¹³⁶Pm ε decay:E=Y 1973PaZV

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018

Parent: ¹³⁶Pm: E=y; $J^{\pi}=(5^{-})$; $T_{1/2}=107 \text{ s} 6$; $Q(\varepsilon)=8030 70$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100.0 ¹³⁶Pm produced in the ¹²¹Sb(²⁰Ne,5n) reaction. Measured E γ , I γ , $\gamma\gamma$ -coincidences, $\gamma(\theta)$, and $\gamma(t)$. Assignment based on coincidences with known transitions in ¹³⁶Nd from ¹²⁰Sn(²⁰Ne,4n γ) and γ (t). The evaluator considers this decay scheme to be partial from comparison of the maximum level energy of 2.4 MeV to the Q value of 8.0 MeV. It appears that only the high-spin isomer was populated, as all lines measured with $\gamma(t)$ exhibit a T_{1/2} between 90 and 150 s. See also ε decay E=x,y. Other: 1983Al06.

¹³⁰ Nd Levels	¹³⁶ Nd	Leve	ls
--------------------------	-------------------	------	----

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	J ^{π‡}
0.0	0^{+}	976.4 4	4+	1746.8 5	6+	2046.6 4	(5^{+})
373.6 <i>3</i>	2+	1231.6 4	$(3)^{+}$	1927.6 <i>11</i>		2349.4 7	
861.8 <i>3</i>	2+	1539.8 9	(4^{+})	2035.9 6	(5 ⁻)	2440.4 6	(7^{-})

[†] From a least-squares fit to $E\gamma$, by evaluator.

[‡] From the Adopted Levels.

ε, β^+ radiations

I β and I ε calculated using y=0 for excitation energy of the isomer. $E\beta$ +=4732 70 from 1983Al06 (preliminary).

E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
$(5.59 \times 10^3 7)$	2440.4	3.0 4	0.48 7	6.65 8	3.5 5	av Eβ=2093 34; εK=0.116 5; εL=0.0162 7; εM+=0.00461 19
(5.68×10 ³ 7)	2349.4	11.9 7	1.78 13	6.10 5	13.7 8	av Eβ=2136 34; εK=0.110 5; εL=0.0154 6; εM+=0.00439 18
(5.98×10 ³ 7)	2046.6	17.6 17	2.19 23	6.05 6	19.8 <i>19</i>	av Eβ=2280 34; εK=0.094 4; εL=0.0131 5; εM+=0.00373 14
(5.99×10 ³ 7)	2035.9	11.5 9	1.42 12	6.24 5	12.9 10	av Eβ=2285 34; εK=0.093 4; εL=0.0130 5; εM+=0.00371 14
$(6.10 \times 10^3 7)$	1927.6	9.1 6	1.05 8	6.39 5	10.1 7	av Eβ=2336 34; εK=0.088 4; εL=0.0123 5; εM+=0.00351 13
(6.28×10 ³ 7)	1746.8	13.9 12	1.45 13	6.27 5	15.3 <i>13</i>	av Eβ=2422 34; εK=0.080 3; εL=0.0112 4; εM+=0.00320 12
(6.49×10 ³ 7)	1539.8	6.3 6	0.59 6	6.69 6	6.9 7	av Eβ=2521 34; εK=0.073 3; εL=0.0101 4; εM+=0.00289 10
(6.80×10 ^{3#} 7)	1231.6	<2	< 0.1	>7.3	<2	av E β =2668 34; ε K=0.0627 21; ε L=0.0087 3; ε M+=0.00249 9
$(7.05 \times 10^3 7)$	976.4	14 4	1.0 3	6.54 12	15 4	av $E\beta = 2791 \ 34$; $\varepsilon K = 0.0558 \ 18$; $\varepsilon L = 0.0078 \ 3$; $\varepsilon M + = 0.00222 \ 8$

[†] See Levels from ¹³⁶Pm ε decay E=x,y for a comparison of the direct feedings obtained in the two experiments.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

¹³⁶Pm ε decay:E=Y **1973PaZV** (continued)

 $\gamma(^{136}\text{Nd})$

Iy normalization: from $\Sigma I_{\gamma}(1+\alpha)$ (to g.s.)=100%, assuming no direct feeding of g.s. (ΔJ =5).

E_{γ}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	α@	Comments
302.8 5 370.0 5	730 <i>30</i> 540 <i>50</i>	2349.4 1231.6	(3)+	2046.6 861.8	(5 ⁺) 2 ⁺	[M1,E2]	0.034 6	α (K)=0.028 6; α (L)=0.00435 22; α (M)=0.00093 4; α (N)=0.000207 9; α (O)=3.06×10 ⁻⁵ 23
373.5 3	4.80×10 ³ 20	373.6	2+	0.0	0+	E2	0.0269	$\alpha(P)=1.7\times10^{-6} 5$ $\alpha(K)=0.0218 3; \alpha(L)=0.00401 6;$ $\alpha(M)=0.000872 13; \alpha(N)=0.000192 3;$ $\alpha(O)=2.75\times10^{-5} 4$ $\alpha(P)=1.235\times10^{-6} 18$
(404.5 [‡] 2)	44 [‡] 9	2440.4	(7-)	2035.9	(5 ⁻)	E2	0.0213	$\alpha(\mathbf{K}) = 0.01735 \ 25; \ \alpha(\mathbf{L}) = 0.00309 \ 5; \\ \alpha(\mathbf{M}) = 0.000669 \ 10; \ \alpha(\mathbf{N}) = 0.0001478 \ 21 \\ \alpha(\mathbf{M}) = 0.000659 \ 10; \ \alpha(\mathbf{N}) = 0.0001478 \ 21 \\ \alpha(\mathbf{M}) = 0.0001478 \ 21 \ 21 \ 21 \ 21 \ 21 \ 21$
488.0 5	490 50	861.8	2+	373.6	2+	E2+M1	0.016 4	$\alpha(O)=2.13\times10^{-3} 3; \ \alpha(P)=9.95\times10^{-7} 14 \\ \alpha(K)=0.014 4; \ \alpha(L)=0.0020 3; \\ \alpha(M)=0.00042 5; \ \alpha(N)=9.4\times10^{-5} 12; \\ \alpha(O)=1.40\times10^{-5} 21 \\ \alpha(P)=8.3\times10^{-7} 23$
602.7 3	2.66×10 ³ 15	976.4	4+	373.6	2+	E2	0.00723	$\alpha(\mathbf{F}) = 0.5 \times 10^{-2.5}$ $\alpha(\mathbf{K}) = 0.00605 \ 9; \ \alpha(\mathbf{L}) = 0.000931 \ 14;$ $\alpha(\mathbf{M}) = 0.000199 \ 3; \ \alpha(\mathbf{N}) = 4.43 \times 10^{-5} \ 7;$ $\alpha(\mathbf{O}) = 6.53 \times 10^{-6} \ 10$ $\alpha(\mathbf{P}) = 3.60 \times 10^{-7} \ 5$
678.0.8	370 30	1539.8	(4^{+})	861.8	2^{+}			u(1)=3.00×10 5
693.0 <i>10</i>	140 20	2440.4	(7 ⁻)	1746.8	6 ⁺	[E1]	0.00193	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.001662 \ 24; \ \alpha(\mathrm{L}) = 0.000213 \ 3; \\ &\alpha(\mathrm{M}) = 4.49 \times 10^{-5} \ 7; \ \alpha(\mathrm{N}) = 1.002 \times 10^{-5} \ 15 \\ &\alpha(\mathrm{O}) = 1.516 \times 10^{-6} \ 22; \ \alpha(\mathrm{P}) = 9.76 \times 10^{-8} \ 14 \end{aligned} $
696.0 <i>10</i> 770.4 <i>3</i>	540 <i>30</i> 960 <i>45</i>	1927.6 1746.8	6+	1231.6 976.4	(3) ⁺ 4 ⁺	E2	0.00400	α (K)=0.00338 5; α (L)=0.000488 7; α (M)=0.0001039 15; α (N)=2.31×10 ⁻⁵ 4; α (O)=3.45×10 ⁻⁶ 5 α (P)=2.03×10 ⁻⁷ 3
815.0 <i>3</i>	1650 80	2046.6	(5^{+})	1231.6	$(3)^{+}$	Q		
858.0 <i>3</i>	1.68×10 ³ 10	1231.6	(3)+	373.6	2+	E2+M1	0.0040 9	α (K)=0.0034 8; α (L)=0.00046 9; α (M)=9.8×10 ⁻⁵ 18; α (N)=2.2×10 ⁻⁵ 4; α (O)=3.3×10 ⁻⁶ 7 α (P)=2 1×10 ⁻⁷ 6
862.1 5	415 80	861.8	2+	0.0	0+	E2	0.00310	$\alpha(K) = 0.00263 \ 4; \ \alpha(L) = 0.000371 \ 6; \\ \alpha(M) = 7.88 \times 10^{-5} \ 11; \ \alpha(N) = 1.756 \times 10^{-5} \\ 25; \ \alpha(O) = 2.63 \times 10^{-6} \ 4 \\ \alpha(P) = 1.585 \times 10^{-7} \ 23$
1059.7.5	735 40	2035.9	(5^{-})	9764	4+	D		$u(1) = 1.303 \times 10^{-23}$
1070.0 8	140 20	2046.6	(5^+)	976.4	4 ⁺	~		

 † From the Adopted Gammas.

[‡] From E=x,y ε decay.

[#] For absolute intensity per 100 decays, multiply by 0.0187 8.

^(a) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹³⁶Pm ε decay:E=Y 1973PaZV

¹³⁶₆₀Nd₇₆

3