238 U(12 C,F γ), 208 Pb(18 O,F γ) 2012As06

		History			
Туре	Author	Citation	Literature Cutoff Date		
Full Evaluation	Jun Chen	NDS 146, 1 (2017)	30-Sep-2017		

2012As06: E=90 MeV ¹²C beam was provided by the Legnaro XTU Tandem accelerator; E=85 MeV ¹⁸O beam was provided by the Vivitron accelerator of IReS (Strasbourg). Targets were 47 mg/cm² ²³⁸U and 100 mg/cm² ²⁰⁸Pb. γ rays were detected by the Euroball array consisting of 15 cluster Ge, 26 clover Ge detectors, and 30 tapered single-crystal Ge detectors. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, J, π , configurations. Comparisons with shell-model calculations.

¹³⁸Ba Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	0+		
1435.4 ^{#} 4	2^{+}		
1897.8 [#] 5	4+		
2089.3 [#] 6	6+	0.8 µs 1	$T_{1/2}$: from Adopted Levels.
2201.6 7	6+	-	
2414.5 7	5+		
3182.0 [#] 7	8+		
3358.5 9	(7^+)		
3620.3 7	10'		
3031.1° /	9		
3908.6" /	10		
4687.1" 8	12^{+}		
512668	(11)		
5184.2 [°] 8	(13^{-})		
5356.4 8	. ,		
5392.3 ^b 8	(13 ⁻)		
5740.0 ^{&} 9	(11^{+})		
5919.8 ^a 8	(14 ⁻)		
5923.7 <mark>&</mark> 7	(12^{+})		
6196.5 ^b 9	(15 ⁻)		
6209.0 <mark>&</mark> 8	(13 ⁺)		
6655.7 <mark>&</mark> 8	(14^{+})		
6757.6 ^a 9	(16 ⁻)		
6986.9 [@] 8	(14^{+})		
7153.9 ^b 10	(17 ⁻)		
7225.9 [@] 8	(15^{+})		
7401.7 10			
7532.0 [@] 9	(16 ⁺)		
7978.7 [@] 10 8010.8 11	(17 ⁺)		
8280.1 [@] 11	(18 ⁺)		
8936.5 [@] 12	(19 ⁺)		
9332.6 [@] 13	(20 ⁺)		

[†] From a least-squares fit to γ -ray energies.

[‡] Proposed by 2012As06 based on band structures and shell-model predictions.

Band(A): g.s. band.

238 U(12 C,F γ), 208 Pb(18 O,F γ) 2012As06 (continued)

¹³⁸Ba Levels (continued)

 $^{@}$ Band(B): Band based on (14⁺). & Band(C): Band based on (11⁺).

^a Band(D): Band based on (14⁻).

^b Band(d): Band based on (13⁻).
^c Band(E): Band based on 9⁻.

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$
112.1 5	27 5	2201.6	6+	2089.3 6+	778.4 <i>3</i>	41 6	4687.1	12^{+}	3908.6 10+
183.7 5	3.3 13	5923.7	(12^{+})	5740.0 (11 ⁺)	797.1 4	3.0 15	5923.7	(12^{+})	5126.6
191.5 <i>3</i>		2089.3	6+	1897.8 4+	804.2 <i>3</i>	9 <i>3</i>	6196.5	(15^{-})	5392.3 (13 ⁻)
239.0 4	2.2 10	7225.9	(15^{+})	6986.9 (14+)	837.8 4	5.1 18	6757.6	(16 ⁻)	5919.8 (14-)
285.4 3	12 4	6209.0	(13^{+})	5923.7 (12 ⁺)	856.9 5	2.4 12	8010.8		7153.9 (17 ⁻)
288.2 <i>3</i>	12 4	3908.6	10^{+}	3620.3 10+	944.0 5	1.7 8	3358.5	(7^{+})	2414.5 5+
301.4 4	4.4 18	8280.1	(18^{+})	7978.7 (17 ⁺)	957.4 5	3.1 15	7153.9	(17^{-})	6196.5 (15 ⁻)
306.1 <i>3</i>	7.3 22	7532.0	(16^{+})	7225.9 (15 ⁺)	980.3 <i>3</i>	23 5	3182.0	8+	2201.6 6+
396.1 5	2.1 10	9332.6	(20^{+})	8936.5 (19 ⁺)	1067.1 5	3.5 15	6986.9	(14^{+})	5919.8 (14 ⁻)
438.3 <i>3</i>	40 6	3620.3	10^{+}	3182.0 8+	1071.3 <i>3</i>	7.8 23	4702.4	(11^{-})	3631.1 9-
446.7 <i>3</i>	7.4 22	6655.7	(14^{+})	6209.0 (13 ⁺)	1082.1 <i>3</i>	7.8 23	4702.4	(11^{-})	3620.3 10+
446.7 5	5.6 17	7978.7	(17^{+})	7532.0 (16 ⁺)	1092.7 <i>3</i>	73 11	3182.0	8+	2089.3 6+
449.1 3	10 <i>3</i>	3631.1	9-	3182.0 8+	1205.2 5	21	7401.7		6196.5 (15 ⁻)
462.4 3		1897.8	4+	1435.4 2+	1221.2 5	2.7 13	5923.7	(12^{+})	4702.4 (11 ⁻)
481.8 <i>3</i>	8.3 25	5184.2	(13 ⁻)	4702.4 (11 ⁻)	1236.4 4	6.0 18	5923.7	(12^{+})	4687.1 12+
516.7 4	3.2 13	2414.5	5+	1897.8 4+	1435.4 4		1435.4	2+	$0.0 \ 0^+$
527.4 4	6.9 20	5919.8	(14^{-})	5392.3 (13-)	1506.3 5	2.4 12	5126.6		3620.3 10+
567.3 <i>3</i>	6.1 <i>18</i>	5923.7	(12^{+})	5356.4	1521.9 5	4.2 15	6209.0	(13^{+})	4687.1 12+
570.1 3	7.1 21	7225.9	(15^{+})	6655.7 (14 ⁺)	1736.4 5	4.9 17	5356.4		3620.3 10+
656.4 5	3.2 15	8936.5	(19^{+})	8280.1 (18 ⁺)	1802.6 6	2.9 14	6986.9	(14^{+})	5184.2 (13 ⁻)
705.2 3	23 5	5392.3	(13^{-})	4687.1 12+	2119.8 8	2.1 10	5740.0	(11^{+})	3620.3 10+
726.7 3	35 7	3908.6	10^{+}	3182.0 8+	2303.6 8	1.4 7	5923.7	(12^{+})	3620.3 10+
778.0 4	5.4 19	6986.9	(14^{+})	6209.0 (13 ⁺)					

$\gamma(^{138}\text{Ba})$

 $^{138}_{56}\mathrm{Ba}_{82}$

238 U(12 C,F γ), 208 Pb(18 O,F γ) 2012As06

¹³⁸₅₆Ba₈₂