¹³⁸Ba(α,5nγ) E=70 MeV 1978Mu09

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 108,2173 (2007)	1-Oct-2006

Additional information 1. Other: $E(\alpha)=52$ MeV (1977Lu04). For ¹³⁵Ba(α ,2n γ) at E=25 MeV see 1984BaZN. Measured: γ , $\gamma\gamma$, $\gamma(\theta)$ (1978Mu09,1977Lu04).

¹³⁷Ce Levels

 $\gamma(^{137}\text{Ce})$

E(level)	$J^{\pi \dagger}$	T _{1/2}	E(level)	$J^{\pi \dagger}$	E(level)	$J^{\pi \dagger}$	T _{1/2}
0.0	$3/2^{+}$	9.0 h	2335.7	(21/2)	3416	(25/2)	
254.3	$11/2^{-}$	34.4 h	2489.0	$21/2^{-}$	3703	(27/2)	
434.0	$(3/2)^+$		2587.5		4173		
927.6	$15/2^{-}$		2702.2		4255	(31/2)	5 ns 2
2039.1	$19/2^{-}$		2811.6	$(23/2)^{-}$	4339		
2191.0	$19/2^{-}$		2889.3		4585		
2196.8?	$(21/2^+)$		2970.7		4732	(33/2)	
2309.2			3225	(23/2)			

[†] From $\gamma(\theta)$, systematics of (HI,xn γ), and adopted values.

E_{γ}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.	α^{\ddagger}	Comments
138.9 <i>3</i>	0.37 7	2335.7	(21/2)	2196.8?	$(21/2^+)$	D		Mult.: $A_2 = -0.21$ 5, $A_4 = -0.07$ 8.
157.7 [#] 3	0.84 17	2196.8?	$(21/2^+)$	2039.1	19/2-	D		Placement on level scheme is uncertain. See 2000Zh39.
								Mult.: $A_2 = -0.14 \ 3$, $A_4 = -0.05 \ 5$.
166.1 <i>3</i>	0.76 23	4339		4173				Mult.: $A_2 = +0.03$ 6, $A_4 = -0.08$ 9.
190.8 <i>3</i>	2.01 20	3416	(25/2)	3225	(23/2)	D		Mult.: $A_2 = -0.16 4$, $A_4 = -0.06 6$.
254.3 <i>3</i>		254.3	$11/2^{-}$	0.0	$3/2^{+}$			
270.1 5	0.57 11	2309.2		2039.1	19/2-			Mult.: $A_2 = +0.07 4$, $A_4 = -0.03 6$.
278.3 5	0.13 4	2587.5		2309.2		D		Mult.: $A_2 = -0.35$ 9, $A_4 = +0.02$ 14.
^x 285.5 [†]	0.89 6							
287.2 3	2.24 22	3703	(27/2)	3416	(25/2)	D		Mult.: $A_2 = -0.20 4$, $A_4 = -0.06 6$.
298.1 <i>3</i>	1.24 12	2489.0	$21/2^{-1}$	2191.0	19/2-	D		Mult.: $A_2 = -0.14$ 3, $A_4 = -0.05$ 5.
301.8 5	0.18 5	2889.3		2587.5				
322.5 <i>3</i>	0.84 8	2811.6	$(23/2)^{-}$	2489.0	$21/2^{-}$	D		Mult.: $A_2 = -0.22$ 6, $A_4 = -0.09$ 9.
337.7 5	0.56 28	3225	(23/2)	2889.3		D		Mult.: $A_2 = -0.23 5$, $A_4 = -0.07 8$.
^x 350.7	0.44 7							
412.3 <i>3</i>	0.17 4	4585		4173		D		Mult.: $A_2 = -0.03 \ 12$, $A_4 = +0.13 \ 18$.
434.0	0.40 8	434.0	$(3/2)^+$	0.0	$3/2^{+}$			
443.5 <i>3</i>	0.20 4	3416	(25/2)	2970.7		D		Mult.: $A_2 = -0.40 \ 12$, $A_4 = +0.15 \ 18$.
449.8 <i>3</i>	4.00 32	2489.0	$21/2^{-}$	2039.1	19/2-	D		Mult.: $A_2 = -0.24 \ 4$, $A_4 = -0.05 \ 6$.
470.3 <i>3</i>	1.06 19	4173		3703	(27/2)	D		Mult.: $A_2 = -0.39 4$, $A_4 = -0.07 6$.
476.7 <i>3</i>	1.00 15	4732	(33/2)	4255	(31/2)	D		Mult.: $A_2 = -0.38 \ 4$, $A_4 = -0.04 \ 6$.
481.8 <i>3</i>	0.49 20	2970.7		2489.0	$21/2^{-}$	D		Mult.: $A_2 = -0.47 \ 12, \ A_4 = +0.04 \ 18.$
505.4 <i>3</i>	0.58 25	2702.2		2196.8?	$(21/2^+)$	D		Mult.: $A_2 = -0.21$ 6, $A_4 = -0.09$ 9.
522.2 <i>3</i>	0.29 8	3225	(23/2)	2702.2		Q		Mult.: $A_2 = +0.32 \ 8, \ A_4 = +0.10 \ 12.$
552.1 <i>3</i>	1.44 29	4255	(31/2)	3703	(27/2)	Q		Mult.: $A_2 = +0.59$ 18.
673.3 <i>3</i>	9.95 70	927.6	$15/2^{-}$	254.3	$11/2^{-}$	E2	0.00499	α (K)=0.00422 6; α (L)=0.000610 9;
								α (M)=0.0001283 <i>18</i> ; α (N+)=3.31×10 ⁻⁵ 5

Continued on next page (footnotes at end of table)

				¹³⁸ Ba (α	,5 n γ) E=7	0 MeV	1978Mu09	(continued)			
	$\gamma(^{137}\text{Ce})$ (continued)										
Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\ddagger}	Comments			
								α (N)=2.83×10 ⁻⁵ 4; α (O)=4.49×10 ⁻⁶ 7; α (P)=3.02×10 ⁻⁷ 5 Mult.: A ₂ =+0.43 3, A ₄ =-0.05 5.			
734.9 <i>3</i> *830.5	1.33 <i>13</i> 0.99 <i>16</i>	3225	(23/2)	2489.0	21/2-	D		Mult.: $A_2 = -0.03 \ 3$, $A_4 = -0.02 \ 5$.			
889.5 <i>3</i>	0.81 24	3225 3225	(23/2)	2335.7	(21/2) $(21/2^+)$	D		Mult.: $A_2 = -0.565$, $A_4 = +0.138$.			
1111.5 3	6.40 <i>51</i>	2039.1	19/2	927.6	15/2-	E2	1.61×10 ⁻³	$\alpha(K) = 0.001382 \ 20; \ \alpha(L) = 0.000183 \ 3; \alpha(M) = 3.81 \times 10^{-5} \ 6; \ \alpha(N+) = 1.046 \times 10^{-5} \ 15 \alpha(N) = 8.44 \times 10^{-6} \ 12; \ \alpha(O) = 1.361 \times 10^{-6} \ 19; \alpha(P) = 1.004 \times 10^{-7} \ 14; \ \alpha(IPF) = 5.61 \times 10^{-7} \ 10 Mult: \ A_2 = +0.35 \ 3; \ A_4 = -0.05 \ 5;$			
1263.4 <i>3</i>	2.38 21	2191.0	19/2-	927.6	15/2-	E2	1.26×10 ⁻³	$\begin{aligned} &\alpha(\text{K}) = 0.001066 \ 15; \ \alpha(\text{L}) = 0.0001389 \ 20; \\ &\alpha(\text{M}) = 2.89 \times 10^{-5} \ 4; \ \alpha(\text{N}+) = 2.24 \times 10^{-5} \ 4 \\ &\alpha(\text{N}) = 6.41 \times 10^{-6} \ 9; \ \alpha(\text{O}) = 1.035 \times 10^{-6} \ 15; \\ &\alpha(\text{P}) = 7.75 \times 10^{-8} \ 11; \ \alpha(\text{IPF}) = 1.493 \times 10^{-5} \ 22 \\ &\text{Mult.: } \text{A}_2 = +0.35 \ 3, \ \text{A}_4 = -0.00 \ 6. \end{aligned}$			

 † Observed only by 1977Lu04 in coin with 1111.5 $\gamma,$ 673.3 $\gamma,$ and 449.8 $\gamma.$ [‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation

based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain. $x \gamma$ ray not placed in level scheme.

¹³⁷₅₈Ce₇₉