$^{136}_{51}$ Sb₈₅-1

⁹Be(²³⁸U,Fγ) 2001Mi22,2012Ka36,2015Lo08

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018						

2001Mi22: $E(^{238}U)=750$ MeV/nucleon. Fission fragments separated with the FRagment Separator (FRS) and identified by TOF, position tracking, and ΔE measurements. Measured $E\gamma$, implant- $\gamma(t)$ using four HPGe Clover detectors.

2012Ka36: $E(^{238}U)=345$ MeV/nucleon. Fission fragments separated with the BigRIPS separator followed by the ZeroDegree Spectrometer and identified by ΔE -TOF-B ρ measurements. Measured $E\gamma$, $\gamma\gamma$, implant- $\gamma(t)$ using 3 HPGe Clover detectors.

2015Lo08: $E(^{238}U)=345$ MeV/nucleon. Fission fragments separated with the BigRIPS separator followed by the ZeroDegree Spectrometer and identified by ΔE -TOF-B ρ measurements. ¹³⁶Sb populated in a H-like charge state. Measured E γ , $\gamma\gamma$, implant- γ (t) using 12 Ge Cluster detectors.

136Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 43.4 <i>3</i> 215.9 <i>4</i>	(1^{-}) (2^{-}) (4^{-})		
269.3 5	(6 ⁻)	539 ns <i>30</i>	%IT=100 $T_{1/2}$: weighted average of 489 ns 40 from implant- γ (t) for H-like atom (2015Lo08), 570 ns 40 from implant- γ (t) (2012Ka36) and 570 ns 50 from implant- γ (t) (2001Mi22). All measurements used the 173 γ . Uncertainty in 2012Ka36 increased from 5 ns to 40 ns, since the former includes only statistical and not systematic uncertainties, per email communication with first author of 2015Lo08 on Sept. 3, 2015. configuration= $\pi g_{7/2}^1 \otimes v f_{7/2}^3$.
+	_		

[†] From E γ .

[‡] As proposed in 2015L008 based on multipolarities of γ transitions and comparison to shell model calculations.

						$\gamma(^{136}\text{Sb})$	
E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	α [@]	Comments
43.4 3	14.3 29	43.4	(2 ⁻)	0.0 (1 ⁻)	(M1) ^{&}	3.0 1	
53.4 <i>3</i>	13.9 <i>23</i>	269.3	(6 ⁻)	215.9 (4 ⁻)	(E2) ^{&a}	3.6 1	E_{γ} : no broadening of the 53 γ peak is observed by 2015Lo08, suggesting non-existence of a previously proposed 51.4 3 transition by 2007Si27.
172.5 3	100	215.9	(4 ⁻)	43.4 (2 ⁻)	(E2) ^{<i>a</i>}	0.098 6	

[†] From 2015Lo08. 2012Ka36 observe a 53.9 γ and 173.1 γ in coincidence but do not provide placements within the level scheme.

[‡] Deduced by evaluator from the ratios $I\gamma(43\gamma)/I\gamma(53\gamma)=1.03\ 20$ and $I\gamma(173\gamma)/I\gamma(53\gamma)=7.2\ 12$ given in 2015Lo08 and normalizing to $I\gamma(173\gamma)=100$.

[#] Deduced from intensity ratios in 2015Lo08, see individual comments on the transitions. Note that 2015Lo08 use α values corresponding to neutral atoms. Evaluator has considered α values for H-like Sb atoms using calculations from RAINE (2002Ba85).

[@] From RAINE calculations (2002Ba85) for H-like Sb atoms, values from communication with T. Kibedi on Sept. 7, 2015.

[&] From the intensity ratio $I\gamma(43\gamma)/I\gamma(53\gamma)=1.03\ 20$, M1 for both the 43.4γ and 53.4γ is excluded. Assuming E2 for the 53.4γ and M1 for the 43.4γ gives a theoretical ratio of $I\gamma(43\gamma)/I\gamma(53\gamma)=1.17\ 3$, in reasonable agreement with the measured value. A E2+M1 multipolarity for the 53.4γ is also possible, however, excluded when considering the $I\gamma(173\gamma)/I\gamma(53\gamma)$ ratio.

^{*a*} 2015Lo08 note that their intensity ratio of $I\gamma(173\gamma)/I\gamma(53\gamma)=7.2$ *12* is not consistent with E2 multipolarity for both transitions, which gives a ratio of 13.8 using neutral atom values for α . With the H-like values for α , this ratio drops to 4.2. A multipolarity of M1 or E1 for the 53 γ would given an even lower value for the ratio.

⁹Be(²³⁸U,Fγ) 2001Mi22,2012Ka36,2015Lo08

