## Adopted Levels, Gammas

|                                                           |                                                        | _                                                                                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | History                                                                                                |                                                                                                                                         |  |  |  |
|-----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                           |                                                        | T                                                                                                       | ype                                   | Author                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Citation                                                                                               | Literature Cutoff Date                                                                                                                  |  |  |  |
|                                                           |                                                        | Full Ev                                                                                                 | aluation                              | E. A. Mccutchan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NDS 152, 331 (2018)                                                                                    | 1-Apr-2018                                                                                                                              |  |  |  |
| $Q(\beta^-)=9918$<br>S(2n)=6629<br>$\alpha$ : Additional  | 6; S(n)<br>6; S(2p<br>al inform                        | =2888 6; S(p)=<br>)=27420 syst 30<br>nation 1.                                                          | 11164 7; 0<br>00; Q(β <sup>-</sup> n) | $Q(\alpha) = -4.52 \times 10^3 6$<br>= 5151 6 (2017Wa10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2017Wa10<br>0).                                                                                        |                                                                                                                                         |  |  |  |
|                                                           |                                                        |                                                                                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>136</sup> Sb Levels                                                                               |                                                                                                                                         |  |  |  |
| Evaluator<br><sup>241</sup> Pu(n,<br>energy c<br>ordering | adopts lo $F\gamma$ ), when $f$ 277.8-of 53.4 $\gamma$ | evel scheme pro<br>ere the cascade $\kappa$<br>keV. 2015L008<br>$\gamma$ -173 $\gamma$ -43.4 $\gamma$ . | posed by<br>depopulati<br>find no ev  | 2015Lo08 in ${}^{9}$ Be( ${}^{23}$<br>ng the isomer is giv<br>vidence for the 51.4 $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>8</sup> U,Fγ). An alternative sc<br>en by 51.4γ –173.0γ – 5<br>$\gamma$ , however, identify a new | heme is given by 2007Si27 in<br>3.4 $\gamma$ , resulting in an isomer excitation<br>$\sqrt{43.4}\gamma$ and give an alternative cascade |  |  |  |
|                                                           |                                                        |                                                                                                         |                                       | Cross Ret                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ference (XREF) Flags                                                                                   |                                                                                                                                         |  |  |  |
|                                                           |                                                        |                                                                                                         |                                       | $\begin{array}{c} \mathbf{A} \qquad {}^{9}\mathbf{B}\mathbf{e} \\ \mathbf{B} \qquad {}^{241}\mathbf{I} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $e^{(238}U,F\gamma)$<br>Pu(n,F $\gamma$ )                                                              |                                                                                                                                         |  |  |  |
| E(level) <sup>†</sup>                                     | $\mathbf{J}^{\pi}$                                     | T <sub>1/2</sub>                                                                                        | XREF                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cor                                                                                                    | nments                                                                                                                                  |  |  |  |
| 0                                                         | (1 <sup>-</sup> )                                      | 0.923 s 14                                                                                              | AB                                    | $\frac{\langle \beta \beta^- = 100; \langle \beta \beta^- n = 18.5 \ 18; \langle \beta \beta^- 2n < 1 \rangle}{T_{1/2}: \text{ from 1993Ru01. Others: 0.9 s } I (1978Cr03), 0.75 s 20 (1977Ru04), and 0.82 s 2 (1976Lu02).}$ $J^{\pi}: \text{ a negative parity is expected since with only 1 proton and 3 neutrons away from closed shell, the configuration of 136Sb should be \pi g_{7/2} v f_{7/2}^3. Assuming a negative parity, the log ft values of 5.8 and 6.6 to the 0+ and 2+ states of 136Te (1997Ho15), respectively, indicate J^{\pi} = 1^-. This assignment is additionally supported following a comparison with 212Bi, where the 1- state of the \pi h_{9/2} v g_{9/2}^3 multiplet is the g.s.\langle \beta \beta^- n: weighted average of 19.2 18 (2015CaZM) and 16.3 32 (1993Ru01). Others: 32 14 (1977Ru04) and 19 9 (1978Cr03). These have been adjusted to 44 57 and 33 40 in 1993Ru01 based on a reassessment of fission yield data.\langle \beta \beta^- 2n: preliminary report in 2017CaZZ states observation of \beta^-2n branch with an upper limit of 1%. 2005Ga61 give a limit of \langle \beta \beta^- 2n < 2.8 \ 2\%, with the upper limit corresponding to the case where all the observed two-neutron activity in their experiment originates from 136Sb.$ |                                                                                                        |                                                                                                                                         |  |  |  |
| 43.4 <i>3</i>                                             | (2 <sup>-</sup> )                                      |                                                                                                         | AB                                    | XREF: B(53.4).<br>$I^{\pi}$ : M1 43 day to (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -)                                                                                                     |                                                                                                                                         |  |  |  |
| 215.9 4                                                   | (4-)                                                   |                                                                                                         | AB                                    | XREF: B(226.4).<br>$I^{\pi}: F2 173 \times to (2^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                                                                                      |                                                                                                                                         |  |  |  |
| 269.3 5                                                   | (6 <sup>-</sup> )                                      | 540 ns <i>30</i>                                                                                        | AB                                    | %IT=100<br>XREF: B(277.8).<br>T <sub>1/2</sub> : weighted average of 540 ns 30 from implant- $\gamma$ (t) using 173 $\gamma$ in <sup>9</sup> Be( <sup>238</sup> U,F $\gamma$ )<br>and 480 ns 100 from sum of implant- $\gamma$ (t) using 173 $\gamma$ and implant-K $\alpha$ x-ray(t) in<br><sup>241</sup> Pu(n F $\gamma$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                                         |  |  |  |

 $^{241}$ Pu(n,F $\gamma$ ). J<sup> $\pi$ </sup>: E2 53.4 $\gamma$  to (4<sup>-</sup>).

<sup>†</sup> From  $E\gamma$ .

## Adopted Levels, Gammas (continued)

## $\gamma(^{136}\text{Sb})$

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f  \mathbf{J}_f^{\pi}$ | Mult. | α       | Comments                                                                                                               |
|------------------------|----------------------|------------------------|------------------------|------------------------------------|-------|---------|------------------------------------------------------------------------------------------------------------------------|
| 43.4                   | (2 <sup>-</sup> )    | 43.4 3                 | 100                    | 0 (1 <sup>-</sup> )                | (M1)  | 6.90 18 | $\alpha(K)=5.94$ 15; $\alpha(L)=0.774$ 20; $\alpha(M)=0.153$ 4; $\alpha(N)=0.0296$<br>8; $\alpha(O)=0.00290$ 8         |
|                        |                      |                        |                        |                                    |       |         | Mult.: from intensity balance in ${}^{9}\text{Be}({}^{238}\text{U},\text{F}\gamma)$ .                                  |
| 215.9                  | (4 <sup>-</sup> )    | 172.5 3                | 100                    | 43.4 (2 <sup>-</sup> )             | E2    | 0.241   | $\alpha(K)=0.192 \ 3; \ \alpha(L)=0.0393 \ 7; \ \alpha(M)=0.00798 \ 13;$                                               |
|                        |                      |                        |                        |                                    |       |         | $\alpha$ (N)=0.001481 24; $\alpha$ (O)=0.0001218 19                                                                    |
|                        |                      |                        |                        |                                    |       |         | $\alpha$ (K)exp=0.17 4 (2007Si27).                                                                                     |
|                        |                      |                        |                        |                                    |       |         | Mult.: from $\alpha(K)$ exp.                                                                                           |
| 269.3                  | (6 <sup>-</sup> )    | 53.4 <i>3</i>          | 100                    | 215.9 (4-)                         | (E2)  | 15.6 4  | $\alpha$ (K)=7.40 <i>15</i> ; $\alpha$ (L)=6.57 <i>20</i> ; $\alpha$ (M)=1.37 <i>5</i> ; $\alpha$ (N)=0.247 <i>8</i> ; |
|                        |                      |                        |                        |                                    |       |         | $\alpha(0) = 0.0168.5$                                                                                                 |
|                        |                      |                        |                        |                                    |       |         | B(E2)(W.u.)=3.54                                                                                                       |
|                        |                      |                        |                        |                                    |       |         | Mult.: from intensity balance in ${}^{9}Be({}^{238}U,F\gamma)$ .                                                       |

<sup>†</sup> From <sup>9</sup>Be(<sup>238</sup>U,F $\gamma$ ).

