¹³⁷Ba(³He,3nγ) E=27 MeV 1983Ko13

	History							
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. Browne, J. K. Tuli	NDS 108,2173 (2007)	1-Oct-2006					

Additional information 1. Other: $E({}^{3}He)=38$ MeV (1977Lu04). Measured: γ , $\gamma\gamma$, $\gamma(\theta)$, $\gamma(t)$, ce, yield.

¹³⁷Ce Levels

E(level)	$J^{\pi \ddagger}$	$T_{1/2}^{\dagger}$	E(level)	$J^{\pi \ddagger}$	E(level)	$J^{\pi \ddagger}$
0.0	3/2+	9.0 h	1179.5		2336.0	(21/2)
254.3	$11/2^{-}$	34.4 h	1337.4		2489.3	$21/2^{-}$
434.0	$(3/2)^+$		1981.0	$(17/2^{-})$	2811.8	$(23/2)^{-}$
927.8	$15/2^{-}$		2039.6	19/2-	3224.1	(23/2)
1144.4	$13/2^{-}$		2191.0	$19/2^{-}$	3414.7	(25/2)
1147.2			2197.4?	$(21/2^+)$		

[†] $T_{1/2}(\gamma) \le 1.5$ ns for E(lev) ≥ 434 keV. [‡] Adopted values.

$\gamma(^{137}\text{Ce})$

E_{γ}	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α^{\ddagger}	Comments
138.6 2	12 2	2336.0	(21/2)	2197.4?	$(21/2^+)$			
157.8 [#] 2	25 5	2197.4?	(21/2+)	2039.6	19/2-	D		Placement on level scheme is uncertain. See 2000Zh39.
190.6 <i>3</i> 254.3 <i>2</i>	15 2 37 4	3414.7 254.3	(25/2) 11/2 ⁻	3224.1 0.0	(23/2) 3/2 ⁺	D M4	7.93	Mult.: $A_2 = -0.12 4$, $A_4 =05 7$. Mult.: $A_2 = -0.19 5$, $A_4 = -0.04 9$. B(M4)(W.u.)=2.31 7 (W) = 5.45 8 + (U) = 1.02 2 + (M) = 0.445 7.
								$\alpha(K)=5.45 \ 8; \ \alpha(L)=1.92 \ 3; \ \alpha(M)=0.445 \ 7;$ $\alpha(N+)=0.1142 \ 17$ $\alpha(N)=0.0985 \ 15; \ \alpha(O)=0.01496 \ 22;$ $\alpha(P)=0.000734 \ 11$ Additional information 2.
298.1 2	55 6	2489.3	21/2-	2191.0	19/2-	M1	0.0586	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0501 \ 7; \ \alpha(\mathbf{L}) = 0.00668 \ 10; \\ &\alpha(\mathbf{M}) = 0.001397 \ 20; \ \alpha(\mathbf{N}+) = 0.000364 \ 6 \\ &\alpha(\mathbf{N}) = 0.000310 \ 5; \ \alpha(\mathbf{O}) = 5.03 \times 10^{-5} \ 7; \\ &\alpha(\mathbf{P}) = 3.84 \times 10^{-6} \ 6 \end{aligned}$
322.4 2	33 <i>3</i>	2811.8	(23/2)-	2489.3	21/2-	M1	0.0477	Mult.: $A_2 = -0.35$ 4, $A_4 = +0.09$ 7. $\alpha(K) = 0.0408$ 6; $\alpha(L) = 0.00543$ 8; $\alpha(M) = 0.001134$ 16; $\alpha(N+) = 0.000296$ 5 $\alpha(N) = 0.000252$ 4; $\alpha(O) = 4.09 \times 10^{-5}$ 6; $\alpha(P) = 3.12 \times 10^{-6}$ 5 Mult.: $A_2 = -0.19$ 7. $A_4 = -0.00$ 13;
434.0 2	245 17	434.0	(3/2)+	0.0	3/2+	E2+M1	0.019 4	$\begin{array}{l} \alpha(\mathrm{K}) \exp = 0.06 \ 10, \\ \alpha(\mathrm{K}) \exp = 0.068 \ 10, \\ \alpha(\mathrm{K}) = 0.016 \ 3; \ \alpha(\mathrm{L}) = 0.00234 \ 17; \\ \alpha(\mathrm{M}) = 0.00049 \ 3; \ \alpha(\mathrm{N}+) = 0.000127 \ 10 \\ \alpha(\mathrm{N}) = 0.000109 \ 8; \ \alpha(\mathrm{O}) = 1.73 \times 10^{-5} \ 16; \\ \alpha(\mathrm{P}) = 1.2 \times 10^{-6} \ 3 \\ \mathrm{Mult.:} \ \mathrm{A_2} = +0.15 \ 2, \ \mathrm{A_4} = +0.03 \ 3; \\ \alpha(\mathrm{K}) \exp = 0.013 \ 15 \end{array}$
449.8 2	170 15	2489.3	21/2-	2039.6	19/2-	M1	0.0203	$\alpha(K)=0.01738\ 25;\ \alpha(L)=0.00229\ 4;$

Continued on next page (footnotes at end of table)

¹³⁷Ba(³He,3nγ) E=27 MeV 1983Ko13 (continued)

$\gamma(^{137}\text{Ce})$ (continued)

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [†]	α^{\ddagger}	Comments
								$\begin{array}{c} \alpha(M)=0.000477 \ 7; \\ \alpha(N+)=0.0001244 \ 18 \\ \alpha(N)=0.0001059 \ 15; \\ \alpha(O)=1.720\times10^{-5} \ 25; \\ \alpha(P)=1.323\times10^{-6} \ 19 \\ \text{Mult.: } A_2=-0.37 \ 2, \ A_4=+0.00 \ 4; \\ \alpha(K)\exp=0.21 \ 4 \end{array}$
673.5 2	1000	927.8	15/2-	254.3	11/2-	E2	0.00499	$\alpha(\mathbf{K})=0.00422 \ 6; \ \alpha(\mathbf{L})=0.000610 \ 9; \\ \alpha(\mathbf{M})=0.0001282 \ 18; \\ \alpha(\mathbf{N}+)=3.31\times10^{-5} \ 5 \\ \alpha(\mathbf{N})=2.83\times10^{-5} \ 4; \ \alpha(\mathbf{O})=4.49\times10^{-6} \\ 7; \ \alpha(\mathbf{P})=3.02\times10^{-7} \ 5 \\ \text{Wrlt} \ \mathbf{A}_{\text{c}}=0.025 \ 2 \\ \text{c} \ \mathbf{A}_{\text{c}}=0.05 \ $
713.2 <i>4</i> 734.8 5 745 5 <i>4</i>	60 <i>15</i> 13 <i>5</i> 45 <i>10</i>	1147.2 3224.1	(23/2)	434.0 2489.3 434.0	$(3/2)^+$ 21/2 ⁻ (3/2) ⁺	D		Mult.: $A_2 = +0.20$ 7, $A_4 = -0.03$ 2. Mult.: $A_2 = -0.11$ 12, $A_4 = +0.08$ 20.
836.6 3	260 20	1981.0	(17/2 ⁻)	1144.4	(3/2) 13/2 ⁻	(E2)	0.00299	$\alpha(K)=0.00255 \ 4; \ \alpha(L)=0.000352 \ 5; \\ \alpha(M)=7.37\times10^{-5} \ 11; \\ \alpha(N+)=1.91\times10^{-5} \ 3 \\ \alpha(N)=1.628\times10^{-5} \ 23; \\ \alpha(O)=2.61\times10^{-6} \ 4; \\ \alpha(P)=1.84\times10^{-7} \ 3 \\ M \ k=(V) = 0.0021 \ 5. \end{cases}$
890.1 2	340 <i>30</i>	1144.4	13/2-	254.3	11/2-	M1+E2	0.0032 7	Mult.: $\alpha(K)\exp=0.0021$ 5. $\alpha(K)=0.0028$ 6; $\alpha(L)=0.00036$ 6; $\alpha(M)=7.6\times10^{-5}$ 13; $\alpha(N+)=2.0\times10^{-5}$ 4 $\alpha(N)=1.7\times10^{-5}$ 3; $\alpha(O)=2.7\times10^{-6}$ 5; $\alpha(P)=2.0\times10^{-7}$ 5 Mult.: $A_2=-0.57$ 2, $A_4=+0.04$ 3; $\alpha(K)\exp=0.0018$ 5
903.4 <i>4</i> ×1054 2 5	50 <i>10</i> 42 7	1337.4		434.0	$(3/2)^+$	D+Q		Mult.: $A_2 = +0.17 \ 8, \ A_4 = +0.13 \ 13.$
1111.8 3	495 40	2039.6	19/2-	927.8	15/2-	E2	1.61×10 ⁻³	$\begin{aligned} &\alpha(\mathbf{K}) = 0.001381 \ 20; \ \alpha(\mathbf{L}) = 0.000183 \\ &\beta; \ \alpha(\mathbf{M}) = 3.81 \times 10^{-5} \ 6; \\ &\alpha(\mathbf{N}+) = 1.046 \times 10^{-5} \ 15 \\ &\alpha(\mathbf{N}) = 8.43 \times 10^{-6} \ 12; \\ &\alpha(\mathbf{O}) = 1.360 \times 10^{-6} \ 19; \\ &\alpha(\mathbf{P}) = 1.003 \times 10^{-7} \ 14; \\ &\alpha(\mathbf{IPF}) = 5.67 \times 10^{-7} \ 10 \\ &\text{Mult.: } \mathbf{A}_2 = +0.19 \ 6, \ \mathbf{A}_4 = +0.0; \\ &\alpha(\mathbf{K}) \exp = 0.0012 \ 2. \end{aligned}$
1263.2 3	135 15	2191.0	19/2-	927.8	15/2-	E2	1.26×10 ⁻³	$\alpha(K)=0.001066 \ 15; \ \alpha(L)=0.0001389$ $20; \ \alpha(M)=2.89\times10^{-5} \ 4;$ $\alpha(N+)=2.24\times10^{-5} \ 4$ $\alpha(N)=6.41\times10^{-6} \ 9;$ $\alpha(O)=1.036\times10^{-6} \ 15;$ $\alpha(P)=7.75\times10^{-8} \ 11;$ $\alpha(IPF)=1.489\times10^{-5} \ 22$ Mult.: A ₂ =+0.33 \ 3, A ₄ =-0.00 \ 4; $\alpha(K)\exp=0.0009 \ 2.$

[†] $\alpha(K)$ exp have been normalized to $\alpha(K)(673.5\gamma)=0.0042$ (E2).

¹³⁷Ba(³He,3nγ) E=27 MeV 1983Ko13 (continued)

$\gamma(^{137}\text{Ce})$ (continued)

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

- [#] Placement of transition in the level scheme is uncertain.
- ^{*x*} γ ray not placed in level scheme.

¹³⁷₅₈Ce₇₉-4

¹³⁷₅₈Ce₇₉