¹³⁶Xe(p,p') **1972Se17,1970Mo11**

	History					
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018			

1970Mo11: E(p)=9.8-12.9 MeV. Measured $\sigma(\theta)$ using four lithium-drifted silicon detectors (FWHM=50 keV); R-matrix analysis. Subset of results presented in 1969Mo02.

1972Se17: E(p)=13.982 MeV. Measured $\sigma(\theta)$ for 20 angles between $\theta=30^{\circ}-160^{\circ}$ (FWHM \approx 38 keV); DWBA and Coupled-Channel Calculations (CCC).

Other: 1978F007 (studied ¹³⁷Cs IAR), 1970Hi05 (reanalysis of data from 1970Mo11).

For cross sections, partial proton widths, and spectroscopic factors see 1970Mo11.

Only configurations with dominant (80%–99%) components are indicated in the comments. Configurations based on agreement with calculations based on the quasiparticle random-phase approximation (1972Se17).

¹³⁶Xe Levels

E(level) [†]	$J^{\pi \mp}$	L#	$\beta_{\rm L}^{\rm \#}$	Comments
0.0				
1305 15		2	0.061	configuration= $\pi 1g7/2^{+2}$.
				$\beta_{\rm L}$: other:0.064 from coupled-channels calculation (1972Se17).
1684 15		4	0.054	$configuration = \pi 1g7/2^{+2}$.
1888 15		6,(5) [@]	0.053	configuration= $\pi 1g7/2^{+2}$.
1920 ^{&} 15		2 [@]	0.026	$configuration = (\pi 1g7/2)(\pi 2d5/2).$
2108 15		6,(5) <i>ab</i>	0.045	$configuration = (\pi 1g7/2)(\pi 2d5/2).$
2262 15		6	0.064	
2294 [°] 15		2	0.025	
2409 15		2	0.033	$configuration = (\pi 2d5/2)^{+2}$.
2448 [°] 15		4	0.050	$configuration = (\pi 1g7/2)(\pi 2d5/2).$
2556 15		4	0.036	$configuration = (\pi 2d5/2)^{+2}$.
2627 [°] 15		2	0.025	
2855 ^d 15				
2969 15		2	0.035	
$3.16 \times 10^3 2$				
3263 ^e 15		3	0.122	$\beta_{\rm L}$: other:0.199 from coupled-channels calculation (1972Se17).
$3.31 \times 10^3 2$				
$3.63 \times 10^{3} f$ 2				
$3.78 \times 10^3 2$	(4 ⁻)			
$3.87 \times 10^3 2$	(3 ⁻)			
$4.06 \times 10^{3} f$ 2	(3 ⁻) ^{<i>a</i>}			
4.15×10 ³ 2	(2^{-})			
4.27×10 ³ 2	2 ^{-<i>a</i>}			
$4.38 \times 10^{3} f$ 2	4-			
$4.45 \times 10^{3} f$ 2	(2 ⁻) ^{<i>a</i>}			
$4.54 \times 10^3 2$	(1^{-})			
$4.71 \times 10^{3} f$ 2	$(2^{-})^{a}$			
$4.82 \times 10^{3} f$ 2	1-			
$4.94 \times 10^{3} f$ 2	2^{-}			
$5.10 \times 10^3 2$	(2^{-})			
$5.15 \times 10^3 2$	(2 ⁻)			
5223 15	(3 ⁻)			
$5.31 \times 10^3 2$				
$5.36 \times 10^3 2$				
$5.42 \times 10^3 2$				

¹³⁶Xe(p,p') 1972Se17,1970Mo11 (continued)

¹³⁶Xe Levels (continued)

 $\begin{array}{c} E(\text{level})^{\dagger} & J^{\pi \ddagger} \\
\overline{5.56 \times 10^3 \ 2} & (2^-, 3^-) \\
\overline{5.67 \times 10^3 \ 2} & (3^-) \\
\overline{5.85 \times 10^3 \ 2} \\
\overline{5.99 \times 10^3 \ 2} \\
\overline{6.15 \times 10^3 \ 2} \\
\overline{6.29 \times 10^3 \ 2} \\
\end{array}$

[†] From 1972Se17 (ΔE =15) and 1970Mo11 (ΔE =20).

[‡] From R-matrix fit to $\sigma(\theta)$ at the f7/2, p3/2, and first f5/2 resonance (1970Mo11) for E≥3.26 MeV.

[#] From DWBA analysis; second values for β_L from Coupled-Channel Calculations (CCC) (1972Se17).

[@] Spectra partially masked by contaminant.

[&] Not observed by other groups; therefore, not adopted.

^{*a*} Not consistent with adopted J^{π} .

^b Evaluator believes that spectra for this level may also be contaminated.

^c Not observed by 1970Mo11.

^d Multiplet.

^e See 1972Se17 for calculations of admixtures from various configurations.

^f Peak near this energy indicated in Figure 1 of 1972Se17, however, not included in their Table II or the discussion.