{m}), \end{array} $
										934.81 12 from (n,γ) E=thermal, and 934.78 9 from $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$. Others: 100 6 from (n,γ) E=thermal, 100 9 from ¹³⁸ Cs β^{-} decay (32.5 m). Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$. δ : or +8 +6-3 in $(n,n'\gamma)$.
			1343 ^b		1898.588	4+				E_{γ} : observed in the coincidence spectrum (1995Bo05) in (n,γ) E=thermal, could be unresolved with the 1343.54 γ from 2779 level; placed by 1995Bo05 in (n,γ) E=thermal and 2003Go02 in $(n,n'\gamma)$ but it is uncertain.
			1806.81 <i>18</i>	65 14	1435.805	2+	D+Q	+0.17 5		E _γ : weighted average of 1806.65 <i>18</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 1807.1 2 from (n,γ) E=thermal, and 1806.77 <i>18</i> from (n,n'γ).
										I_{γ} : unweighted average of 51 6 from ^{1.0} Cs β decay (32.5 m), 79 6 from (n,n'γ). Other: 106 10 from (n,n'γ) E=thermal. Mult.: from γ(θ) in (n,n'γ). δ: or -28 +6-∞ in (n,n'γ).
	3257.24	3	1358.80 11	58 5	1898.588	4+	D+Q	+0.11 6		E _γ : weighted average of 1359.1 5 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1358.6 3 from (α ,2n γ), 1359.4 3 from (n, γ) E=thermal, and 1358.75 9 from (n,n' γ). 1995Bo05 in (n, γ) E=thermal also place this transition from a level at 4872 level, but it is not confirmed in other γ studies.

 $^{138}_{56}\mathrm{Ba}_{82}$ -18

						Adopte	d Levels, G	ammas (conti	inued)
							$\gamma(^{138}Ba)$ (continued)	
E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ^{\ddagger}	α^{\dagger}	Comments
3257.24	3	1821.33 8	100 8	1435.805	2+	D+Q	+0.46 4		E=thermal, and 65 4 from (n,n'γ). Mult.: from $\gamma(\theta)$ in (n,n'γ). δ: or -50 +40-600 in (n,n'γ). E _γ : weighted average of 1821.7 3 from ¹³⁸ Cs β ⁻ decay (32.5 m), 1821.2 3 from (α,2nγ), 1821.4 2 from (n,γ) E=thermal, and 1821.30 8 from (n,n'γ). 1995Bo05 in (n,γ)
3309.4 3338.72	(5,6,7) 2 ⁺	1106.3 <i>3</i> 893.3 ^{<i>a</i>} <i>3</i> 1120.7 1902.8 <i>2</i>	100 <4.4 ^a 4.3 7 13.0 <i>1</i> 8	2203.05 2445.550 2217.874 1435.805	6 ⁺ 3 ⁺ 2 ⁺ 2 ⁺	D,Q			E=thermal also place this transition from a level at 2794 level, but it is not confirmed in other γ studies. I _{γ} : from (n,n' γ). Mult.: from $\gamma(\theta)$ in (n,n' γ). δ : or +4.2 +7-6 in (n,n' γ). Mult.: from $\gamma(\theta)$ in (α ,2n γ). E _{γ} ,I _{γ} : from (n, γ) E=thermal only. E _{γ} ,I _{γ} : from (n, γ) E=thermal only. E _{γ} : weighted average of 1903.2 4 from ¹³⁸ Cs β^- decay (32.5 m), 1902.6 2 from (n, γ) E=thermal, and 1903.0 4 from (n,n' γ).
		3338.68 6	100 6	0.0	0+	E2		1.09×10 ⁻³	I _γ : weighted average of 30 9 from ¹³⁸ Cs β ⁻ decay (32.5 m), 14.3 <i>14</i> from (n,γ) E=thermal, and 11.0 <i>15</i> from (n,n'γ). α (K)=0.0001618 <i>23</i> ; α (L)=1.96×10 ⁻⁵ <i>3</i> ; α (M)=4.00×10 ⁻⁶ <i>6</i> α (N)=8.64×10 ⁻⁷ <i>12</i> ; α (O)=1.331×10 ⁻⁷ <i>19</i> ; α (P)=1.004×10 ⁻⁸ <i>14</i> ; α (IPF)=0.000902 <i>13</i> B(E2)(W.u.)=0.87 +45-22
3352.6 3359.7	(1,2 ⁺) 7 ⁺	3352.6 <i>3</i> 944.4 <i>3</i>	100 100	0.0 2415.337	0 ⁺ 5 ⁺	E2		0.00205	E _γ : weighted average of 3339.01 25 from ¹³⁸ Cs β ⁻ decay (32.5 m), 3338.62 5 from (n,γ) E=thermal, 3338.4 15 from (γ,γ'),(pol γ,γ'), and 3338.81 8 from (n,n'γ). I _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m). Mult.: Q from γ(θ) in (n,n'γ), M2 ruled out by RUL. E _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m) only. α (K)=0.001759 25; α (L)=0.000232 4; α (M)=4.79×10 ⁻⁵ 7 α (N)=1.029×10 ⁻⁵ 15: α (O)=1.562×10 ⁻⁶ 22:
3366.71	2+	921.43 ^{<i>a</i>} 22	<29 ^a	2445.550	3+				$\begin{array}{l} \alpha(P) = 1.090 \times 10^{-7} \ 16 \\ B(E2)(W.u.) = 0.71 \ +48 - 21 \\ E_{\gamma}: \text{ weighted average of } 944.2 \ 3 \ \text{from } (\alpha, 2n\gamma), \ 944.7 \ 3 \ \text{from } (n, n'\gamma) \ \text{and } 944.0 \ 5 \ \text{from } ^{238}U(^{12}C, F\gamma), ^{208}Pb(^{18}O, F\gamma). \\ Mult.: \ Q \ \text{from } \gamma(\theta) \ \text{in } (\alpha, 2n\gamma) \ \text{and } (n, n'\gamma), \ M2 \ \text{ruled out by } \\ RUL. \\ E_{\gamma}, I_{\gamma}: \ \text{from } (n, \gamma) \ E = \text{thermal only.} \end{array}$
		1931.2 3366.72 7	7.1 <i>12</i> 100 <i>21</i>	1435.805 0.0	2 ⁺ 0 ⁺	E2		1.10×10 ⁻³	E _γ ,I _γ : from (n,γ) E=thermal only. α (K)=0.0001595 23; α (L)=1.93×10 ⁻⁵ 3; α (M)=3.94×10 ⁻⁶ 6 α (N)=8.52×10 ⁻⁷ 12; α (O)=1.312×10 ⁻⁷ 19; α (P)=9.90×10 ⁻⁹ 14; α (IPF)=0.000913 13

From ENSDF

						Adopted	Levels, Gamm	as (contin	ued)
						-	$\gamma(^{138}\text{Ba})$ (conti	inued)	
E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ^{\ddagger}	α^{\dagger}	Comments
									B(E2)(W.u.)=0.8 +5-3 E _γ : weighted average of 3366.98 25 from ¹³⁸ Cs β ⁻ decay (32.5 m), 3366.67 10 from (n,γ) E=thermal, 3365.4 15 from (γ,γ'),(polγ,γ'), and 3366.73 7 from (n,n'γ). I _γ : from (n,γ) E=thermal. Mult: O from $\gamma(\theta)$ in (n,n'γ) and M2 ruled out by RUL.
3376.63	3	1069.1 4	32 <i>3</i>	2307.515	4+				E_{γ}, I_{γ} : from (n, γ) E=thermal only.
		1158.7 5	32 3	2217.874	$2^+_{4^+}$		0 12 12		E_{γ}, I_{γ} : from (n, γ) E=thermal only.
		1470.20 17	575	1090.300	4	D+Q	-0.15 12		$E_{\gamma,1\gamma}$. from (ii,ii γ) only. Mult.: from $\gamma(\theta)$ in (n,n' γ). δ : or $-4 + l - 6$ in (n,n' γ).
		1940.74 9	100 11	1435.805	2+	D+Q	+0.9 +4-3		E_{γ} : weighted average of 1940.67 <i>19</i> from (n,γ) E=thermal and 1940.76 <i>9</i> from $(n,n'\gamma)$. It is also placed from the 4131 level in (n,γ) E=thermal, but not confirmed in $(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$.
2427 5	$(1, 2^{+})$	2427 5 6	100	0.0	0+				Mult., δ : from $\gamma(\theta)$ in $(n,n'\gamma)$.
3437.5 3442.18	$(1,2^{+})$ $2^{(+)}$	3437.50	100	0.0	$(1, 2^+)$				$\mathbf{F} = \mathbf{I} + \mathbf{from} (\mathbf{n} \mathbf{n}' \alpha) $ only
5442.16	2.	3442.25 <i>13</i>	100 9	0.0	(1,2) 0^+	Q			E_{γ} , E_{γ} : weighted average of 3442.6 <i>6</i> from ¹³⁸ Cs β^- decay (32.5 m), 3442.30 <i>13</i> from (n, γ) E=thermal, and 3442.12 <i>18</i> from (n, $n'\gamma$).
									I_{γ} : from $(n, n'\gamma)$.
3485 98		1040 42 4	100.8	2445 550	3+				F. L. from $(n, n'\gamma)$ only
2102120		1587.6 4	7.5 14	1898.588	4 ⁺				$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only.
3504.28	2^{-}	1605.4 2	54 5	1898.588	4+				E_{γ}, I_{γ} : from $(n, n'\gamma)$ only.
		2068.15 15	<52	1435.805	2+				E_{γ} : weighted average of 2068.16 <i>15</i> from (n, γ) E=thermal and 2068.1 4 from $(n,n'\gamma)$. Also placed from 4707 level.
									I_{γ} : from 39 13, unweighted average of 26 4 from (n,γ) E=thermal and 52 6 from $(n,n'\gamma)$.
		3504.91 18	100 8	0.0	0^{+}	Q			E_{γ} : weighted average of 3504.5 25 from (n,γ) E=thermal and 3504.1 2 from $(n,n'\gamma)$.
									I_{γ} : from $(n,n'\gamma)$. Mult : Ω from $\gamma(\beta)$ in $(n,n'\gamma)$
3562.25	$(4)^{-}$	1116.71 8	100 9	2445.550	3+	E1+M2	+0.07 4	0.00194	$\alpha(K)=0.001672\ 24;\ \alpha(L)=0.000210\ 3;\ \alpha(M)=4.30\times10^{-5}\ 6$
									$\alpha(N)=9.28 \times 10^{-6} I3; \alpha(O)=1.428 \times 10^{-6} 2I; \alpha(P)=1.069 \times 10^{-7} I6; \alpha(PF)=6.83 \times 10^{-7} I0$ $E_{\gamma}, I_{\gamma}: \text{ from } (n,n'\gamma) \text{ only.}$ Mult., $\delta: D+Q \text{ from } \gamma(\theta) \text{ in } (n,n'\gamma), \text{ polarity from level-parity change datagrained by L (d p)=3}$
		1663.2 5	16 <i>3</i>	1898.588	4+				E_{γ},I_{γ} : from $(n,n'\gamma)$ only.
3600.73	1	2164.96 12	100 10	1435.805	2+				 E_γ: weighted average of 2164.99 <i>12</i> from (n,γ) E=thermal and 2164.8 <i>3</i> from (n,n'γ). I_γ: from (n,n'γ). Other: I(2164.96γ)/I(3600.56γ)=56 <i>10</i>/100 <i>12</i> from (n,γ) E=thermal.

$\gamma(^{138}\text{Ba})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult. [@]	δ^{\ddagger}	a^{\dagger}	Comments
3600.73	1	3600.56 17	86 9	0.0	0+	D			E _{γ} : weighted average of 3600.52 <i>17</i> from (n, γ) E=thermal and 3600.7 <i>3</i> from (n,n' γ).
3610.1		1407.0 <i>3</i>	100	2203.05	6+	D,Q		0.00104 14	I _{γ} : from (n,n' γ). Mult.: from $\gamma(\theta)$ in (n,n' γ). α =0.00104 14; α (K)=0.00089 12; α (L)=0.00011 2 E _{γ} : weighted average of 1406.9 3 from (α ,2n γ) and 1407.1 4 from (n n' γ)
3617.8 3622.1	0+ 10+	2182.0 <i>4</i> 438.5 <i>3</i>	100 100	1435.805 3183.60	2+ 8+	E2		0.01426	Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$. E _{γ} : from $(n, n'\gamma)$ only. $\alpha(K)=0.01191 \ 17; \ \alpha(L)=0.00187 \ 3; \ \alpha(M)=0.000390 \ 6$ $\alpha(N)=8.31\times10^{-5} \ 12; \ \alpha(O)=1.223\times10^{-5} \ 18; \ \alpha(P)=7.08\times10^{-7}$
3632.8	9-	449.2 <i>3</i>	100	3183.60	8+	E1		0.00418	B(E2)(W.u.)=1.59 +26-20 E _y : weighted average of 438.6 <i>3</i> from (α ,2ny) and 438.3 <i>3</i> from (n,n' γ). Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in (α ,2n γ). $\alpha(K)=0.00361 5; \alpha(L)=0.000456 7; \alpha(M)=9.33\times10^{-5} 14$ $\alpha(N)=2.01\times10^{-5} 3; \alpha(O)=3.05\times10^{-6} 5; \alpha(P)=2.15\times10^{-7} 3$ B(E1)(W.u.)=9.E-5 +13-4 E _y : weighted average of 449.2 <i>3</i> from (α ,2n γ), 449.2 <i>3</i> from (n n' γ) and 449 1 3 from (^{12}C E γ) (^{18}O E γ)
3643.08	2+	1004.3 <i>5</i> 1744.6 <i>2</i>	44 5 100 6	2639.39 1898.588	2+ 4+				Mult: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, 2\eta\gamma)$. E_{γ}, I_{γ} : from (n, γ) E=thermal only. E_{γ} : weighted average of 1744.6 2 from (n, γ) E=thermal and 1743.95 18 from $(n, n'\gamma)$. I_{γ} : from (n, γ) E=thermal. E_{γ} : from (n, γ) E=thermal.
		2207	<120	1455.005	2				I_{γ} : from I_{γ} in (n,γ) E=thermal only for unresolved 2207+2212 doublet.
		3643.10 22	≤119	0.0	0+	E2		1.18×10 ⁻³	$ α(K)=0.0001398 20; α(L)=1.690×10^{-5} 24; α(M)=3.45×10^{-6} 5 α(N)=7.44×10^{-7} 11; α(O)=1.147×10^{-7} 16; α(P)=8.67×10^{-9} 13; α(IPF)=0.001022 15 B(E2)(W.u.)=0.24 +99-24 Eγ: unweighted average of 3643.3 4 from 138Cs β- decay (32.5 m), 3643.61 3 from (n,γ) E=thermal, 3642.7 15 from (γ,γ'),(pol γ,γ'), and 3642.8 2 from (n,n'γ). Iγ: from (n,γ) E=thermal, possible contribution due to strong 3641γ in 139Ba. Wult : O from γ(θ) in (n n'γ). M2 ruled out by RIII $
3646.71	(3)-	766.03 12	100 9	2880.66	3-	M1(+E2)	-0.07 10	0.00466 8	$\alpha(K)=0.00402\ 7;\ \alpha(L)=0.000509\ 8;\ \alpha(M)=0.0001045\ 16$ $\alpha(N)=2.26\times10^{-5}\ 4;\ \alpha(O)=3.47\times10^{-6}\ 6;\ \alpha(P)=2.58\times10^{-7}\ 5$ $E_{\gamma}:$ weighted average of 766.10 12 from ¹³⁸ Cs β^{-} decay

						Ado	pted Levels, (Gammas (continued)
							$\gamma(^{138}\text{Ba})$	(continued)
E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
								(32.5 m), 766.09 21 from (n,γ) E=thermal, and 765.90 14 from $(n,n'\gamma)$.
								 I_γ: from (n,n'γ). Mult.: from γ(θ) in (n,n'γ), polarity from level-parity change determined by L(d,p)=3. δ: or +1.5 5 in (n,n'γ).
3646.71	(3)-	1748.7 5	47 21	1898.588	4+			E_{γ},I_{γ} : from ¹³⁸ Cs β^- decay (32.5 m), not observed in (n,n' γ). I γ is normalized to I γ (766.03 γ)=100.
		2210.8 <i>3</i>	53 5	1435.805	2+			E_{γ} : weighted average of 2210.7 4 from ¹³⁸ Cs β ⁻ decay (32.5 m), and 2210.9 3 from (n,n'γ).
2652.6	$(1, 2^+)$	2652 5 8	100	0.0	0+			I_{γ} : from (n,n' γ). E : from $\frac{138}{2}$ C ρ^{-} doory (22.5 m)
3678.2	(1,2) 8 ⁻	318 5 3	100	3359.7	0 7+	E1	0.00978	$\alpha(K) = 0.00842.12; \alpha(L) = 0.001077.16; \alpha(M) = 0.000221.4$
5070.2	0	510.5 5	100	5557.1	,	21	0.00770	$\alpha(\mathbf{N}) = 4.73 \times 10^{-5} \ 7: \ \alpha(\mathbf{O}) = 7.15 \times 10^{-6} \ 1.1: \ \alpha(\mathbf{P}) = 4.93 \times 10^{-7} \ 7$
								B(E1)(W.u.)>0.00011
								E_{γ} : from $(\alpha, 2n\gamma)$ only.
26047	1	26046.2	100	0.0	0+	D		Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, 2n\gamma)$.
3684.7	1	3684.6 3	100	0.0	0^{+}	D		E_{γ} , Mult.: from (n,n' γ).
3093.92		/02.92 1/	100 10	2991.07	3' 2-			E_{γ} : from $\cos Cs \beta$ decay (32.5 m) only. E : weighted every of \$12.0.2 from $\frac{138}{2}$ Cs β^{-} decay (32.5 m) \$12.2.4
		815.1 5	12 21	2880.00	3			E_{γ} : weighted average of 815.0 5 from (°CS β ⁻ decay (52.5 m), 815.2 4 from (n, γ) E=thermal, and 813.0 4 from (n,n' γ). L: from ¹³⁸ Cs β ⁻ decay (32.5 m)
		842.34 25	97 14	2851.444	4+			E_{γ} : weighted average of 842.21 <i>16</i> from ¹³⁸ Cs β^- decay (32.5 m) and 842.8 <i>3</i> from (n, γ) E=thermal.
								I_{γ} : from ¹³⁸ Cs β^{-} decay (32.5 m).
		1386.5 3	90 14	2307.515	4+			E_{γ} : weighted average of 1386.39 21 from ¹³⁸ Cs β^{-} decay (32.5 m) and 1387.0 4 from (n,n' γ).
3734 4	2+	3734 3 3	100	0.0	0^+	F2	1.21×10^{-3}	$\alpha(K) = 0.0001341.10$; $\alpha(L) = 1.621 \times 10^{-5}.23$; $\alpha(M) = 3.31 \times 10^{-6}.5$
5754.4	2	5754.5 5	100	0.0	0	62	1.21×10	$\alpha(N)=7.14\times10^{-7} \ l0; \ \alpha(O)=1.101\times10^{-7} \ l6; \ \alpha(P)=8.32\times10^{-9} \ l2; \\ \alpha(IPF)=0.001060 \ l5$
								B(E2)(W.u.)=0.23+23-15
								E_{γ} : Irom (n,n' γ). Mult : O from $\alpha(\theta)$ in (n n' α) M2 ruled out by PUI
3800.06	2^{+}	1582.0.4	26.5	2217 874	2^{+}			For $(n, n'\gamma)$, we read out by KOL.
5000.00	2	3800.1 3	100 9	0.0	$\tilde{0}^{+}$	E2	1.24×10^{-3}	$\alpha(K) = 0.0001303 \ I9; \ \alpha(L) = 1.574 \times 10^{-5} \ 22; \ \alpha(M) = 3.21 \times 10^{-6} \ 5$
								α (N)=6.93×10 ⁻⁷ 10; α (O)=1.069×10 ⁻⁷ 15; α (P)=8.08×10 ⁻⁹ 12; α (IPF)=0.001086 16 B(E2)(W.u.)=0.15 +33-11
								E_{γ}, I_{γ} : from $(n, n' \gamma)$. Mult: O from $\alpha(\theta)$ in $(n, n' \alpha)$. M2 ruled out by DUI
3837 50	(2^{+})	957 6 ^a 4	< 31 ^a	2880.66	3-			For L.: from (n, γ) F=thermal only
5051.50	(2)	1620.10 23	100 7	2217.874	2^{+}			$E_{\gamma,I_{\gamma}}$. from (n,γ) E=thermal only. E _v ,I _v : from (n,γ) E=thermal only.
		2401.46 11	93 11	1435.805	2^{+}			E_{γ}, I_{γ} : from (n, γ) E=thermal only.
I								· · · · · ·

I

γ (¹³⁸Ba) (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	δ^{\ddagger}	α^{\dagger}	Comments
3837.50 3859.5 3910.5	(2^+) $(5)^-$ 10^+	3837 1960.9 <i>3</i> 288.4 <i>3</i>	100 14 7	0.0 1898.588 3622.1	0^+ 4^+ 10^+	(D) M1+E2	-0.38 10	0.0540 2	E _γ : from (n,γ) E=thermal only. E _γ ,Mult.: from (n,n'γ). $\alpha(K)=0.0460 \ 3; \ \alpha(L)=0.00630 \ 10; \ \alpha(M)=0.00129 \ 2; \ \alpha(N+)=0.00035 \ I$ B(M1)(W.u.)>0.0065; B(E2)(W.u.)>4.2 E : weighted average of 288 5 3 from (α 2nα) and 288 2 3
		726.9 <i>3</i>	100 4	3183.60	8+	E2		0.00375	<i>L</i> _γ : weighted average of 20.5 5 from (α,2nγ) and 200.2 5 from ($^{12}C,Fγ$),($^{18}O,Fγ$). <i>L</i> _γ : unweighted average of 12 4 from (α,2nγ) and 34 12 from ($^{12}C,Fγ$),($^{18}O,Fγ$). Mult.,δ: from γ(θ) in (α,2nγ), polarity from level-parity change determined fro other experimental evidence. α(K)=0.00320 5; α(L)=0.000441 7; α(M)=9.11×10 ⁻⁵ 13 α(N)=1.96×10 ⁻⁵ 3; α(O)=2.94×10 ⁻⁶ 5; α(P)=1.96×10 ⁻⁷ 3 B(E2)(W.u.)>4.1 <i>E</i> _γ : weighted average of 727.1 3 from (α,2nγ) and 726.7 3 from ($^{12}C,Fγ$),($^{18}O,Fγ$).
3922.13	(3)-	1041.50 11	37 2	2880.66	3-				I _γ : from $(\alpha, 2n\gamma)$. Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, 2n\gamma)$. E _γ : weighted average of 1041.4 <i>3</i> from ¹³⁸ Cs β^- decay (32.5 m) and 1041.51 <i>11</i> from (n, γ) E=thermal.
		1614.26 <i>12</i> 2023.62 8	133 7 100 9	2307.515 1898.588	4+ 4+	(E1)		8.38×10 ⁻⁴	I _γ : weighted average of 54 <i>14</i> from ¹³⁸ Cs β ⁻ decay (32.5 m) and 37 2 from (n,γ) E=thermal. E _γ ,I _γ : from (n,γ) E=thermal only. α (K)=0.000453 7; α (L)=5.59×10 ⁻⁵ 8; α (M)=1.144×10 ⁻⁵ <i>16</i> α (N)=2.47×10 ⁻⁶ 4; α (O)=3.81×10 ⁻⁷ 6; α (P)=2.87×10 ⁻⁸ 4; α (PE)=0.000315 5
									E _γ : weighted average of 2023.93 20 from ¹³⁸ Cs β ⁻ decay (32.5 m), 2023.59 7 from (n,γ) E=thermal, and 2023.5 3 from (n,n'γ). I _γ : from (n,n'γ) E=thermal. Mult.: (D) from $\gamma(\theta)$ in (n,n'γ), polarity from level-parity
		2486.51 17	17 2	1435.805	2+				E _{γ} : weighted average of 2487.1 <i>6</i> from ¹³⁸ Cs β^- decay (32.5 m), 2486.48 <i>17</i> from (n, γ) E=thermal, and 2486.1 <i>8</i> from (n,n' γ). I _{γ} : weighted average of 19 7 from ¹³⁸ Cs β^- decay (32.5 m),
3931.18		1515.8 <i>4</i> 2032.6 <i>3</i>	30 7 100 <i>10</i>	2415.337 1898.588	5+ 4+				17 2 from (n,γ) E=thermal, and 16 5 from $(n,n'\gamma)$. E_{γ},I_{γ} : from $(n,n'\gamma)$ only. E_{γ},I_{γ} : from $(n,n'\gamma)$ only.
3934.87	2+	596.2 <i>4</i> 1054.36 <i>16</i>	16 6 100 <i>12</i>	3338.72 2880.66	2+ 3-				E _γ , I _γ : from ¹³⁸ Cs β ⁻ decay (32.5 m) only. E _γ : weighted average of 1054.32 <i>15</i> from ¹³⁸ Cs β ⁻ decay (32.5 m), 1054.9 <i>3</i> from (n,γ) E=thermal, and 1054.2 <i>2</i> from (n,n'γ). I _γ : from (n,n'γ). Others: 105 28 from ¹³⁸ Cs β ⁻ decay (32.5 m).

$\gamma(^{138}\text{Ba})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult. [@]	α^{\dagger}	Comments
3934.87	2+	1627.8 4	78 10	2307.515	4+			$E_{n}J_{n}$; from $(n,n'\gamma)$ only.
		1717 1 3	67.15	2217 874	2+			$F_{\rm ex}$ $I_{\rm ex}$: from 138 Cs β^- decay (32.5 m) only
		2499 4 3	77 9	1435 805	2+			E ₁ : weighted average of 2499.4.3 from ¹³⁸ Cs β^- decay (32.5 m)
		2199.115	11.2	1155.005	2			2499.8.5 from (n, γ) E=thermal, and 2499.3.3 from $(n, n'\gamma)$.
								L_{ν} : from $(n,n'\nu)$.
		3935 2 5	11.2	0.0	0^{+}			$F_{\rm ex}$ L _v : from ¹³⁸ Cs β^- decay (32.5 m) only
4001 47	$2^{(+)}$	2566	23 17	1435 805	2^{+}			E. L: from $(n n' \gamma)$ only
1001.17	2	4001 40 11	100 12	0.0	$\tilde{0}^{+}$	0		E_{γ} , weighted average of 4001 41 11 from (n γ) E=thermal and 4001 2
		1001.10 11	100 12	0.0	0	×		4 from $(n,n'\gamma)$.
								I_{ν} : from $(n,n'\nu)$.
4011.9?	$(2^+, 3, 4^+)$	368.7 4	64 25	3643.08	2+			$E_{\alpha}J_{\alpha}$; from ¹³⁸ Cs β^- decay (32.5 m) only.
	(_ ,= ,= , =)	754.5 4	$1.0 \times 10^2 4$	3257.24	3			$E_{\alpha}L_{\alpha}$: from ¹³⁸ Cs β^{-} decay (32.5 m) only.
		2114 3 7	60.27	1898 588	Δ^+			E. L: from 138 Cs β^- decay (32.5 m) only
4013 7	(1.2^+)	$2578 1^{a} 3$	<182 ^a	1435 805	2+			E_{ν} , I_{ν} : from (n ν) E_{\pm} thermal only
1015.7	(1,2)	4012.7.6	100 15	0.0	$\tilde{0}^{+}$			$E_{\alpha} I_{\alpha}$: from (n, γ) E=thermal only.
4026.00	1-	2590.71 24	≈23	1435.805	2^{+}			$E_{\nu}I_{\nu}$: from (n, ν) E=thermal. Other: $I\nu < 5$ from 1995He25 in (ν, ν').
		4025.80 12	<100	0.0	0^{+}	E1	1.75×10^{-3}	$\alpha(K) = 7.23 \times 10^{-5}$ 11: $\alpha(L) = 8.60 \times 10^{-6}$ 12: $\alpha(M) = 1.752 \times 10^{-6}$ 25
		1020100 12	100	010	Ŭ.	21	11/0/110	$\alpha(N) = 3.78 \times 10^{-7} \text{ fs} \ \alpha(O) = 5.83 \times 10^{-8} \text{ gs} \ \alpha(P) = 4.41 \times 10^{-9} \text{ 7s}$
								$\alpha(\text{IPF})=0.001665\ 24$
								B(E1)(W.u.) < 0.002
								E_{γ}, I_{γ} : from (n, γ) E=thermal, also placed as primary transition.
								Mult.: from $\gamma(\text{lin pol})$ in (pol γ, γ') and $\gamma(\theta)$ in $(n, n'\gamma)$.
4079.88	$(1)^{-}$	1199.15 24	100 18	2880.66	3-			$E_{\gamma}I_{\gamma}$: unplaced γ in ¹³⁸ Cs β^{-} decay (32.5 m). Seen and placed in
								(n,γ) E=thermal.
		4080.1 5	10.5 14	0.0	0^{+}			E_{γ}, I_{γ} : from ¹³⁸ Cs β^{-} decay (32.5 m).
4083.4	$(1,2^+)$	4083.3 4	100	0.0	0^{+}			
4114.8		482.0 <i>3</i>	100	3632.8	9-	D,Q		E_{γ} ,Mult.: from (α ,2n γ).
4115.42	$(1,2^{+})$	749.38 24	27 6	3366.71	2+			
		1064.5 <i>3</i>	<33	3049.91	2+			E_{γ} : placed only in (n, γ) E=thermal. See 1064.14 γ from 3155 level.
		2679.65 8	30 4	1435.805	2+			
		4114.5 3	100 8	0.0	0^+			
4130.55	(1) -	1940.67 19	100	2189.861	$(1,2^+)$			E_{γ} : see also 1940.7 γ from 3377 level.
4143.3	$(1)^{-}$	4143.2 3	100	0.0	0^+	DO		
4157.5	(A) =	247.0 3	100	3910.5	10'	D,Q		E_{γ} , Mult.: from $(\alpha, 2n\gamma)$.
4105.1	(4)	1264.4 5	100	2000.00	3 2+			E_{γ} . from (ii, ii γ).
4197.13	(1,2,5)	2701.32 10	100	1433.803	2 2+			E_{1} , which is a second of 2006 57 17 from $138C_{2}$ of dense (22.5 m)
4242.11	$(1,2^{+})$	2800.28 18	100 10	1455.805	2			E_{γ} : unweighted average of 2800.5/1/ from $CS\beta$ decay (52.5 m), 2805.97 10 from (n γ) E-thermal and 2806.3 11 from (n $\gamma'\gamma$)
								L_{ν} : from (n, γ) E=thermal.
		4242	20	0.0	0^{+}			E_{γ} : seen only in (n,γ) E=thermal.
4280.24	$(1.2)^{-}$	1398.46 <mark>&</mark> 22	73.8	2880.66	3-			
.200.21	(-,=)	1605 0 22	100 6	2582.00	1+			
		2061 5 4	<07	2302.99	1 2+			$E_{\rm I}$: also placed from 4508 level
		2001.3 7	~21	2217.074	4			Ly, ry, also placed from 1500 level.

$\gamma(^{138}\text{Ba})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^π	Mult. [@]	Comments
4280.24	$(1,2)^{-}$	2845 3	54	1435.805	2+		
		4280.31 8	<27	0.0	0^{+}		E_{γ} : also placed as a primary transition in (n,γ) E=thermal.
4323.56	1-	957.6 ^a 4	<13 ^a	3366.71	2+		
		1158.7 5	10.3 9	3163.27	$(2)^{+}$		
		4323.50 7	100 6	0.0	0^{+}	D	E_{γ} : weighted average of 4323.37 7 from (n, γ) E=thermal, 4323.0 7 from (γ , γ') and
							4323.2 4 from $(n,n'\gamma)$.
		P_					Mult.: from $\gamma(\theta)$ in $(n,n'\gamma)$.
4332.27	$(1,2^{+})$	2895.62 ^{<i>x</i>} 9		1435.805	2+		
	((+)	4332.23 6		0.0	0^{+}		E_{γ} : also placed as a primary transition in (n,γ) E=thermal.
4359.47	$(1^+, 2, 3)$	1116.4 3	96 8	3243.06	3		
		1913.9 1	92.8	2445.550	3' 2+		
4445 49	1-	2923.7 3	100 19	1435.805	2 · 0+		
4445.48	$(2^+ 2)$	4445.40 /	100 10	0.0	0^{+}		E_{1} , where E_{1} is the distance of 20(2.24, 17 from 138 C_{1} σ_{1} does (22.5 m) and 20(1.5.4)
4508.09	$(2^{+},3)$	2001.9 4	100 10	2445.550	3		E_{γ} : unweighted average of 2062.34 1/ from $CS\beta$ decay (52.5 m) and 2061.5 4 from (n a) E-thermal. Also placed from 4280 level in (n a) E-thermal
							I from 138 Cs β^{-} decay (32.5 m)
		2600 54 16	30.5	1909 599	<u>4</u> +		I_{γ} . Itolii CSp decay (32.5 lli). E : weighted average of 2600 3 3 from 138 Cs β^- decay (32.5 m) and 2600 61 16 from
		2009.34 10	30.5	1090.300	4		E_{γ} . Weighted average of 2009.5 5 from $-Cs \beta$ decay (52.5 fit) and 2009.01 10 from (n α) E-thermal
							$(1, \gamma) = - \operatorname{decay} (32.5 \text{ m})$
		3073 4 0	17 4	1/35 805	2^+		1_{γ} . Itolii CS p decay (32.5 ll). E : unweighted average of 3072.5 <i>A</i> from 138 Cs β^{-} decay (32.5 m) and 3074.25 <i>L</i>
		5075.49	1/4	1455.005	2		E_{γ} . unweighted average of 5072.5 4 from (cs p) decay (52.5 fr) and 5074.25 11 from (n $_{\gamma}$) E-thermal
							I from 138 Cs β^- decay (32.5 m)
4535 99	1-	893 3 <mark>4</mark> 3	<16 ^a	3643.08	2+		17.110 m Csp decay (52.5 m).
10000.000	1	2345.86 ^{<i>a</i>} 18	<51 ^a	2189.861	(1.2^+)		
		3096 6 ^b 6	110 16	1/35 805	2+		\mathbf{F} : placed only in (n x) \mathbf{F} -thermal. Poor fit inconsistent with level energy
		5090.0 0	110 10	1455.005	2		L_{γ} . placed only in (ii, y) L=uterman. Four int, inconsistent with reverence g_{γ}
		4535.93 9	100.5	0.0	0^{+}		E_{n} : weighted average of 4535.94 6 from (n, γ) E=thermal and 4535.1 6 from
							(γ,γ') , (pol $\gamma,\gamma')$.
4564.45	$(2,3)^{-}$	921.43 ^a 22	<64 ^{<i>a</i>}	3643.08	2^{+}		
		1981.55 <i>15</i>	73 9	2582.99	1^{+}		
		2257.31 18	60 7	2307.515	4+		
		2345.86 ^a 18	<91 ^{<i>a</i>}	2217.874	2+		
		3129.5 5	100 14	1435.805	2+		
4580.19	(1,2,3)	1337.65 24	71.8	3243.06	3		
15010		3143.98 20	100 33	1435.805	2+		
4584.2	(1) =	962.1 3	100 12	3622.1	10^{+}		E_{γ} : from (α ,2n γ).
4586.3	(1)	3130.6 4	100 12	1435.805	2' 0+		E , also placed as a minimum transition in (n a) E-thermal
1615 16		4383.0 / 3170.62.15	<80 100	0.0	2^+		E_{γ} : also placed as a primary transition in (n, γ) E=thermal.
4013.40		J1/9.02 IJ	100 17	1455.005	∠ 4+		E_{γ} . Holli (II,II γ). E. I. from ¹³⁸ Co ρ^{-} decay (22.5 m)
4029.73		1110.2323	100 17 97 6	1000 500	4 4		$E_{\gamma,1\gamma}$. Hom CSp uccay (52.5 m). E. L. from $138C_5 \rho^2$ decay (22.5 m).
1615 70	$(1 2 2)^{-}$	2131.12 13 1766 2 3	8/0 36/	1898.388	4 · 2-		$E_{\gamma,1\gamma}$. from $E_{\gamma,1\gamma}$ decay (32.5 m).
4043.72	(1,2,3)	1700.2 3	30 4	2000.00	3		

25

 $^{138}_{56}\mathrm{Ba}_{82}$ -25

Adopted Levels, Gammas (continued)													
						$\gamma(^{138}$	Ba) (contin	ued)					
E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	J_f^π	Mult.@	α^{\dagger}	Comments					
4645.72	(1,2,3)-	1850.1 ^b 2 3209.75 <i>10</i>	100 7 75 14	2795.2? 1435.805	$(1,2^+)$ 2^+								
4665.14	(1 ⁻ ,2 ⁺)	1784.7 <i>3</i> 2082.95 <i>14</i>	85 <i>10</i> 100 <i>15</i>	2880.66 2582.99	$\frac{-}{3^{-}}$ 1 ⁺								
		3230.01 ^{&} 9 4664 12 ^{&} 11	35 20 31 4	1435.805	2^+ 0 ⁺								
4689.0	12+	778.5 3	100	3910.5	10 ⁺	E2	0.00318	$\alpha(K)=0.00272 \ 4; \ \alpha(L)=0.000370 \ 6; \ \alpha(M)=7.65\times10^{-5} \ 11 \ \alpha(N)=1.642\times10^{-5} \ 23; \ \alpha(O)=2.48\times10^{-6} \ 4; \ \alpha(P)=1.676\times10^{-7} \ 24 \ B(E2)(W.u.)>3.3 \ E_{\gamma}: weighted average of 778.6 \ 3 \ from \ (\alpha,2n\gamma) \ and \ 778.4 \ 3 \ from \ (^{12}C,F\gamma),(^{18}O,F\gamma).$					
4704.2	(11-)	1071.3 <i>3</i> 1082 1 3	100 <i>30</i>	3632.8	9- 10+			Mult.: Q from $\gamma(\theta)$ in $(a,2h\gamma)$, M2 fund out by KOL. E_{γ},I_{γ} : from $^{238}U(^{12}C,F\gamma),^{208}Pb(^{18}O,F\gamma)$. F. J.: from $^{238}U(^{12}C,F\gamma),^{208}Pb(^{18}O,F\gamma)$.					
4707.41	1-	1062.1 <i>3</i> 1064.5 <i>3</i> 2068.16 <i>15</i> 4707.21 <i>11</i>	<93 <134 100 7	3643.08 2639.39 0.0	2^+ 2^+ 0^+			E_{γ} , placed only in (n, γ) E=thermal. See 1064.14 γ from 3155 level. E_{γ} , I_{γ} : also placed from 3504 level in (n, γ) E=thermal. E_{γ} , I_{γ} : other: 4705,6 9 from (γ, γ') .					
4743.44	(2,3) ⁻	1501.0 <i>3</i> 2104.08 <i>16</i> 2525.9 <i>3</i> 3306 4 <i>3</i>	55 5 100 <i>14</i> 48 6 100 <i>14</i>	3243.06 2639.39 2217.874 1435.805	$3 2^+ 2^+ 2^+ 2^+$								
4795.78	(2,3)-	957.6 ^{<i>a</i>} 4 2578.1 ^{<i>a</i>} 3 3360.1 3		3837.50 2217.874 1435.805	(2^+) 2^+ 2^+								
4855.52	1(-)	921.43 ^{<i>a</i>} 22 2272.6 6 4855.11 <i>14</i>	<87 ^a 36 5 100 19	3934.87 2582.99 0.0	2^+ 1^+ 0^+								
4863.9 4871.74	(2,3) ⁻	1241.8 <i>3</i> 1821.4 <i>2</i>	100 <107	3622.1 3049.91	10+ 2+			E _{γ} : from (α ,2n γ). E _{γ} ,I _{γ} : placed only by 1995Bo05 in (n, γ) E=thermal, not confirmed in other γ studies. See also 1821 γ from 3258 level.					
		3436.40 22	<100	1435.805	2+			E_{γ},I_{γ} : placed only by 1995Bo05 in (n,γ) E=thermal, not confirmed in other γ studies. See also 3436 γ from 3436 level.					
5027.67	(2 ⁻ ,3)	3591.81 <i>17</i>	100	1435.805	2+			2 22 1 2 2 22 1 2					
5128.4		1506.3 5	100	3622.1	10^{+}			E_{γ} : from ^{2,58} U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).					
5145.5	1	5145.4 6		0.0	0^{+}			228 12 208					
5186.0	(13 ⁻)	481.8 3	100	4704.2	(11^{-})			E_{γ} : from ²³⁸ U(¹² C,F γ), ²⁰⁸ Pb(¹⁸ O,F γ).					
5284.0	1	5283.9 7	100	0.0	0 ⁺			$= (2381)^{12} = (2081)^{18} = (18)^{18}$					
5358.3	1(-)	1736.4 5	100	3622.1	10+			E_{γ} : trom ^{2.5} U(¹² C,F γ), ²⁰⁰ Pb(¹⁰ O,F γ).					
5390.8	1(-)	5390.7 6	100	0.0	0 ⁺			$= (238 \times 12 \times 1$					
5394.2	(13^{-})	705.2 3	100	4689.0	12 ⁺			E_{γ} : from ²⁵⁰ U(¹² C,F γ), ²⁰⁰ Pb(¹⁰ O,F γ).					
5511.6	1 1-	3473.70 4076		0.0	0' 2+								
3311.0	1	4070		1455.805	4								

γ (¹³⁸Ba) (continued)

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
5511.6	1-	5511.3 10		0.0	0+	E1	0.00221	$\alpha(K) = 4.77 \times 10^{-5} 7; \ \alpha(L) = 5.65 \times 10^{-6} 8; \ \alpha(M) = 1.151 \times 10^{-6} 17$ $\alpha(N) = 2.48 \times 10^{-7} 4; \ \alpha(O) = 3.83 \times 10^{-8} 6; \ \alpha(P) = 2.91 \times 10^{-9} 4; \ \alpha(IPF) = 0.00216 3$
5582.2	1-	5582.1 7		0.0	0+	E1	0.00223	$\alpha(K) = 2.46 \times 10^{-5} 7; \ \alpha(L) = 5.56 \times 10^{-6} 8; \ \alpha(M) = 1.132 \times 10^{-6} 16$ $\alpha(K) = 2.44 \times 10^{-7} 4; \ \alpha(O) = 3.77 \times 10^{-8} 6; \ \alpha(P) = 2.86 \times 10^{-9} 4; \ \alpha(IPF) = 0.00218 3$ B(E1)(W.u.) = 0.00105 + 19 - 20
5644.8	1-	4209		1435.805	2^{+}			
		5644.6 5		0.0	0^{+}	E1	0.00225	α (K)=4.62×10 ⁻⁵ 7; α (L)=5.48×10 ⁻⁶ 8; α (M)=1.116×10 ⁻⁶ 16 α (N)=2.41×10 ⁻⁷ 4; α (O)=3.71×10 ⁻⁸ 6; α (P)=2.82×10 ⁻⁹ 4; α (IPF)=0.00220 3
5655.4	1-	5655.3 7		0.0	0+	E1	0.00225	$\alpha(\text{K})=4.61\times10^{-5}$ 7; $\alpha(\text{L})=5.47\times10^{-6}$ 8; $\alpha(\text{M})=1.113\times10^{-6}$ 16 $\alpha(\text{N})=2.40\times10^{-7}$ 4; $\alpha(\text{O})=3.70\times10^{-8}$ 6; $\alpha(\text{P})=2.81\times10^{-9}$ 4; $\alpha(\text{IPF})=0.00220$ 3 B(E1)(W.u.)=0.0016 4
5694.6	1-	5694.5 7		0.0	0+	E1	0.00226	$\alpha(K)=4.57\times10^{-5}$ 7; $\alpha(L)=5.42\times10^{-6}$ 8; $\alpha(M)=1.103\times10^{-6}$ 16 $\alpha(N)=2.38\times10^{-7}$ 4; $\alpha(O)=3.67\times10^{-8}$ 6; $\alpha(P)=2.79\times10^{-9}$ 4; $\alpha(IPF)=0.00221$ 3 B(E1)(W.u.)=0.00105 +18-19
5741.8	(11^{+})	2119.8 8	100	3622.1	10^{+}			
5743.0	1-	4307	10	1435.805	2+			I_{γ} : from $I_{\gamma}(4307)/I_{\gamma}(5742.9)=0.10 \ I$ in (γ, γ') .
		5742.9 7	100	0.0	0^{+}	E1	0.00228	$\alpha(K)=4.52\times10^{-5} 7; \ \alpha(L)=5.36\times10^{-6} 8; \ \alpha(M)=1.091\times10^{-6} 16$ $\alpha(N)=2.36\times10^{-7} 4; \ \alpha(O)=3.63\times10^{-8} 5; \ \alpha(P)=2.76\times10^{-9} 4; \ \alpha(IPF)=0.00223 4$ B(E1)(W,u)=0.00138 + 27 - 25
5752.5	1	5752.4 8		0.0	0^{+}			
5766.4	1-	5766.3 6		0.0	0+	E1	0.00228	$\alpha(\text{K})=4.50\times10^{-5}$ 7; $\alpha(\text{L})=5.33\times10^{-6}$ 8; $\alpha(\text{M})=1.085\times10^{-6}$ 16 $\alpha(\text{N})=2.34\times10^{-7}$ 4; $\alpha(\text{O})=3.61\times10^{-8}$ 5; $\alpha(\text{P})=2.74\times10^{-9}$ 4; $\alpha(\text{IPF})=0.00223$ 4 B(E1)(W.u.)=0.0017 3
5815.1	1-	5815.0 7		0.0	0+	E1	0.00230	$\alpha(K)=4.45\times10^{-5} 7; \ \alpha(L)=5.28\times10^{-6} 8; \ \alpha(M)=1.074\times10^{-6} 15$ $\alpha(N)=2.32\times10^{-7} 4; \ \alpha(O)=3.57\times10^{-8} 5; \ \alpha(P)=2.71\times10^{-9} 4; \ \alpha(IPF)=0.00225 4$ B(E1)(W,u)=0.00118 + 21-20
5873.7	1-	5873.6 6		0.0	0+	E1	0.00231	$\alpha(K)=4.39\times10^{-5} 7; \ \alpha(L)=5.21\times10^{-6} 8; \ \alpha(M)=1.060\times10^{-6} 15$ $\alpha(N)=2.29\times10^{-7} 4; \ \alpha(O)=3.53\times10^{-8} 5; \ \alpha(P)=2.68\times10^{-9} 4; \ \alpha(IPF)=0.00226 4$ B(E1)(W,u)=0.0028 5
5921.6	(14^{-})	527.4 <i>4</i>	100	5394.2	(13 ⁻)			
5925.5	(12^{+})	183.7 5	54 21	5741.8	(11^{+})			
		567.3 <i>3</i>	100 30	5358.3				
		797.1 4	49 25	5128.4	(11-)			
		1221.2.5	44 21	4704.2	(11)			
		1230.4 4	98 30	4689.0	121			
5062.6	1-	2303.0 0	25 12	0.0	10 0 ⁺	E1	0.00224	$\alpha(K) = 4.21 \times 10^{-5}$ 6; $\alpha(L) = 5.11 \times 10^{-6}$ 8; $\alpha(M) = 1.020 \times 10^{-6}$ 15
5905.0	1	5905.5 0		0.0	0	EI	0.00254	$\alpha(\text{N})=4.51\times10^{-7} 6, \alpha(\text{L})=5.11\times10^{-8} 8, \alpha(\text{M})=1.039\times10^{-7} 15$ $\alpha(\text{N})=2.24\times10^{-7} 4; \alpha(\text{O})=3.46\times10^{-8} 5; \alpha(\text{P})=2.63\times10^{-9} 4; \alpha(\text{IPF})=0.00229 4$ B(E1)(W.u.)=0.0021 4
6102.3	1-	6102.2 7		0.0	0^{+}	E1		B(E1)(W.u.)=0.0027 15
6114.6	1-	6114.5 9		0.0	0^{+}	E1		B(E1)(W.u.)=0.0015 5
6193.0	1-	6192.9 5		0.0	0^{+}	E1		B(E1)(W.u.)=0.0043 + 9 - 8
6198.4	(15^{-})	804.2 <i>3</i>	100	5394.2	(13 ⁻)			

$\gamma(^{138}\text{Ba})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.@	Comments
6210.9	(13^{+})	285 4 3	100.33	5925 5	(12^+)		
0210.9	(15)	1521.9.5	35 13	4689.0	12^+		
6244.8	1-	6244.6 8	55 15	0.0	0^{+}	E1	$B(E_1)(W,u_2)=0.00127+20-21$
6348.0	1-	4912	16	1435.805	2+	21	L_{∞} : from $[\gamma(49)2)[\gamma(6348)=0.16+54-15 \text{ in } (\gamma,\gamma').$
	-	6347.9 8	100	0.0	0^{+}	E1	B(E1)(W,u) = 0.0020 + 30 - 8
6361.8	1-	6361.6 6		0.0	0^{+}	E1	B(E1)(W,u) = 0.0028.5
6410.3	1-	6410.1.6		0.0	$\tilde{0}^+$	E1	B(E1)(Wu) = 0.0051 + 10 - 9
6434.5	1-	6434.3.6		0.0	0^+	E1	B(E1)(Wu) = 0.0048 + 9 - 8
6466.0	1	6465.8.7		0.0	0^{+}	LI	
6486 5	1	6486 3 9		0.0	0^{+}		
6552.8	1	6552.6.8		0.0	0^{+}		
6575.5	1	6575 3 8		0.0	0^{+}		
6612.9	1	6612.7.6		0.0	0^{+}		
6635.3	1	6635.1.8		0.0	0^{+}		
6657.6	(14^+)	446 7 3	100	6210.9	(13^{+})		
6663.9	1	6663 7 7	100	0.0	(15)		
6678.8	1	6678.6.5		0.0	0^{+}		
6693.6	1	6693.4.5		0.0	0^{+}		
6703.7	1	6703.5.6		0.0	0^{+}		
6759.4	(16 ⁻)	837.8 4	100	5921.6	(14^{-})		
6802.1	1	6801.9 8	100	0.0	0^+		
6813.6	1	6813.4 6		0.0	0^{+}		
6821.8	1	6821.6 11		0.0	0^{+}		
6839.3	1	6839.1 8		0.0	0^{+}		
6848.5	1	6848.3 7		0.0	0^{+}		
6862.2	1	6862.0 <i>6</i>		0.0	0^{+}		
6870.6	1	6870.4 7		0.0	0^{+}		
6895.0	1	6894.8 <i>6</i>		0.0	0^{+}		
6922.3	1	6922.1 8		0.0	0^{+}		
6957.0	1	6956.8 12		0.0	0^{+}		
6981.1	1	6980.9 8		0.0	0^{+}		
6988.8	(14^{+})	778.0 4	100 35	6210.9	(13^{+})		
		1067.1 5	65 28	5921.6	(14^{-})		
		1802.6 6	54 26	5186.0	(13^{-})		
7040.3	1	7040.1 9		0.0	0^{+}		
7106.1	1	7105.9 15		0.0	0^{+}		
7144.0	1	7143.8 9		0.0	0^{+}		
7155.8	(17^{-})	957.4 <i>5</i>	100	6198.4	(15 ⁻)		
7211.8	1	7211.6 8		0.0	0^{+}		
7227.7	(15^{+})	239.0 4	31 14	6988.8	(14^{+})		
		570.1 <i>3</i>	100 30	6657.6	(14^{+})		
7276.0	1	7275.8 10		0.0	0^{+}		
7334.3	1	7334.1 10		0.0	0^{+}		

From ENSDF

$\gamma(^{138}\text{Ba})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{\#}$	$E_f = J_f^{\pi}$	E _i (level)	\mathbf{J}_i^{π}	$E_{\gamma}^{\#}$	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
7376.8	1	7376.6 9		$0.0 \ 0^+$	7871.3	1	7871.1 <i>10</i>		$0.0 \ 0^+$
7403.6		1205.2 5	100	6198.4 (15-) 7980.5	(17^{+})	446.7 5	100	7533.8 (16 ⁺)
7533.8	(16^{+})	306.1 <i>3</i>	100	7227.7 (15+) 8012.7		856.9 5	100	7155.8 (17-)
7546.9	1	7546.7 22		$0.0 \ 0^+$	8075.9	1	8075.6 8		$0.0 \ 0^+$
7705.8	1	7705.6 12		$0.0 \ 0^{+}$	8281.9	(18^{+})	301.4 4	100	7980.5 (17 ⁺)
7774.2	1	7774.0 7		$0.0 \ 0^+$	8433.5	1-	8433.2 14		$0.0 \ 0^+$
7805.5	1	7805.3 8		$0.0 \ 0^{+}$	8938.3	(19+)	656.4 5	100	8281.9 (18+)
7819.9	1	7819.7 8		$0.0 \ 0^+$	9334.4	(20^{+})	396.1 5	100 48	8938.3 (19 ⁺)

[†] Additional information 2.

[±] If No value given it was assumed δ =1.00 for E2/M1, δ =1.00 for E3/M2 and δ =0.10 for the other multipolarities. [#] From (n, γ) E=thermal up to 5028 level and from (γ , γ') above that, unless otherwise noted.

^(a) From γ scattering asymmetry in (γ, γ') for transitions from levels above 4026, unless otherwise noted. ^(a) Poor fit. For fitting purpose only, uncertainties were increased to 0.3 keV to reduce the χ^2 /dof to 2.9 from 12.9. ^(a) Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{138}_{56}\mathrm{Ba}_{82}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

--- γ Decay (Uncertain)

Legend

¹³⁸₅₆Ba₈₂

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹³⁸₅₆Ba₈₂

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

 $--- \rightarrow \gamma$ Decay (Uncertain)

 $^{138}_{56}\mathrm{Ba}_{82}$

From ENSDF

 $^{138}_{56}\mathrm{Ba}_{82}$ -36

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

¹³⁸₅₆Ba₈₂

¹³⁸₅₆Ba₈₂