136 Sb β^- decay 1997Ho15,2008MaZL

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 152,331 (2018)	1-Apr-2018

Parent: ¹³⁶Sb: E=0; $J^{\pi}=(1^{-})$; $T_{1/2}=0.923$ s *14*; $Q(\beta^{-})=9918$ 6; $\%\beta^{-}$ decay=100 1997Ho15: ¹³⁶Sb activity from ²³⁵U(n,F) followed by separation with the OSIRIS mass separator. Measured E γ , $I\gamma$, $\gamma\gamma$, $\beta\gamma$ using two Ge detectors; γ identification based on characteristic T_{1/2} or $\gamma\gamma$ coincidence results.

2008MaZL: ¹³⁶Sb activity from ¹³⁶Sn β decay; the ¹³⁶Sn was produced in spallation of a UC_x target and extracted with the ISOLDE separator. Measured E γ , $\gamma(t)$ using a BaF₂ scintillator, a LaBr₃(Ce) detector and two HPGe detectors; deduced T_{1/2} using the centroid shift technique.

The decay scheme should be considered incomplete, as evidenced by the total energy release of 8050 keV 30 as calculated by the code RADLST, compared with the decay Q value of 9918 keV 6. Beta feedings and log ft values should be taken as upper and lower limits, respectively.

¹³⁶Te Levels

E(level) [‡]	J^{π}	T _{1/2}	Comments
0.0	0^{+}		
606.64 5	2+	42 ps 8	$T_{1/2}$: from centroid shift technique in 2008MaZL; authors state that result is preliminary.
1031.1 4	4+		-/- * *
1568.36 7	(2^{+})		
1904.62 20	$(1,2^+)$		
2033.27 10	$(1,2^{+})$		
2044.01 12	$(0^+, 1, 2)$		
2060.82 20	$(1,2^+)$		
2211.57 12	$(0^+, 1, 2)$		
2573.15 9	$(0^+, 1, 2)$		
2633.05 21	$(0^+, 1, 2)$		
2801.1 3	$(0^+, 1, 2)$		
2821.0 10	(0,1,2)		
3583.3 4	$(0^+, 1, 2)$		
3714.5 4	$(0^+, 1, 2)$		
4768+x			E(level): S(n)(¹³⁶ Te)=4768 3 (2017Wa10), with x < 5150 from Q(β^{-})(¹³⁶ Sb decay)=9918 6 and S(n)(¹³⁶ Te).

[†] From the Adopted Levels.

[‡] From a least-squares fit to $E\gamma'$ s, by evaluator.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments		
$(2.6 \times 10^{3\#} 26)$	4768+x	18.5		$I\beta^{-}$: from $\%\beta^{-}n=18.5 \ I8$ for ¹³⁶ Sb.		
(6204 6)	3714.5	0.3	7.2	av $E\beta = 2750.3\ 29$		
(6335 6)	3583.3	0.3	7.3	av $E\beta = 2812.3 \ 29$		
(7097 6)	2821.0	0.3	7.5	av E β =3172.2 29		
(7117 6)	2801.1	0.8	7.1	av $E\beta = 3181.6\ 29$		
(7285 6)	2633.05	0.7	7.2	av $E\beta = 3260.9\ 29$		
(7345 6)	2573.15	1.3	6.9	av Eβ=3289.1 29		
(7706 6)	2211.57	1.5	7.0	av E β =3459.5 29		
(7857 6)	2060.82	1.2	7.1	av Eβ=3530.6 29		
(7874 6)	2044.01	1.6	7.0	av E β =3538.5 29		
(7885 6)	2033.27	3.2	6.7	av Eβ=3543.5 29		
(8013 6)	1904.62	1.3	7.1	av E β =3604.1 29		
(8350 6)	1568.36	1.5	7.1	av $E\beta = 3762.3\ 29$		
(8887 6)	1031.1	< 0.5	>7.7	av $E\beta$ =4014.8 29		
				Continued on next page (footnotes at end of table)		

$^{136}{\rm Sb}\,\beta^-$ decay 1997Ho15,2008MaZL (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(9311 6) (9918 6)	606.64 0.0	7.4 59.7	6.6 5.8	av E β =4213.9 29 av E β =4497.9 28
				$I\beta^{-1}$: from $\Sigma I(\gamma + ce)(to g.s.) + I\beta^{-1}$ (to g.s.)=100-% $\beta^{-}n$, with % $\beta^{-}n$ =18.5 18 for ¹³⁶ Sb.

[†] From intensity balance at each level, except where noted. As the decay scheme is incomplete (see the general comments), these should be taken as upper limits.
[‡] Absolute intensity per 100 decays.
[#] Estimated for a range of levels.

 $\gamma(^{136}\text{Te})$

I γ normalization: From absolute intensity of 607 γ = 18% 6, determined through simultaneous β and γ counting (1997Ho15).

Eγ	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α #	Comments
424.5 4	2.7 10	1031.1	4+	606.64	2+	E2	0.01310	α(K)=0.01109 16; α(L)=0.001614 24; α(M)=0.000325 5; α(N)=6.33×10-5 9; α(O)=6.48×10-6 10 Eγ,Iγ: Unresolved doublet; overlaps with the 424.7γ from 135Te which is populated in β-n decay. Iγ from coincidence data.
465.0 10	2.0 5	2033.27	$(1,2^+)$	1568.36	(2^+)			
606.62 5	100	606.64	2+	0.0	0+	E2	0.00482	α(K)=0.00413 6; α(L)=0.000556 8; α(M)=0.0001112 16; α(N)=2.18×10-5 3; α(O)=2.29×10-6 4 %Iγ=18 6. %Iγ: Absolute intensity per decay measured by simultaneous β and γ counting (1997Ho15).
777.0 10	1.6 4	2821.0	(0,1,2)	2044.01	$(0^+, 1, 2)$			8 (11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
961.72 5	17.1 8	1568.36	(2^{+})	606.64	2+			
1004.79 5	7.0 4	2573.15	$(0^+, 1, 2)$	1568.36	(2^{+})			
1298.0 10	4.0 10	1904.62	$(1,2^+)$	606.64	2+			
1426.56 10	5.0 7	2033.27	$(1,2^+)$	606.64	2+			
1437.37 10	10.3 8	2044.01	$(0^+, 1, 2)$	606.64	2+			
1604.92 10	8.6 6	2211.57	$(0^+, 1, 2)$	606.64	2+			
^x 1775.6 2	2.6 3							
1904.6 2	2.9 3	1904.62	$(1,2^+)$	0.0	0^{+}			
2026.4 2	3.9 4	2633.05	$(0^+, 1, 2)$	606.64	2+			
2033.5 2	11.3 8	2033.27	$(1,2^{+})$	0.0	0^{+}			
2060.8 2	6.6 5	2060.82	$(1,2^+)$	0.0	0^{+}			
2194.4 <i>3</i>	4.6 3	2801.1	$(0^+, 1, 2)$	606.64	2+			
^x 2595.5 3	3.7 3							
^x 2721.9 <i>3</i>	2.5 3							
^x 2727.0 3	1.9 2							
^x 2739.9 4	3.3 <i>3</i>							
^x 2915.3 4	1.2 4							
2976.6 4	1.6 3	3583.3	$(0^+, 1, 2)$	606.64	2+			
3107.8 4	1.6 3	3714.5	$(0^+, 1, 2)$	606.64	2+			
^x 3203.5 4	1.6 3							

Continued on next page (footnotes at end of table)

 136 Sb β^- decay 1997Ho15,2008MaZL (continued)

 $\gamma(^{136}\text{Te})$ (continued)

[†] From the Adopted Gammas.
[‡] For absolute intensity per 100 decays, multiply by 0.18 *6*.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

¹³⁶Sb β^- decay 1997Ho15,2008MaZL

4