		T		A	_	History		Literature Cutoff Date
	-	Туре		Author	r	Citation		Literature Cuton Date
	ł	full Evaluation	E. Brow	vne, J.	K. Tuli	NDS 108,2173 (20	07)	1-Oct-2006
Q(β ⁻)=-2717 Note: Current Additional info Other reactions ¹²⁸ Te(¹⁴ n,4np) ¹²⁸ Te(¹² C,3n), ¹³⁴ Ba(α,nγ), E ¹³⁴ Ba(α,nγ), E ¹³⁶ Ce(n,γ), E= ¹³⁶ Ce(n,γ), E= ¹³⁸ Ce(n,2n), E ¹³⁸ Ce(γ,n), E= MeV (1994)	9; S(n)=7481 evaluation ha ormation 1. s: , measured pro E=10-30 MeV. E=15-31 MeV. E=15-31 MeV. ethermal. Mea =25 MeV. Mea =14.7 MeV. I =25 MeV (200 4PaZY); E=1	.53 16; S(p)=7. s used the follow actitation function oduction σ , exci Measured isometic of asured capture σ Measured σ (199 01Ga57); E=25, 5-25 MeV (1994	17×10 ³ 6 ving Q re tation function func- tation function σ rate eric σ rate or ratios ((1996Ka 07Ko44). 30 MeV	(1999]	=-790.1 -2701 (2003Sh2 996Ka03 995TuZZ Ga57). Pa53); E≤ red isome	 11 2012Wa38 9 7481.54 167130 1).). (25 MeV (1996Be32) er σ ratios. Other: 19 	50); E=2 996Ga	2003Au03. 25 MeV (1995ToZV); E=15-30 43.
					137	Ce Levels		
				Cr	oss Refer	rence (XREF) Flags		
	A 1: B 1: C 1: D 1:	³⁷ Ce IT decay (3 ³⁷ Pr ε decay ³⁶ Ce(n,γ): E≈2 1 ³⁶ Ce(n,γ): E≈24	34.4 h) keV · keV	E F G H	¹³⁶ Ce(n,) ¹³⁶ Ce(n,) ¹³⁶ Ce(n,) ¹³⁷ Ba(³ H	y) E=thermal y) E=66 eV res y) E=136 eV res Ie,3nγ) E=27 MeV	I J	¹³⁸ Ba(α ,5n γ) E=70 MeV ¹²⁴ Sn(¹⁸ O,5n γ) E=70 MeV
E(level) ^a	J ^{π &}	T _{1/2}	XRE	EF			C	Comments
0.0	3/2+	9.0 h <i>3</i>	ABCDEF	GHIJ	$\% \varepsilon + \% \mu = 0.96$ $T_{1/2}$: ff J^{π} : atom μ from	$\beta^+=100$ 5 4 (1991Mu06) rom 1958Da13. mic beam (1976Fu06 $\gamma(\theta, H, t)$ (1991Mu06	5), μ.	ner: 0.91 15 (1989Ra17).
160.36 6	$(1/2)^+$	0.79 ns 14	BCDE		$T_{1/2}$: f J ^{π} : 160	from ¹³⁷ Pr ε decay (1) .3 γ to g.s. is M1, di	1973B rect ε	u17). feeding from ¹³⁷ Pr ($J^{\pi}=5/2^+$),
254.29 5	11/2-	34.4 h <i>3</i>	A	HIJ	%IT=9 μ =1.01 %IT: D μ : From T _{1/2} : f J ^{π} : ato:	Deduced by evaluator n $\gamma(\theta, H, t)$ 1991Mu06 rom 1958Da13. mic beam (1973In04	.79 <i>4</i> s from 5. Oth), M4	γ ray data in 1975He20. er: 0.70 <i>3</i> (1966B117,1989Ra17). to $3/2^+$.
433.97 8	$(3/2)^{+\#}$		B DE	HI	J ^π : 434	4γ is $\Delta J=(0)$, M1+E2	2.	
514.03 8	$(3/2)^{+\#}$		B DE		J ^π : 353	$\beta\gamma$ and 514 γ are M1,	E2; sy	vst for N=79 nuclei.
763.29 7	(5/2,3/2)+#		B DE		$J^{\pi}: 329$ $(J^{\pi}=$	$P\gamma$ to $(3/2)^+$ level is 1 $(5/2^+)$.	M1; di	irect ε feeding from ¹³⁷ Pr
825.78 8 836.69 8	$(1/2,3/2)^{\ddagger}$ $(5/2)^{+}$		DE B E	G	J^{π} : γ radius J^{π} : M1 resolution	ays to $3/2^+$ and $(1/2)$ γ ray to $3/2^+$ level; nances.	+ leve not se	els. een in γ -ray decay of $1/2^+$ neutron
866.68 8	(5/2,3/2)#		B DE					
927.7 3	15/2-@			HI	J ^π : E2	γ ray to $11/2^-$.		
1104.87 <i>13</i> 1144.34 <i>21</i>	3/2 [†] 13/2 ⁻		B DE	НJ	J^{π} : γ r	ay to $11/2^-$ is $\Delta J=1$,	M1+l	E2; no γ ray to levels with spin

Continued on next page (footnotes at end of table)

¹³⁷Ce Levels (continued)

E(level) ^{<i>a</i>}	J ^{π &}	XREF	Comments
			<11/2.
1147.2 4	. #	Н	
1179.59 10	(5/2 ⁺) [#]	ВЕН	J ^π : Δ J=0,1. log <i>ft</i> from 5/2 ⁺ , not observed in γ-ray decay of 1/2 ⁺ n-capture states; γ ray to (1/2) ⁺ .
1259.48 20		ΒE	
1271.37 17	3/2	BCDEFG	
1288.8 3		В	
1435.39 10		ВЕ	
1476.67 17	$(5/2^+, 3/2^+)^{\#}$	B DE	
1570.12 25		В	
1577.2 2	$(1/2)^{\ddagger}$	CDE	
1602.74 13	3/2	DEF	
1643.0 <i>3</i>	$(1/2)^{\ddagger}$	CD F	
1687.1 20	$(1/2)^{\ddagger}$	DF	
1693.35 20	(1)2) [†]	В	
1/15.2 8	$(1/2)^{\ddagger}$	DE	
1728.1 4	$(1/2)^{+}$	B	
1887.77 15	3/2†	B EF	
1909.0 5	$(1/2)^{\ddagger}$	DF	
1925.29 13	$(3/2, 5/2)^+$	В	J^{π} : 1089 γ M1,E2 to (5/2) ⁺ .
1933.57 10	3/2+†	B F	J^{π} : 1097 γ M1 to (5/2) ⁺ .
1951.69 14	3/2	B EF	
1980.4 6	$15/2^{-}$	H J	J^{n} : 836 γ (M1+E2) to 13/2 ⁻ , 1726 γ E2 to 11/2 ⁻ .
2039.3 4	19/2-	F HIJ	J^{n} : E2 γ ray to 15/2 ⁻ .
2040.6 8	$(1/2)^{\ddagger}$	DG	
2001.1 5	$(1/2)^{+}$	B	
2133.66 13	$3/2^{(+)}$	BC EF	
2142.7 5	$(1/2)^{\ddagger}$	EF	
2152.9 3		В	
2191.2 4	19/2 ^{- @}	HIJ	J^{π} : E2 γ ray to 15/2 ⁻ .
2197.7 3	(5/2+ 2/2+)#	J	
2200.7 4	(3/2, 3/2) $3/2(+)^{\dagger}$	B FFC	
2273.2017	$(1/2)^{\ddagger}$	FF	
2304.81.23	(1/2) $3/2^{(+)}$	BDF	
2308.9 6	5/2	I	
2336.2 6	(21/2)@	HI	
2347.4 3	(17/2-)	В	
2437.17	$(1/2)^{\pm}$	J	$J^{-1}: 1509\gamma (M1+E2) \text{ to } 15/2$.
2454.1 5 2466.2 8	(1/2)	J]	
2480.0 4		BI	
2490.3 6	21/2-@	НJ	J^{π} : γ rays to $19/2^{-}$ are $\Delta J=1$, M1.
2538.8 9	$(10/2^{+})$	J	I^{π} : 370 ₂ (E1) to 19/2 ⁻
2301.0 0	(17/2)	J	J = J = U + J = U + J = U + J = J = J = J = J = J = J = J = J = J

¹³⁷Ce Levels (continued)

E(level) ^a	J ^π &	XREF	Comments
2565.5 6	$(1/2)^{\ddagger}$	DEFG	
2586.8 7		I	
2703.1 6		I	
2767.7 9	$(1/2)^{4}$	F	
2812.2 8	(23/2)	HTT	$J^{*}: 322\gamma \text{ M1+E2 to } 21/2$.
2888.1 6		I	J.
2928.2 ^b 7	$(19/2^+)$	J	J^{π} : 367 γ M1+E2 to (19/+).
2972.6 7	(-)	IJ	π =(+) in 2000Zh39 is not consistent with 482 γ M1+E2 to 21/2 ⁻ .
3067.3 ^b 6	$(21/2^+)$	J	J^{π} : 505 γ M1+E2 to (19/2 ⁺), 1027 γ (E1) to (19/2 ⁻).
3128.7 8	-	J	
3225.4 ^b 5	(23/2)	HIJ	
3303.9 10	$(25/2^{-})$	J	J^{π} : 492 γ (M1+E2) to (23/2 ⁻).
3404.9 8	$(23/2^{+})$	L	$J^{*}: 33/\gamma \text{ M1+E2 to } (21/2^{+}).$
3416.1° 6	(25/2)	HIJ	
3694.4 14		J 1	
3703.3 ^b 7	$(27/2)^{@}$	T1	
3725.0 13	$(25/2^+)$]	J^{π} : 320 γ (M1+E2) to (23/2 ⁺).
3744.2 10		J	
3763.6 10		J	
3890.7 17	25/2-	J	I^{π} , 1446, F2 to 21/2 ⁻
3985 9 8	23/2	J 1	J . 1440Y E2 10 21/2 .
4115 1 ^b 11	(29/2)	1	
4173.6 7	(=>/=)	I	
4255.7 [°] 9	$(31/2)^{@}$	IJ	
4339.7 8		I	
4585.9 8		I	
4668.3 <i>19</i>	(21/2)	L	
4704.5° 12	(31/2)	J	
4/32.4° 10 5305 1° 11	$(33/2^+)^{\circ}$	LT	
5305.1 11 5270 0 <i>d</i> 12	(33/2)	ر ۲	I_{π}^{π} , 1124 σ (E1) to (21/2)
5579.9 12	(35/2)	J	$J : 1124 \gamma$ (E1) to (31/2).
5340.0^{-12}	(33/2)	J	$J : \delta 14\gamma$ (E1) 10 (55/2). $M_{-} 20(, M1) = E2 + c(25/27)$
5851.0 15 6110.9 12	(37/2)	J	J^{-1} ; 500γ M1+E2 10 ($55/2$).
6322.0^{d} 16	$(39/2^{-})$	י ר	$I^{\pi} \cdot 470 \nu M1 + F2$ to $(37/2^{-})$
6459.9 [°] 13	(3)[2])]	$3 \cdot 107 \text{ min} 22 \text{ to} (57/2).$
6930.1 ^d 19]	
7661.2 ^d 22		J	

[†] From dipole γ rays that deexcite $1/2^+$ neutron resonances, $\Delta J=1$ or 0, ε decay via $5/2^+$ parent, shell model.

[‡] From dipole γ rays that deexcite $1/2^+$ neutron resonances, not observed in ε decay via $5/2^+$ parent.

[#] From ε decay via 5/2⁺ parent, observed dipole γ rays that deexcite E(n) \approx 24 keV resonances, which include states with $J^{\pi}=3/2^{-},1/2.$ ^(a) From $\gamma(\theta)$ in $(\alpha,5n\gamma)$ and systematics in (HI,xn γ).

& J^{π} values, which are based upon primary transitions in (n, γ), are from 1981KoZW.

^{*a*} Deduced by evaluators from a least-squares fit to adopted γ -ray energies.

¹³⁷Ce Levels (continued)

- ^{*b*} Band(A): Level sequence based on $J^{\pi}=19/2^{(+)}$. ^{*c*} Band(B): Level sequence based on $J^{\pi}=31/2^{(+)}$. ^{*d*} Band(C): Level sequence based on $J^{\pi}=33/2^{(-)}$.

$\gamma(^{137}\text{Ce})$

 $E\gamma$, $I\gamma$ are from ¹³⁷Pr ε decay, from (n,γ) , or from $(^{18}O,5n\gamma)$. There are some discrepancies between ε -decay and (n,γ) data. For example, the branching ratio $I(402\gamma)/I(836\gamma)=3.6/100$ in ε decay but 10.9/100 in (n,γ) . Also it is not clear why 745 γ from 1180 level was not seen in (n,γ) in spite of being the strongest transition from this level.

Additional information 2.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
160.36	$(1/2)^+$	160.32 9	100	0.0	3/2+	M1	0.313	$\alpha(K)=0.267\ 4;\ \alpha(L)=0.0363\ 6;\ \alpha(M)=0.00759\ 11;\ \alpha(N+)=0.00198\ 3$ $\alpha(N)=0.001684\ 24;\ \alpha(O)=0.000273\ 4;\ \alpha(P)=2.06\times10^{-5}\ 3$ B(M1)(Wu)=0.0052\ 10
254.29	11/2-	254.29 5	100	0.0	3/2+	M4	7.93	$\alpha(K)=5.45 \ s; \ \alpha(L)=1.92 \ 3; \ \alpha(M)=0.445 \ 7; \ \alpha(N+)=0.1142 \ 16 \ \alpha(N)=0.0985 \ 14; \ \alpha(O)=0.01496 \ 21; \ \alpha(P)=0.000734 \ 11 \ B(M4)(W.u.)=2.28 \ 7 \ Additional information 3.$
433.97	$(3/2)^+$	273.6 5	3.4 7	160.36	$(1/2)^+$			
		433.9 2	100 9	0.0	3/2+	M1+E2	0.019 4	α (K)=0.016 3; α (L)=0.00234 17; α (M)=0.00049 3; α (N+)=0.000127 10 α (N)=0.000109 8; α (O)=1.73×10 ⁻⁵ 16; α (P)=1.2×10 ⁻⁶ 3
514.03	$(3/2)^+$	353.7 2	54 5	160.36	$(1/2)^+$	M1,E2	0.033 5	α (K)=0.028 5; α (L)=0.00426 6; α (M)=0.000900 17; α (N+)=0.000232 4 α (N)=0.000198 3; α (O)=3.13×10 ⁻⁵ 9; α (P)=2.0×10 ⁻⁶ 5
		514.0 2	100 10	0.0	3/2+	M1,E2	0.0123 23	α (K)=0.0104 21; α (L)=0.00146 17; α (M)=0.00031 4; α (N+)=8.0×10 ⁻⁵ 9 α (N)=6.8×10 ⁻⁵ 8; α (O)=1.09×10 ⁻⁵ 14; α (P)=7.7×10 ⁻⁷ 18
763.29	$(5/2,3/2)^+$	251.6 2	7.1 21	514.03	$(3/2)^+$			
		329.0 2	57 10	433.97	$(3/2)^+$	M1	0.0452	α (K)=0.0387 6; α (L)=0.00515 8; α (M)=0.001075 16; α (N+)=0.000280 4 α (N)=0.000239 4; α (O)=3.87×10 ⁻⁵ 6; α (P)=2.96×10 ⁻⁶ 5
		602.6 1	100 8	160.36	$(1/2)^+$			
		763.2 1	61 <i>3</i>	0.0	$3/2^{+}$			
825.78	(1/2, 3/2)	665.5 [#] 1		160.36	$(1/2)^+$			
		825.7 [#] 1		0.0	$3/2^{+}$			
836.69	$(5/2)^+$	402.4 2	3.6 4	433.97	$(3/2)^+$	M1,E2	0.023 4	α (K)=0.020 4; α (L)=0.00291 14; α (M)=0.000613 24; α (N+)=0.000158 8 α (N)=0.000135 6; α (O)=2.15×10 ⁻⁵ 15; α (P)=1.4×10 ⁻⁶ 4
		676.4 4	0.7 4	160.36	$(1/2)^+$			
		836.7 1	100 10	0.0	3/2+	M1	0.00443	α (K)=0.00381 6; α (L)=0.000490 7; α (M)=0.0001021 15; α (N+)=2.66×10 ⁻⁵ 4
								$\alpha(N)=2.27\times10^{-5} 4; \ \alpha(O)=3.69\times10^{-6} 6; \ \alpha(P)=2.87\times10^{-7} 4$
866.68	(5/2, 3/2)	706.4 2	18 3	160.36	$(1/2)^+$			
	15/2-	866.5 1	100 4	0.0	3/2*		0.00.100	
927.7	15/2	6/3.3 3	100	254.29	11/2	E2	0.00499	$\alpha(\mathbf{K})=0.00422$ 6; $\alpha(\mathbf{L})=0.000610$ 9; $\alpha(\mathbf{M})=0.0001283$ 18; $\alpha(\mathbf{N}+)=3.31\times10^{-5}$ 5
								$\alpha(N)=2.83\times10^{-5} 4; \ \alpha(O)=4.49\times10^{-6} 7; \ \alpha(P)=3.02\times10^{-7} 5$
1104.87	3/2	590.3 2	59 <i>5</i>	514.03	$(3/2)^+$			

From ENSDF

$\gamma(^{137}\text{Ce})$ (continued)

E _i (level)	J^{π}_i	E_{γ}	I_{γ}	E_f J_f^{π}	Mult.	α^{\ddagger}	Comments
1104.87	3/2	671.2 <i>3</i> 944.6 <i>6</i> 1105.2 <i>2</i>	37 5 10 5 100 <i>10</i>	$\begin{array}{c} 433.97 & (3/2)^+ \\ 160.36 & (1/2)^+ \\ 0.0 & 3/2^+ \end{array}$			
1144.34	13/2-	890.1 2	100	254.29 11/2-	M1+E2	0.0032 7	$\alpha(K)=0.0028 \ 6; \ \alpha(L)=0.00036 \ 6; \ \alpha(M)=7.6\times10^{-5} \ 13; \alpha(N+)=2.0\times10^{-5} \ 4 \alpha(N)=1.7\times10^{-5} \ 3; \ \alpha(O)=2.7\times10^{-6} \ 5; \ \alpha(P)=2.0\times10^{-7} \ 5$
1147.2 1179.59	(5/2+)	713.2 4 416.3 4 665.2 2 745.4 2 1019.2 2 1180.0 2	100 43 5 62 5 100 5 23 4 43 6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	D		
1259.48		825.6 2 1258.9 5	100 9 22 9	$\begin{array}{ccc} 433.97 & (3/2)^+ \\ 0.0 & 3/2^+ \end{array}$			
1271.37	3/2	1110.9 2 1271.6 <i>3</i>	100 2 18.6 <i>19</i>	$160.36 (1/2)^+ 0.0 3/2^+$			
1288.8		1128.6 <i>3</i> 1288.2 <i>5</i>	100 <i>21</i> 32 <i>11</i>	$160.36 (1/2)^+ 0.0 3/2^+$			
1337.4 1435.39		903.4 <i>4</i> 921.2 <i>1</i> 1001.6 <i>1</i>	100 100 6 68 5	$\begin{array}{c} 433.97 & (3/2)^+ \\ 514.03 & (3/2)^+ \\ 433.97 & (3/2)^+ \end{array}$	D+Q		
1476.67	(5/2+,3/2+)	1435.2 ⁽²⁰⁾ 5 609.9 4 713.3 2 963.2 5 1476.7 5	12 2 48 8 100 8 8 <i>I</i> 24 <i>4</i>	$\begin{array}{cccc} 0.0 & 3/2^+ \\ 866.68 & (5/2,3/2) \\ 763.29 & (5/2,3/2)^+ \\ 514.03 & (3/2)^+ \\ 0.0 & 3/2^+ \end{array}$			
1570.12		734.2 [@] 4 1056.7 <i>3</i> 1569.0 <i>4</i>	31 8 100 <i>15</i> 31 8	$836.69 (5/2)^{+} 514.03 (3/2)^{+} 0.0 3/2^{+} $			
1602.74 1693.35	3/2	1088.7 <i>1</i> 856.4 <i>3</i> 1260.1 <i>5</i> 1533.0 <i>4</i>	100 61 15 31 15 23 8 100 15	$514.03 (3/2)^{+} 836.69 (5/2)^{+} 433.97 (3/2)^{+} 160.36 (1/2)^{+} 0.0 3/2)^{+} $			
1800.51		695.3 <i>4</i> 695.3 <i>5</i> 933.5 <i>2</i> 1286.5 <i>2</i> 1366.2 <i>5</i> 1800 9 <i>2</i>	8 3 38 4 28 3 8 3	$\begin{array}{cccc} 0.0 & 5/2 \\ 1104.87 & 3/2 \\ 866.68 & (5/2,3/2) \\ 514.03 & (3/2)^+ \\ 433.97 & (3/2)^+ \\ 0.0 & 3/2^+ \end{array}$			
1887.77	3/2	1125.0 <i>6</i> 1372.8 <i>6</i>	77 <i>14</i> 17 6	$\begin{array}{ccc} 0.0 & 5/2 \\ 763.29 & (5/2,3/2)^{+} \\ 514.03 & (3/2)^{+} \end{array}$			

From ENSDF

$\gamma(^{137}\text{Ce})$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}	I_{γ}	E_f	J_f^π	Mult.	α^{\ddagger}	Comments
1887.77	3/2	1453.3 <i>3</i>	66 9	433.97	$(3/2)^+$			
	,	1727.6 2	43 9	160.36	$(1/2)^+$			
		1887.9 <i>3</i>	100 20	0.0	$3/2^{+}$			
1925.29	(3/2,5/2)+	1088.6 <i>1</i>	100 5	836.69	(5/2)+	M1,E2	0.0020 4	$\alpha(K)=0.0018 \ 3; \ \alpha(L)=0.00023 \ 4; \ \alpha(M)=4.7\times10^{-5} \ 8; \ \alpha(N+)=1.23\times10^{-5} \ 20$
		1764.9.7	2211	160.26	(1/2)+			$\alpha(N)=1.05\times10^{-5}$ 1/; $\alpha(O)=1.7\times10^{-5}$ 3; $\alpha(P)=1.30\times10^{-7}$ 25
1022 57	2/2+	1/64.8 /	3.2 11	100.30	$(1/2)^{+}$			
1933.57	3/2	1066 9 2	9.8 22	066 60	$(5/2^{\circ})$			
		1000.8 5	0.3 22	800.08	(3/2, 3/2)	1/1	0.00005	$(T_{1}) = 0.00000 \ (T_{1}) = 0.0000000 \ (T_{1}) = 0.0000000 \ (T_{1}) = 0.00000000 \ (T_{1}) = 0.0000000000000000000000000000000000$
		1096.9 1	100 /	830.09	(5/2)	MI	0.00235	$\begin{array}{l} \alpha(\mathbf{K}) = 0.00202 \ 3; \ \alpha(\mathbf{L}) = 0.000258 \ 4; \ \alpha(\mathbf{M}) = 5.37 \times 10^{-5} \ 8; \\ \alpha(\mathbf{N}+) = 1.402 \times 10^{-5} \ 20 \\ \alpha(\mathbf{N}) = 1.192 \times 10^{-5} \ 17; \ \alpha(\mathbf{O}) = 1.94 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.517 \times 10^{-7} \end{array}$
		1170 7 2	20.3	7(2.00	(5/0, 2/0) +			22
		11/0.7 2 1418.9 2	29 3 37 2	763.29 514.03	$(3/2,3/2)^+$ $(3/2)^+$			
		1774.3 [@] 8	3.3 21	160.36	$(1/2)^+$			
		1934.5 5	9.8 22	0.0	3/2+			
1951.69	3/2	1437.3 2	100 7	514.03	$(3/2)^+$			
		1517.5 2	25 4	433.97	$(3/2)^+$			
		1792.6 4	10 3	160.36	$(1/2)^+$			
		1952.6 4	12 4	0.0	3/2+			
1980.4	15/2-	836.1 [†]	100	1144.34	13/2-	(M1+E2)	0.0037 8	α (K)=0.0032 7; α (L)=0.00042 7; α (M)=8.8×10 ⁻⁵ 15; α (N+)=2.3×10 ⁻⁵ 4
								$\alpha(N)=2.0\times10^{-5}$ 4; $\alpha(O)=3.2\times10^{-6}$ 6; $\alpha(P)=2.4\times10^{-7}$ 6
		1052.6	52	927 7	15/2-	(M1+F2)	0 0022 4	$\alpha(K) = 0.0019.4; \alpha(L) = 0.00025.4; \alpha(M) = 5.1 \times 10^{-5}.8;$
		1052.0	52	121.1	13/2	(1011 122)	0.0022 4	$\alpha(N_{\perp}) = 1.33 \times 10^{-5} 22$
								$u(N+)=1.55\times10 22$
		1-0-5-0	7 0				0.44.40-4	$\alpha(N) = 1.15 \times 10^{-7} P$; $\alpha(O) = 1.8 \times 10^{-5} S$; $\alpha(P) = 1.4 \times 10^{-5} S$
		1726.2	59	254.29	11/2-	E2	8.44×10 ⁻⁴	$\alpha(K)=0.000584\ 9;\ \alpha(L)=7.40\times10^{-5}\ 11;\ \alpha(M)=1.537\times10^{-5}\ 22;\ \alpha(N+)=0.0001708\ 24$
								α (N)=3.41×10 ⁻⁶ 5; α (O)=5.53×10 ⁻⁷ 8; α (P)=4.25×10 ⁻⁸ 6; α (IPF)=0.0001668 24
2039.3	19/2-	1111.5 3	100	927.7	15/2-	E2	1.61×10^{-3}	$\alpha(K)=0.001382\ 20;\ \alpha(L)=0.000183\ 3;\ \alpha(M)=3.81\times10^{-5}\ 6;\ \alpha(N+_{\star})=1.046\times10^{-5}\ 15$
								$\alpha(N) = 8.44 \times 10^{-6} \ I2; \ \alpha(O) = 1.361 \times 10^{-6} \ I9; \ \alpha(P) = 1.004 \times 10^{-7}$ $I_4: \ \alpha(PE) = 5.61 \times 10^{-7} \ I_0$
2113.63		1246.5.3	43 7	866.68	(5/2, 3/2)			11, u(iii)=3.01×10 10
2113.03		1276.8.2	96 11	836.69	$(5/2)^+$			
		1350.2 6	25 7	763.29	$(5/2)^+$			
		1679.8 2	82 11	433.97	$(3/2)^+$			
		10/2:0 2	02 11	100.01	(-/-)			

7

					A	dopted Leve	ls, Gammas (c	continued)
						$\gamma(^{137})$	Ce) (continued	<u>)</u>
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	\mathbf{E}_{f}	J_f^π	Mult.	α^{\ddagger}	Comments
2113.63		2114.4 4	100 19	0.0	3/2+			
2133.66	3/2 ⁽⁺⁾	699.4 <i>5</i> 953.6 <i>3</i>	10 5 17.2 <i>17</i>	1435.39 1179.59	(5/2+)			
		1028.9 [@] 5 1619.3 2	8.6 <i>17</i> 57 <i>9</i>	1104.87 514.03	3/2 $(3/2)^+$			
		1699.8 2	100 10	433.97	$(3/2)^+$			
		1974.2 [@] 6	5.2 17	160.36	$(1/2)^+$			
2152.0		2134.5 4	40 9	0.0	$3/2^+$			
2132.9		1639.0 6	100 12	514.03	$(3/2)^+$			
		1718.4 7	24 12	433.97	$(3/2)^+$			
		1992.2 7	12 6	160.36	$(1/2)^+$			
2101.2	10/2-	2153.0 5	65 <i>18</i> 100	0.0	3/2"	F2	1.26×10^{-3}	$\alpha(\mathbf{K}) = 0.001066.15; \alpha(\mathbf{L}) = 0.0001380.20; \alpha(\mathbf{M}) = 2.80 \times 10^{-5}.4;$
2191.2	19/2	1203.4 3	100	921.1	13/2	62	1.20×10	$\alpha(\mathbf{N})=0.001000\ 15,\ \alpha(\mathbf{L})=0.0001389\ 20,\ \alpha(\mathbf{M})=2.09\times10^{-4},\ \alpha(\mathbf{N}+)=2.24\times10^{-5}\ 4$
								$\alpha(N)=6.41\times10^{-6} \ 9; \ \alpha(O)=1.035\times10^{-6} \ 15; \ \alpha(P)=7.75\times10^{-8} \ 11; \ \alpha(IPF)=1.493\times10^{-5} \ 22$
2197.7		1054.6	100	1144.34	$13/2^{-}$			
2275.20	$3/2^{(+)}$	1511.9 <i>3</i>	100 22	763.29	$(5/2,3/2)^+$			
		1841.1 2	33 17	433.97	$(3/2)^+$			
		2115.4 5	72 22	160.36	$(1/2)^+$			
2304.81	3/2(+)	1200.0.5	59 11 67 22	1104.87	3/2			
2304.01	5/2	1467.6 4	22 22	836.69	$(5/2)^+$			
		1871.1 4	100 22	433.97	$(3/2)^+$			
		2145.4 7	44 22	160.36	$(1/2)^+$			
2308.0		2304.4 7	56 22 100	0.0	3/2*			
2336.2	(21/2)	138.9 3	100	2039.3	19/2	D		
2347.4	(=-(=)	1833.6 5	50 25	514.03	$(3/2)^+$	~		
		1912.9 6	100 33	433.97	$(3/2)^+$			
		2186.9 9	25 8	160.36	$(1/2)^+$			
2437 1	$(17/2^{-})$	2547.00 456.7	15 25	0.0 1980 4	$\frac{5}{2}$			
21J/11	(1//2)	1509.3	100	927.7	$15/2^{-}$	(M1+E2)	0.00109 14	$\alpha(K)=0.00087$ 12; $\alpha(L)=0.000110$ 14; $\alpha(M)=2.3\times10^{-5}$ 3:
						()		α (N+)=8.75×10 ⁻⁵ 21
								α (N)=5.1×10 ⁻⁶ 7; α (O)=8.3×10 ⁻⁷ 11; α (P)=6.4×10 ⁻⁸ 10; α (IPF)=8.15×10 ⁻⁵ 15
2466.2		267.9 [†]		2197.7				

 ∞

 $^{137}_{58}\mathrm{Ce}_{79}$ -8

From ENSDF

 $^{137}_{58}\mathrm{Ce}_{79}$ -8

I

γ (¹³⁷Ce) (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	J_f^π	Mult.	α^{\ddagger}	Comments
2466.2 2480.0		486 [†] 1300.4 6 1612.9 <i>10</i> 1966.7 8 2320.3 8 2479.2 6	100 33 17 100 33 100 33 50 17 50 17	1980.4 1179.59 866.68 514.03 160.36 0.0	$\begin{array}{c} 15/2^{-} \\ (5/2^{+}) \\ (5/2,3/2) \\ (3/2)^{+} \\ (1/2)^{+} \\ 3/2^{+} \end{array}$			
2490.3	21/2-	298.4 [†]	29	2191.2	19/2-	M1+E2	0.054 5	α (K)=0.045 6; α (L)=0.0072 6; α (M)=0.00153 14; α (N+)=0.00039 3 α (N)=0.00034 3; α (O)=5.25×10 ⁻⁵ 25; α (P)=3.2×10 ⁻⁶ 6
		450.0 [†]	100	2039.3	19/2-	M1+E2	0.017 3	$\begin{aligned} &\alpha(\text{K}) = 0.015 \ 3; \ \alpha(\text{L}) = 0.00211 \ 18; \ \alpha(\text{M}) = 0.00044 \ 4; \\ &\alpha(\text{N}+) = 0.000115 \ 10 \\ &\alpha(\text{N}) = 9.8 \times 10^{-5} \ 8; \ \alpha(\text{O}) = 1.57 \times 10^{-5} \ 16; \ \alpha(\text{P}) = 1.08 \times 10^{-6} \ 25 \end{aligned}$
2538.8		48.6 [†]	100	2490.3	$21/2^{-}$			
2561.6	(19/2 ⁺)	370.4 [†]	100	2191.2	19/2-	(E1)	0.00733	$\alpha(K)=0.00630 \ 9; \ \alpha(L)=0.000815 \ 12; \ \alpha(M)=0.0001694 \ 24; \ \alpha(N+)=4.38\times10^{-5} \ 7 \ \alpha(N)=2.74\times10^{-5} \ 6; \ \alpha(Q)=6.00\times10^{-6} \ 0; \ \alpha(D)=4.22\times10^{-7} \ 6$
2586.8		278.3 5	100	2308.9		D		$u(\mathbf{N}) = 3.74 \times 10^{-6}$ 0, $u(\mathbf{O}) = 0.00 \times 10^{-6}$ 9, $u(\mathbf{F}) = 4.53 \times 10^{-6}$ 0
2703.1		505.4 3	100	2197.7		D		
2812.2	(23/2)-	322.3†	100	2490.3	21/2-	M1+E2	0.043 5	$\alpha(K)=0.036\ 5;\ \alpha(L)=0.00565\ 23;\ \alpha(M)=0.00120\ 7;$ $\alpha(N+)=0.000307\ 13$
		+						α (N)=0.000263 <i>12</i> ; α (O)=4.14×10 ⁻⁵ <i>8</i> ; α (P)=2.6×10 ⁻⁶ <i>6</i>
2888-1		772.3	100	2039.3	19/2-			
2928.2	(19/2+)	366.8 [†]	52	2561.6	(19/2 ⁺)	M1+E2	0.030 4	$\alpha(K)=0.025 \ 4; \ \alpha(L)=0.00382 \ 8; \ \alpha(M)=0.000807 \ 12; \ \alpha(N+)=0.000208 \ 5$
								$\alpha(N)=0.000178 \ 3; \ \alpha(O)=2.81\times10^{-5} \ 11; \ \alpha(P)=1.8\times10^{-6} \ 4$
		461.5	100	2466.2				
		491.2 [†]		2437.1	$(17/2^{-})$			
2972.6	(-)	482.0 [†]	100	2490.3	21/2-	M1+E2	0.014 3	α (K)=0.0123 24; α (L)=0.00175 18; α (M)=0.00037 4; α (N+)=9.5×10 ⁻⁵ 10
		.L.						$\alpha(N)=8.1\times10^{-5} 8; \alpha(O)=1.29\times10^{-5} 15; \alpha(P)=9.0\times10^{-7} 21$
3067.3	$(21/2^+)$	138.7	35	2928.2	$(19/2^+)$			
		505.5	35	2561.6	(19/2 ⁺)	M1+E2	0.0128 24	$\alpha(\mathbf{K})=0.0109\ 22;\ \alpha(\mathbf{L})=0.00153\ 17;\ \alpha(\mathbf{M})=0.00032\ 4;\\ \alpha(\mathbf{N}+)=8.3\times10^{-5}\ 10$
		875.9 [†]	29	2191.2	19/2-	(E1)	1.09×10 ⁻³	$\begin{aligned} \alpha(N) &= 7.1 \times 10^{-5} \ \&; \ \alpha(O) &= 1.14 \times 10^{-5} \ I5; \ \alpha(P) &= 8.0 \times 10^{-7} \ I9 \\ \alpha(K) &= 0.000941 \ I4; \ \alpha(L) &= 0.0001178 \ I7; \ \alpha(M) &= 2.44 \times 10^{-5} \ 4; \\ \alpha(N+) &= 6.35 \times 10^{-6} \ 9 \\ \alpha(N) &= 5.41 \times 10^{-6} \ \&; \ \alpha(O) &= 8.76 \times 10^{-7} \ I3; \ \alpha(P) &= 6.68 \times 10^{-8} \ I0 \end{aligned}$

9

						Adopte	d Levels, Gam	mas (continued)
							$\gamma(^{137}\text{Ce})$ (co	ntinued)
E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments
3067.3	(21/2 ⁺)	1027.5 [†]	100	2039.3 19	0/2-	(E1)	8.03×10 ⁻⁴	$\alpha(K)=0.000694 \ 10; \ \alpha(L)=8.64\times10^{-5} \ 12; \ \alpha(M)=1.79\times10^{-5} \ 3; \\ \alpha(N+)=4.66\times10^{-6} \ 7 \\ \alpha(N)=3.96\times10^{-6} \ 6; \ \alpha(O)=6.43\times10^{-7} \ 9; \ \alpha(P)=4.93\times10^{-8} \ 7 \\ \alpha(P)=4.93\times10^{-8} \ 10^{-8} \ 10^{-8} \ 10^{-8$
3128.7		937.2	100	2191.2 19	$1/2^{-1}$			
3225.4	(23/2)	96.4	4.3	3128.7	/-			
022011	(=0/=)	157	60.0	3067.3 (2)	$1/2^{+}$)			
		337.7 5	42 21	2888.1	-/-)	D		
		522.2 3	22 6	2703.1		Q		
		686.6	23.4	2538.8		Q		
		734.9 3	100 10	2490.3 21	$/2^{-}$	D		
		889.5 5 1027 6 3	77	2330.2 (2)	1/2)	D		
3303.9	(25/2 ⁻)	491.6 [†]	100	2812.2 (23	3/2)-	(M1+E2)	0.0138 25	α (K)=0.0117 23; α (L)=0.00165 17; α (M)=0.00035 4; α (N+)=9.0×10 ⁻⁵ 10
								$\alpha(N)=7.7\times10^{-5} 8$; $\alpha(O)=1.23\times10^{-5} 15$; $\alpha(P)=8.6\times10^{-7} 20$
3404.9	$(23/2^+)$	276.2	16	3128.7				
		337.5†	100	3067.3 (2)	1/2+)	M1+E2	0.038 5	$\alpha(K)=0.032\ 5;\ \alpha(L)=0.00491\ 12;\ \alpha(M)=0.00104\ 4;\ \alpha(N+)=0.000267\ 6$ $\alpha(N)=0.000229\ 7;\ \alpha(Q)=3\ 60\times10^{-5}\ 6;\ \alpha(P)=2\ 3\times10^{-6}\ 5$
3416.1	(25/2)	190.8 3	100 10	3225.4 (2)	3/2)	D		
0 11011	(=0/=)	443.5 3	10.2	2972.6 (=))	D		
3684.4		279.3	100	3404.9 (2)	$3/2^+$)	_		
		459.1		3225.4 (2)	3/2)			
3694.4		390.5	100	3303.9 (2	$5/2^{-}$)			
3703.3	(27/2)	287.2 3	100	3416.1 (25	5/2)	D		
3725.0	(25/2+)	320.1 [†]	100	3404.9 (23	3/2+)	(M1+E2)	0.044 5	$\alpha(K)=0.037$ 5; $\alpha(L)=0.0058$ 3; $\alpha(M)=0.00122$ 7; $\alpha(N+)=0.000314$ 14
								α (N)=0.000269 <i>13</i> ; α (O)=4.23×10 ⁻⁵ <i>9</i> ; α (P)=2.7×10 ⁻⁶ <i>6</i>
3744.2		1253.9	100	2490.3 21	/2-			
3763.6		1273.3	100	2490.3 21	/2-			
3890.7		165.7	100	3725.0 (25	5/2+)			
3936.1	$25/2^{-}$	172.6		3763.6				
		192.0		3744.2				
		1445.9 [†]	100	2490.3 21	/2-	E2	1.01×10^{-3}	α (K)=0.000817 <i>12</i> ; α (L)=0.0001051 <i>15</i> ; α (M)=2.19×10 ⁻⁵ <i>3</i> ; α (N+)=6.52×10 ⁻⁵ <i>10</i>

10

L

					Adop	ted Levels, Ga	mmas (continued)
						$\gamma(^{137}\text{Ce})$ (c	continued)
E _i (level)	${ m J}^{\pi}_i$	E_{γ}	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	Comments
							$\alpha(K)=0.000817 \ 12; \ \alpha(L)=0.0001051 \ 15; \ \alpha(M)=2.19\times10^{-5} \ 3; \ \alpha(N+)=6.52\times10^{-5} \ 10$
							α (N)=4.84×10 ⁻⁶ 7; α (O)=7.85×10 ⁻⁷ 11; α (P)=5.94×10 ⁻⁸ 9; α (IPF)=5.95×10 ⁻⁵ 9
3985.9		49.8 [†]		3936.1 25/2-			
		301.4†	100	3684.4	M1+E2	0.052 5	α (K)=0.044 6; α (L)=0.0070 5; α (M)=0.00148 13; α (N+)=0.00038 3 α (N)=0.000325 25; α (O)=5.09×10 ⁻⁵ 22; α (P)=3.1×10 ⁻⁶ 6
		681.8 [†]	11	3303.9 (25/2-)		
4115.1	(29/2)	411.7 [†]	100	3703.3 (27/2)	M1+E2	0.022 4	α (K)=0.019 4; α (L)=0.00272 15; α (M)=0.00057 3; α (N+)=0.000148 9 α (N)=0.000127 7; α (O)=2.01×10 ⁻⁵ 15; α (P)=1.4×10 ⁻⁶ 3
4173.6		470.3 <i>3</i>	100	3703.3 (27/2)	D		
4255.7	(31/2)	269.7 [†]	50	3985.9	E2	0.0684	$ \begin{array}{l} \alpha(\mathrm{K}) = 0.0543 \ 8; \ \alpha(\mathrm{L}) = 0.01112 \ 16; \ \alpha(\mathrm{M}) = 0.00240 \ 4; \ \alpha(\mathrm{N}+) = 0.000605 \ 9 \\ \alpha(\mathrm{N}) = 0.000522 \ 8; \ \alpha(\mathrm{O}) = 7.89 \times 10^{-5} \ 11; \ \alpha(\mathrm{P}) = 3.52 \times 10^{-6} \ 5 \end{array} $
		552.5†	100	3703.3 (27/2)	E2	0.00825	α (K)=0.00692 <i>10</i> ; α (L)=0.001053 <i>15</i> ; α (M)=0.000222 <i>4</i> ; α (N+)=5.71×10 ⁻⁵ 8
							$\alpha(N)=4.89\times10^{-5}$ 7; $\alpha(O)=7.71\times10^{-6}$ 11; $\alpha(P)=4.90\times10^{-7}$ 7
4339.7		166.1 3	100	4173.6	D		
4383.9		412.3 3	100	41/3.0	D		
4008.3	(21/2)	///.0 500 4	100	3890.7		0.0007.17	$(T_{1}) = 0.0074$ 15. $(T_{1}) = 0.00102$ 14. $(T_{1}) = 0.00021$ 2. $(T_{1}) = 5$
4704.5	(31/2)	589.4	100	4115.1 (29/2)	(MI+E2)	0.0087 17	$\alpha(\mathbf{K})=0.0074$ 15; $\alpha(\mathbf{L})=0.00102$ 14; $\alpha(\mathbf{M})=0.00021$ 3; $\alpha(\mathbf{N}+)=5.5\times10^{-5}$
4700.4	(22/2+)	4767	100	1055 7 (01/0)	D		$\alpha(N)=4.7\times10^{-5}$ /; $\alpha(O)=7.6\times10^{-6}$ 12; $\alpha(P)=5.4\times10^{-6}$ 13
4/32.4	$(33/2^{+})$	476.7 3	100	4255.7 (31/2)	D	0.0002.10	(II) 0.0070 IC (I.) 0.00110 IF (A.D. 0.00022 A (AL)) C.0. 10 ⁻⁵
5305.1	(35/2+)	572.8	100	4732.4 (33/21) M1+E2	0.0093 18	$\alpha(K)=0.0079$ 16; $\alpha(L)=0.00110$ 15; $\alpha(M)=0.00023$ 3; $\alpha(N+)=6.0\times10^{-9}$
		+					α (N)=5.1×10 ⁻⁵ 7; α (O)=8.1×10 ⁻⁶ 12; α (P)=5.8×10 ⁻⁷ 14
		600.6		4704.5 (31/2)		4	
5379.9	(33/2)	1124.1	100	4255.7 (31/2)	(E1)	6.86×10^{-4}	α (K)=0.000588 9; α (L)=7.30×10 ⁻⁵ 11; α (M)=1.511×10 ⁻⁵ 22; α (N+)=9.28×10 ⁻⁶ 13
							α (N)=3.35×10 ⁻⁶ 5; α (O)=5.44×10 ⁻⁷ 8; α (P)=4.19×10 ⁻⁸ 6; α (IPF)=5.34×10 ⁻⁶ 8
5546.0	$(35/2^{-})$	166.0	35	5379.9 (33/2)			
		813.7 [†]	100	4732.4 (33/2+) (E1)	1.26×10^{-3}	α (K)=0.001089 <i>16</i> ; α (L)=0.0001366 <i>20</i> ; α (M)=2.83×10 ⁻⁵ <i>4</i> ; α (N+)=7.36×10 ⁻⁶ <i>11</i>
							α (N)=6.27×10 ⁻⁶ 9; α (O)=1.016×10 ⁻⁶ 15; α (P)=7.71×10 ⁻⁸ 11
5851.6	(37/2 ⁻)	305.6 [†]	100	5546.0 (35/2-) M1+E2	0.050 5	α (K)=0.042 5; α (L)=0.0067 5; α (M)=0.00141 11; α (N+)=0.000363 23 α (N)=0.000311 22; α (O)=4.88×10 ⁻⁵ 19; α (P)=3.0×10 ⁻⁶ 6

11

L

γ (¹³⁷Ce) (continued)

E _i (level)	\mathbf{J}_i^π	Eγ	I_{γ}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α^{\ddagger}	Comments
5851.6	(37/2 ⁻)	546.5 [†]	23	5305.1 (35/2+)			
6110.9		805.8	100	5305.1 (35/2+)			
		1378.6		4732.4 (33/2+)			
6322.0	(39/2 ⁻)	470.4 [†]	100	5851.6 (37/2 ⁻)	M1+E2	0.015 3	α (K)=0.0131 25; α (L)=0.00187 18; α (M)=0.00039 4; α (N+)=0.000102 10 α (N)=8.7×10 ⁻⁵ 8; α (O)=1.38×10 ⁻⁵ 15; α (P)=9.6×10 ⁻⁷ 22
6459.9		349.0 [†]	100	6110.9	M1+E2	0.035 5	α (K)=0.029 5; α (L)=0.00443 7; α (M)=0.000937 22; α (N+)=0.000241 4 α (N)=0.000206 4; α (O)=3.26×10 ⁻⁵ 8; α (P)=2.1×10 ⁻⁶ 5
		1154.8		5305.1 (35/2+)			
6930.1		608.1 [†]	100	6322.0 (39/2 ⁻)			
7661.2		731.1 [†]	100	6930.1			

[†] From 124 Sn(18 O,5n γ).

^{\ddagger} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Multiply placed.
@ Placement of transition in the level scheme is uncertain.

12

Level Scheme

Intensities: Relative photon branching from each level

¹³⁷₅₈Ce₇₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Ş		
Į.		
95/2 ⁻) & C C C C C C C C C C C C C C C C C C	3303.0	
	2005.4	
	5225.4	
	3128.7	
	3067.3	
	2972.6	
	2928.2	
3/2)-	2812.2	
	2703.1	
	<u>x</u> <u>x</u> <u>2586.8</u>	
	\sim	
	$-\frac{1}{2}$	
	<u>ک</u>	
	2437.1	
	2330.2	
	2197.7	
2 ¥ ¥ ¥ ¥	2191.2	
<u>∀2[−]</u> <u>¥</u> <u>¥</u> <u>¥</u>	2039.3	
2 ⁺)	1179.59	
/2 ⁻	927.7	
2,5/2)	₩ 866.68	
/2) ⁺	514.03	
/2) ⁺	160.36	0.79 r
2^+	0.0	90h
		, ,,,,,,,
¹³⁷ 50 Ce ₇₀		
58 - 19		

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

¹³⁷₅₈Ce₇₉

¹³⁷₅₈Ce₇₉

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

¹³⁷₅₈Ce₇₉

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹³⁷₅₈Ce₇₉

