136 I β^- decay (46.6 s) 1977We04,1991Ma07

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018					

Parent: ¹³⁶I: E=201 26; $J^{\pi}=(6^{-})$; $T_{1/2}=46.6$ s 11; $Q(\beta^{-})=6884$ 14; $\%\beta^{-}$ decay=100.0

1995Ma75: ¹³⁶I activity from ²³⁵U(n,F) with E=thermal followed by mass separation (OSIRIS). Measured E γ , $\beta\gamma\gamma$ (t) using small plastic scintillator for β s and BaF₂ and Ge detectors for γ s; deduced T_{1/2} from fast timing method. Results are indicated as preliminary.

1991Ma07: ¹³⁶I activity from ²³⁵U(n,F) with E=thermal followed by mass separation (TRISTAN). Measured E γ , I γ , Ece, Ice using a Ge detector and a Si(Li) detector; deduced conversion coefficients.

1985Be04: ¹³⁶I activity from ²³⁵U(n,F) with E=thermal followed by mass separation (TRISTAN). Measured $\gamma\gamma(\theta)$ and $\gamma\gamma(\theta,H,t)$ using Ge detectors; deduced g factor of first 4⁺ level.

1980Ka31: ¹³⁶I activity from ²³⁵U(n,F) with E=thermal followed by mass separation. Measured $E\gamma$, γ (t); deduced $T_{1/2}$ of 1694-keV level.

1980KeZQ: ¹³⁶I activity from ²³⁵U(n,F) with E=thermal followed by mass separation (LOHENGRIN). Measured E γ , E β , β - γ coincidences using plastic scintillator telescope and Ge(Li) detector; deduced β end point energies.

1977We04: ¹³⁶I activity from ²³⁵U(n,F) followed by mass separation at the TRISTAN on-line isotope separator facility at the Ames reserach reactor. Measured E γ , I γ , γ (t), $\gamma\gamma$ using two Ge(Li) detectors.

Others: 1972Ac02, 1971Lu02, 1971Er06, 1970Ca25.

A total energy release of 7550 keV 240 as calculated by the code RADLST, is somewhat larger than the total available energy of the decay of 7090 keV 30, although with large uncertainty.

See 83.4-s + 46.6-s decay for transitions which could not be classified as belonging to a specific decay. α : Additional information 1.

¹³⁶Xe Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	0^{+}		
1313.03 10	2+	<0.15 ns	$T_{1/2}$: from $\gamma\gamma(t)$ using 381 γ and 1313 γ (1980Ka31).
1694.39 10	4+	1.293 ns 17	g=0.80 15 (1985Be04,1988WoZW)
			$T_{1/2}$: from $\beta \gamma \gamma(t)$ (1995Ma75). Others: 1.32 ns 6 (1980Ka31 $\gamma \gamma(t)$ using 197 γ -381 γ and 197 γ -1313 γ); <1.4 ns (1975Mo03).
			g: TPAD taking $T_{1/2}=1.32$ ns (1985Be04,1988WoZW).
1891.70 <i>10</i>	6+	2.9 µs 2	$\overline{T}_{1/2}$: weighted average of 2.8 μ s 2 and 3.0 μ s 3 from $\gamma\gamma(t)$ using 197 γ and 1313 γ , respectively (1970Ca25).
2125.68 11	3+,4+		
2261.52 10	6+	≤50 ps	$T_{1/2}$: from $\beta \gamma \gamma(t)$ (1995Ma75). Other: <1.4 ns (1975Mo03).
2444.39 11	5	≤50 ps	$T_{1/2}$: from $\beta \gamma \gamma(t)$ (1995Ma75). Other: <2.0 ns (1975Mo03).
2465.03 15			
2608.43 12	4+,5+	≤50 ps	T _{1/2} : from $\beta \gamma \gamma(t)$ (1995Ma75). Other: <2.1 ns from 164.5 $\gamma(t)$ and <1.6 ns from 347.2 $\gamma(t)$ (1975Mo03).
3830.04 20	$(6^+, 5)$		
3872.80 22	$(6^+, 5)$		
4057.60 17	$(6^+, 5)$		
5861.6? 4	$(4^+, 5, 6^+)$		
6090.8? 8			

[†] From a least-squares fit to $E\gamma$, by evaluator.

[‡] From the Adopted Levels.

$^{136}\mathbf{I}\,\beta^-$ decay (46.6 s) 1977We04,1991Ma07 (continued)

β^{-} radiations

 $\langle E\beta \rangle = 2.11 \text{ MeV } 12 \text{ from } 1982 \text{AlO1} \text{ (OSIRIS; Si(Li),Ge(Li)) compared with } \langle E\beta \rangle = 2.34 \text{ MeV } 15 \text{ from the decay scheme.}$

E(decay)	E(level)	Ιβ ^{-#}	$\log ft^{\dagger}$	Comments
(9.9×10 ² [@] 3)	6090.8?	0.030 9	6.71 14	av E β =343 12
$(1.22 \times 10^3 @ 3)$	5861.6?	0.151 20	6.34 7	av Eβ=438 13
$(3.03 \times 10^3 \ 3)$	4057.60	1.42 10	6.94 4	av E β =1249 14
$(3.21 \times 10^3 \ 3)$	3872.80	0.88 6	7.26 4	av Eβ=1335 14
$(3.25 \times 10^3 \ 3)$	3830.04	1.08 7	7.19 4	av E β =1355 14
$(4.48 \times 10^3 \ 3)$	2608.43	9.7 <i>3</i>	8.539 ¹ <i>u</i> 25	av E β =1908 14
$(4.62 \times 10^3 \ 3)$	2465.03	1.29 10	7.77 4	av Eβ=1995 14
$(4.64 \times 10^3 \ 3)$	2444.39	7.3 5	7.02 4	av E β =2005 14
$(4.82 \times 10^{3 \ddagger 3})$	2261.52	13.4 11	6.83 4	av Eβ=2091 14
				E(decay): other: 5300 240 from 1980KeZQ.
$(5.19 \times 10^3 \ 3)$	1891.70	71 6	6.25 4	av Eβ=2265 14
$(5.39 \times 10^{3 \ddagger @} 3)$	1694.39	≤4	$\geq 9.4^{1u}$	av E β =2337 14 E(decay): other: 5890 150 from 1980KeZQ.

[†] Significant differences from the values of 1977We04 due to the g.s. $Q(\beta^-)$ which they used to calculate log *ft*. [‡] E β =5885 *150* from β -1313 γ +1321 γ ; other: 5850 240 from β -370 γ +381 γ . [#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

 $\gamma(^{136}\text{Xe})$

I γ normalization: from $\Sigma I(\gamma + ce)(to g.s.) = 100$.

E_{γ}^{\ddagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [#]	α	Comments
164.12 <i>16</i> 182.7 <i>2</i>	4.3 9 7.4 9	2608.43 2444.39	$4^+,5^+$ 5	2444.39 5 2261.52 6 ⁺			
197.316 [@] 7	783 45	1891.70	6+	1694.39 4+	E2	0.1684	α(K)exp=0.137 25; α(L)exp=0.035 6; α(M)exp=0.017 3 (1991Ma07) α(K)=0.1330 19; α(L)=0.0282 4; α(M)=0.00591 9; α(N)=0.001187 17; α(O)=0.0001304 19 Eγ: other: 197.33 5 (1977We04). Mult.: from α(K)exp, α(L)exp, and α(M)exp. Also α(K)exp=0.158 25, K/L+=3.8 8 (1972Ac02). Mult.: other: A2=0.080 20, A4=0.004 20 for (197γ)(381γ)(θ) consistent with O-O cascade (1985Be04).
318.6 2	5.1 4	2444.39	5	2125.68 3+,4+			
339.4 2	2.6 5	2465.03		2125.68 3+,4+			
346.81 10	30.1 18	2608.43	$4^+, 5^+$	2261.52 6+			
369.813 [@] 23	175 10	2261.52	6+	1891.70 6+	M1+E2	0.0227 11	α (K)exp=0.019 4; α (L)exp=0.0028 5 (1991Ma07) α (K)=0.0193 13; α (L)=0.00274 14;

¹³⁶₅₄Xe₈₂-3

			$^{136}\mathbf{I}\beta^{-}\mathbf{d}$	ecay (46.6	5 s) 1	977We04,1	1991Ma07 (co	ntinued)
$\gamma(^{136}$ Xe) (continued)								
${\rm E}_{\gamma}^{\ddagger}$	I_{γ}^{\dagger} &	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult. [#]	α	Comments
	000.55	1604.00		1212.02			0.0100	α (M)=0.00056 4; α (N)=0.000115 6; α (O)=1.39×10 ⁻⁵ 3 Mult.: from α (K)exp, α (L)exp. E _y : other: 370.13 6 (1977We04).
421.29.42	998 55	1694.39	4+	1313.03	2+	Ε2	0.0198	α(K)exp=0.016 3; α(L)exp=0.0030 6; α(M)exp=0.0019 4 (1991Ma07) α(K)=0.01652 24; α(L)=0.00259 4; α(M)=0.0001085 16 α(O)=1.274×10 ⁻⁵ 18 Mult.: M1,E2 from α(K)exp; Q from γγ(θ). Other: α(K)exp=0.018 4 (1972Ac02). E _γ : other: 381.37 6 (1977We04). Mult.: other: A ₂ =0.083 15, A ₄ =-0.02 2 for (381γ)(1313γ)(θ) consistent with Q-Q cascade (1985Be04).
431.38 <i>12</i> 482.80 <i>10</i>	6.3 <i>19</i> 17.5 9	2125.68 2608.43	3+,4+ 4+,5+	1694.39 2125.68	4+ 3+,4+	M1	0.01215	α (K)exp=0.017 6 (1991Ma07) α (K)=0.01049 15; α (L)=0.001326 19; α (M)=0.000268 4; α (N)=5.56×10 ⁻⁵ 8; α (O)=6.98×10 ⁻⁶ 10 Mult.: from α (K)exp.
552.69 14	8.4 6	2444.39	5	1891.70	6+			Walth Holli a (H)oxp.
716.7 <i>3</i> 750.05 <i>7</i>	9.8 7 58 4	2608.43 2444.39	4+,5+ 5	1891.70 1694.39	6 ⁺ 4 ⁺	D		Mult.: $A_2 = -0.410 \ 10$, $A_4 = 0.003 \ 30$ for $(750\gamma)(381\gamma)(\theta)$ consistent with D-O cascade (1985Be04)
770.75 <i>15</i> 812.63 8 914.1 2	12.8 8 26 9 35 2	2465.03 2125.68 2608.43	3 ⁺ ,4 ⁺ 4 ⁺ ,5 ⁺	1694.39 1313.03 1694.39	4+ 2+ 4+			
1313.02 10	1000	1313.03	2+	0.0	0+	E2	9.41×10 ⁻⁴	α (K)exp=0.00078 5 (1991Ma07) α (K)=0.000792 11; α (L)=9.89×10 ⁻⁵ 14; α (M)=2.00×10 ⁻⁵ 3; α (N)=4.13×10 ⁻⁶ 6; α (O)=5.16×10 ⁻⁷ 8 Mult.: from α (K)exp. Mult.: other: A ₂ =0.083 15, A ₄ =-0.02 2 for (381 γ)(1313 γ)(θ) consistent with O-O cascade (1985Be04)
1385.6 4 1592.8 2 1796.0 2 1937.4 5 2135.8 2	1.8 3 2.5 3 6.9 5 2.1 4 6.9 5	3830.04 4057.60 4057.60 3830.04 3830.04	$(6^+,5)$ $(6^+,5)$ $(6^+,5)$ $(6^+,5)$ $(6^+,5)$	2444.39 2465.03 2261.52 1891.70 1694.39	5 6 ⁺ 6 ⁺ 4 ⁺ 6 ⁺			with Q-Q cascade (1985B604).
2178.4 2 2362.8 <i>3</i>	8.8 <i>6</i> 4.1 <i>4</i>	3872.80 4057.60	$(6^+,5)$ $(6^+,5)$	1694.39 1694.39	4 ⁺ 4 ⁺			

Continued on next page (footnotes at end of table)

$^{136}\mathrm{I}\,\beta^-$ decay (46.6 s) 1977We04,1991Ma07 (continued)

$\gamma(^{136}Xe)$ (continued)

Ε _γ ‡	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
3600.0 ^a 6	0.62 13	5861.6?	$(4^+, 5, 6^+)$	2261.52	6+
3735.9 ^a 5	0.89 14	5861.6?	$(4^+, 5, 6^+)$	2125.68	3+,4+
4396.3 ^a 8	0.30 9	6090.8?		1694.39	4+

[†] Normalized to $I\gamma(381\gamma)=998$ so that $I\gamma(1313\gamma)=1000$ for both 46.6-s and 83.4-s decay.

[‡] From 1977We04, except where noted.

[#] Adopted values based upon $\gamma\gamma(\theta)$ and $\alpha(K)$ exp as noted. [@] From 1979Bo26 (curved-crystal spect; ²³⁵U,²³⁹Pu(n,F)). Assignment based on agreement with E γ given by 1977B112.

[&] For absolute intensity per 100 decays, multiply by 0.1.

^{*a*} Placement of transition in the level scheme is uncertain.

