¹³⁷Ce ε decay (34.4 h) 1975He20

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 108,2173 (2007)	1-Oct-2006

Parent: ¹³⁷Ce: E=254.29 5; $J^{\pi}=11/2^-$; $T_{1/2}=34.4$ h 3; $Q(\varepsilon)=1222.1$ 16; $\%\varepsilon+\%\beta^+$ decay=0.79 4 Additional information 1.

Measured: γ , ce (1975He20,1975ArYT), $\gamma\gamma$ (1982Ko05,1964FrZZ), ce γ (1980ZhZY) ce (1975Mo12), $\gamma(\theta,T)$ (1964FrZZ), γ (1982Ko05).

Decay scheme is that from 1975He20, except for the 781 level and its decaying transitions which have been seen by 1982Ko05;

¹³⁷La Levels

E(level)	\mathbf{J}^{π}	T _{1/2}	Comments							
0.0	7/2+									
10.61 5	5/2+									
762.30 10	$11/2^{+}$									
835.36 8	$9/2^{+}$									
917.44 <i>11</i>	9/2+									
1004.61 8	$11/2^{-}$	0.41 ns 7	$T_{1/2}$: from 1967Va21.							

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(471.8 16)	1004.61	0.51 4	7.38 4	0.51 4	εK=0.8334; εL=0.1296; εM+=0.03705
(559.0 16)	917.44	0.007 3	9.4 2	0.007 3	εK=0.8367; εL=0.1271; εM+=0.03621
(641.0 16)	835.36	0.08 3	8.5 2	0.08 3	ε K=0.8390; ε L=0.1254; ε M+=0.03564
(714.1 16)	762.30	0.197 14	8.17 4	0.197 14	ε K=0.8405; ε L=0.1242; ε M+=0.03525

 † Absolute intensity per 100 decays.

[‡] For absolute intensity per 100 decays, multiply by 0.0079 4.

$\gamma(^{137}\text{La})$

I γ normalization: Σ Ti(254 γ in ¹³⁷Ce (34.4 h) IT Decay) and Σ I(γ +ce) for γ rays to g.s. or 10.6-keV level in ¹³⁷La=100. α (K)exp normalized so that α (K)(825 γ)=0.0025 (E2, theory).

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α#	Comments
10.61 5		10.61	5/2+	0.0	7/2+	M1	117.6 24	$\begin{aligned} &\alpha(L) = 93.2 \ 19; \ \alpha(M) = 19.4 \ 4; \ \alpha(N+) = 5.01 \ 10 \\ &\alpha(N) = 4.26 \ 9; \ \alpha(O) = 0.690 \ 14; \ \alpha(P) = 0.0528 \ 11 \\ &\text{Mult.: } M1:M2:M3 = 23.4 \ 16:2.87 \ 24:1 \ (1975\text{Mo12}); \\ &M1:M2:M3:M4 + = \ 100:10 \ 1:2.6 \ 7:0.50 \ 15, \\ &\delta < 0.008 \ (1975\text{ArYT}). \end{aligned}$
87.2 2	20 3	1004.61	$11/2^{-}$	917.44	9/2+			
169.26 4	995 60	1004.61	11/2-	835.36	9/2+	E1	0.0550	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0471 \ 7; \ \alpha(\mathbf{L}) = 0.00625 \ 9; \ \alpha(\mathbf{M}) = 0.001290 \\ &I8 \ \alpha(\mathbf{N}+) = 0.000328 \ 5 \\ &\alpha(\mathbf{N}) = 0.000281 \ 4; \ \alpha(\mathbf{O}) = 4.46 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{P}) = 3.07 \times 10^{-6} \ 5 \end{aligned}$
762.30 10	435 20	762.30	11/2+	0.0	7/2+	E2	0.00352	Mult.: from 1964FrZZ. $\alpha(K)=0.00300 5; \alpha(L)=0.000416 6;$ $\alpha(M)=8.66\times10^{-5} 13; \alpha(N+)=2.22\times10^{-5} 4$ $\alpha(N)=1.89\times10^{-5} 3; \alpha(O)=3.04\times10^{-6} 5;$

¹³⁷Ce ε decay (34.4 h) 1975He20 (continued)

$\gamma(^{137}La)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \ddagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α#	Comments
824.82 12	1000	835.36	9/2+	10.61	5/2+	E2		0.00293	$\alpha(P)=2.18\times10^{-7} 3$ Mult.: $\alpha(K)\exp=0.030 3$, $\alpha(L)\exp=0.0004 I$, K/L=7.4 12. $\alpha(K)=0.00250 4$; $\alpha(L)=0.000342 5$; $\alpha(M)=7.11\times10^{-5} 10$; $\alpha(N+)=1.82\times10^{-5} 3$ $\alpha(N)=1.556\times10^{-5} 22$; (0) 2.50×10^{-6} 4 (2) 1.92×10^{-7}
835.38 12	234 10	835.36	9/2+	0.0	7/2+	E2		0.00285	$\begin{array}{l} \alpha(\text{O})=2.50\times10^{-5}\ 4;\ \alpha(\text{P})=1.82\times10^{-7}\ 3\\ \text{Mult.:}\ \alpha(\text{K})\text{exp}=0.00247\ 19\ \text{if}\\ \alpha(\text{K})(254\gamma)=5.54\ (\text{M4}),\ \text{K/L}=7.9\ 7.\\ \alpha(\text{K})=0.00243\ 4;\ \alpha(\text{L})=0.000331\ 5;\\ \alpha(\text{M})=6.89\times10^{-5}\ 10;\\ \alpha(\text{N}+)=1.769\times10^{-5}\ 22;\\ \alpha(\text{O})=2.43\times10^{-6}\ 4;\\ \end{array}$
906.84 <i>16</i> 917.45 <i>17</i> 993.81 <i>21</i>	6.3 <i>11</i> 29 5 4.5 6	917.44 917.44 1004.61	9/2 ⁺ 9/2 ⁺ 11/2 ⁻	10.61 0.0 10.61	5/2 ⁺ 7/2 ⁺ 5/2 ⁺				$\alpha(P)=1.7/2\times10^{-7}/25$ Mult.: $\alpha(K)\exp=0.0022^{-3}$.
1004.49 20	51 6	1004.61	11/2-	0.0	7/2+	M2(+E3)	<0.8	0.0061 6	$\alpha(K)=0.0052 \ 5; \ \alpha(L)=0.00071 \ 5; \alpha(M)=0.000147 \ 11; \alpha(N+)=3.8\times10^{-5} \ 3 \alpha(N)=3.24\times10^{-5} \ 23; \ \alpha(O)=5.3\times10^{-6} 4; \ \alpha(P)=4.1\times10^{-7} \ 4 Mult., \delta: \ \alpha(K)exp=0.0056 \ 9 (1975He20). Additional information 2.$

[†] From 1975He20. [‡] For absolute intensity per 100 decays, multiply by 4.50×10^{-4} 23.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³⁷Ce ε decay (34.4 h) 1975He20

Decay Scheme

