136 Sm ε decay 1989Vi04

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018

Parent: ¹³⁶Sm: E=0.0; $J^{\pi}=0^+$; $T_{1/2}=47$ s 2; $Q(\varepsilon)=4360$ 70; $\%\varepsilon+\%\beta^+$ decay=100.0 1989Vi04: ¹³⁶Sm activity from ⁹²Mo(⁴⁶Ti,2p) with E(⁹²Mo)=192 MeV followed by mass separation. Measured E γ , I γ , K x ray, $X\gamma, \gamma\gamma, \beta\gamma, \gamma^{\pm}, \gamma(t)$ using Si(Au) ΔE -E telescope, thin planar HPGe x-ray detector, thick plastic scintillator and n-type Ge

detector. 1988Ke03: ¹³⁶Sm activity from ⁹²Mo(⁴⁶Ti,2p) with E(⁹²Mo)=170 MeV followed by mass separation. Measured E γ , I γ , $\gamma\gamma$, x-rays using a Ge(Li) detector and Ge- γ -X detector. Measured γ , $\gamma\gamma$, X γ , γ (t). T_{1/2}(¹³⁶Pm)=47 s 2. All the γ 's seen by 1988Ke03 are also seen by 1989Vi04.

1982A107: ¹³⁶Sm activity from W,Ta(p,X) with E(p)=1 MeV followed by mass separation. Measured E γ , I γ , K x ray, γ (t), X(t) using HPGe, Ge(Li) and Si(Li) detectors.

As the isomer excitation energy is unknown, γ rays have unknown multipolarities and there is a large gap between the highest observed level (862 keV+x) and the decay Q value of over 4 MeV, the decay scheme is considered incomplete and no attempt is made to derive a normalization or β feeding intensities.

136Pm Levels

E(level) [†]	J ^π ‡	T _{1/2} ‡	Comments
х	(2)	300 s 50	Additional information 1.
114.42+x <i>13</i>	1^{+}		
123.35+x 19			
221.1+x 4			
286.90+x 15	(1^{+})		
299.30+x 21			
306.51+x 20			
315.3+x <i>3</i>			
422.45+x 19			
427.95+x 18			
485.30+x 16			
563.23+x 22			
802.45+x 24			
862.13+x 20			

[†] From a least-squares fit to $E\gamma$, by evaluator.

[‡] From the Adopted Levels.

 $\gamma(^{136}\text{Pm})$

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
^x 90.0 4	1.7 5					
^x 91.1 5	0.6 2					
^x 100.2 5	0.8 2					
114.4 2	100 10	114.42+x	1^{+}	х	(2)	
116.1 4	1.1 5	422.45+x		306.51+x		
123.4 <i>3</i>	61	123.35+x		х	(2)	
128.8 5	0.6 2	427.95+x		299.30+x		I_{γ} : other: 0.3 <i>l</i> (1988Ke03).
134.9 <i>4</i>	1.4 2	563.23+x		427.95+x		I_{γ} : other: 0.5 <i>l</i> (1988Ke03).
^x 135.5 5	0.2 2					
140.6 <i>3</i>	≈ 1	427.95+x		286.90+x	(1^{+})	I_{γ} : other: 0.5 <i>l</i> (1988Ke03).
141.4 <i>4</i>	1.2 5	563.23+x		422.45+x		I_{γ} : other: 0.5 <i>l</i> (1988Ke03).
163.3 4	1.5 3	286.90+x	(1^{+})	123.35+x		•
170.0 5	0.6 1	485.30+x		315.3+x		

Continued on next page (footnotes at end of table)

136 Sm ε decay 1989Vi04 (continued)

γ (¹³⁶Pm) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
172.4 3	2.3 5	286.90 + x	(1^+)	114.42+x	1+	I_{γ} : other: 2.7 <i>l</i> (1988Ke03).
183.2 3	2.1 5	306.51+x	(-)	123.35 + x		
185.0 <i>3</i>	1.9 5	299.30+x		114.42+x	1^{+}	I_{γ} : other: 4.1 2 (1988Ke03).
186.1 4	0.6 1	485.30+x		299.30+x		
192.0 [@] 4	1.8 [@] 4	306.51+x		114.42+x	1+	I_{γ} : other: 0.9 <i>1</i> for 192.6 <i>2</i> transition placed as soley depopulating the 307+x level (1988Ke03).
192.0 [@] 4	$0.9^{\textcircled{0}}2$	315.3+x		123.35+x		
200.7 5	0.7 1	315.3+x		114.42+x	1^{+}	I_{γ} : other: 0.9 <i>l</i> (1988Ke03).
206.9 5	1.5 5	427.95+x		221.1+x		
221.2 5	1.5 5	221.1+x		Х	(2)	
^x 270.4 4	1.8 5					
276.3 5	0.8 2	563.23+x		286.90+x	(1^{+})	
286.8 2	12 3	286.90+x	(1^{+})	х	(2)	I_{γ} : other: 13 <i>3</i> (1988Ke03).
299.3 [@] 4	6 [@] 1	299.30+x		Х	(2)	
299.3 [@] 4	≈2 [@]	422.45+x		123.35+x		
306.6 4	1.6 3	306.51+x		Х	(2)	
313.6 2	13 <i>3</i>	427.95+x		114.42+x	1^{+}	I_{γ} : other: 12.6 2 (1988Ke03).
^x 350.5 [‡] 3	2.1 5					
^x 368.7 [#] 3	1.1 <i>1</i>					
371.0 5	1.8 5	485.30+x		114.42+x	1^{+}	I_{γ} : other: 3.2 2 (1988Ke03).
377.0 4	2.5 5	862.13+x		485.30+x		I_{γ} : other: 1.7 <i>1</i> (1988Ke03).
380.0 <i>3</i>	2.0 3	802.45+x		422.45+x		I_{γ} : other: 3.2 2 for a 379.4 γ which 1988Ke03 place as depopulating a level at 493.9+x.
422.6 3	2.4 3	422.45+x		х	(2)	
434.5 <mark>&</mark> 2	0.7 1	862.13+x		427.95+x		E_{γ} , I_{γ} : from 1988Ke03, γ not observed by 1989Vi04.
448.7 <i>3</i>	2.7 3	563.23+x		114.42+x	1^{+}	I_{γ} : other: 2.2 <i>l</i> (1988Ke03).
$x^{x}454.9^{\#}2$	1.2 1					
485.3 2	14 <i>3</i>	485.30+x		Х	(2)	I_{γ} : other: 1.2 4 (1988Ke03).
515.6 5	0.4 1	802.45+x		286.90+x	(1^{+})	I_{γ} : other: 2.1 3 (1988Ke03).
555.5 4	1.8 4	862.13+x		306.51+x		
747.7 2	15 2	862.13+x		114.42+x	1^{+}	I_{γ} : other: 2.7 <i>11</i> (1988Ke03).
802.4 4	72	802.45+x		х	(2)	
^x 1260.0 5	≈2					

[†] From 1989Vi04, except where noted. I γ values from 1988Ke03 are included in the comments.

[‡] 1988Ke03 report a 350.0 2 transition with I γ =1.4 *I* which they place as a single transition depopulating a level at 464.5+x. [#] From 1988Ke03. The 369 γ and 455 γ are placed by 1988Ke03 as depopulating levels at 862+x and 569+x, respectively. As

these placements were not confirmed by 1989Vi04, there are not adopted here.

[@] Multiply placed with intensity suitably divided.

[&] Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

¹³⁶Sm ε decay 1989Vi04

