¹³⁶Pm ε decay:E=x,Y 1987KeZZ

History										
Туре	Author	Citation	Literature Cutoff Date							
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018							

Parent: ¹³⁶Pm: E=x; J^{π} =(2); $T_{1/2}$ =300 s 50; $Q(\varepsilon)$ =8030 70; $\%\varepsilon+\%\beta^+$ decay=100.0

Parent: ¹³⁶Pm: E=y; $J^{\pi}=(5^{-})$; $T_{1/2}=107$ s 6; $Q(\varepsilon)=8030$ 70; $\%\varepsilon+\%\beta^{+}$ decay=100.0

1987KeZZ: ¹³⁶Pm activity produced by ⁹²Mo(⁴⁸Ti,X) and ¹¹²Sn(²⁸Si,X) reactions and via the decay of ¹³⁶Sm. Measured E_γ,

I γ , and $\gamma\gamma$ -coincidences. Decay scheme constructed from the time data, the singles, and coincidence spectra and is confirmed in independent but preliminary work of 1989BhZZ consisting of γ , ce, $\gamma\gamma$ measurements.

1989BhZZ: ¹³⁶Pm activity produced by ⁹⁴Mo(⁴⁸Ti,X) reaction with E(⁴⁸Ti)=210 MeV. Measured E γ , I γ , ce electrons, $\gamma\gamma$ coincidences.

Population of the 6⁺ member of the g.s. band indicates presence of (5⁻) isomer produced directly by the initial reaction rather than by ε decay. The ε feeding to the 2⁺ and 4⁺ members compared to feeding of the 6⁺ member is substantively larger than observed by 1973PaZV in (5⁻) ε decay indicating the presence of the (2) isomer produced following ε decay.

 α : Additional information 1.

¹³⁶Nd Levels

Relative direct feedings (normalized to feeding of 6⁺ level) deduced from these data and the data of 1973PaZV (136 Pm ε decay:E=y) are compared in the comments.

E(level)	$\mathrm{J}^{\pi^{\ddagger}}$	Comments				
0.0 [‡]	0+					
373.80 [‡] <i>16</i>	2+	2.1 14 (1987KeZZ); 0.12 +40-12 (1973PaZV).				
862.50 [#] 16	2+	2.5 4 (1987KeZZ); <0.013 (1973PaZV).				
976.47 [‡] 19	4+	1.6 5 (1987KeZZ); 1.0 2 (1973PaZV).				
1231.04 [#] 18	(3)+	1.0 4 (1987KeZZ); 0.06 +18-6 (1973PaZV).				
1541.76 [#] 20	(4 ⁺)	0.72 8 (1987KeZZ); 0.45 5 (1973PaZV).				
1746.9 [‡] 3	6+					
1775.6 3		0.52 5 (1987KeZZ); not observed (1973PaZV).				
1817.82 <i>21</i>		0.52 4 (1987KeZZ); not observed (1973PaZV).				
1926.02 24		0.26 8 (1987KeZZ); 0.66 6 (1973PaZV).				
2035.65 [@] 24	(5 ⁻)	0.53 8 (1987KeZZ); 0.84 7 (1973PaZV).				
2045.60 [#] 21	(5 ⁺)	0.72 22 (1987KeZZ); 1.29 14 (1973PaZV).				
2181.2 3		0.25 3 (1987KeZZ); not observed (1973PaZV).				
2227.91 25	$(3^{-},4,5,6^{+})$	0.25 2 (1987KeZZ); not observed (1973PaZV).				
2346.21 25		1.2 <i>I</i> (1987KeZZ); 0.89 7 (1973PaZV).				
2416.7 3		0.52 5 (1987KeZZ); not observed (1973PaZV).				
2440.1 [@] 3	(7 ⁻)	0.31 3 (1987KeZZ); 0.22 5 (1973PaZV).				
2522.9 <i>3</i>		0.36 4 (1987KeZZ); not observed (1973PaZV).				

 † From the Adopted Levels. These are in agreement with those suggested by 1987KeZZ.

[‡] Band(A): $K^{\pi}=0^+$ g.s. band.

[#] Band(B): $K^{\pi}=2^+ \gamma$ band. Assignment is supported by comparison of the interacting-boson calculations of 1983Ma03 to the relative B(E2)(\downarrow)'s derived by 1987KeZZ.

[@] Band(C): $\pi h_{11/2} \pi g_{7/2}$, $\alpha = 1$.

¹³⁶Pm ε decay:E=x,Y **1987KeZZ** (continued)

γ (¹³⁶Nd) E_{γ}^{\dagger} Mult.[‡] Iγ E_i(level) J_i^{π} E_f J^{π}_{L} Comments α 192.4[#] 2 92 2227.91 $(3^{-}, 4, 5, 6^{+})$ 2035.65 (5-) 254.7[#] 4 51 1231.04 $(3)^+$ 976.47 4+ [M1,E2] 0.097 9 $\alpha(K)=0.079 \ 11; \ \alpha(L)=0.0140 \ 17;$ $\alpha(M)=0.0030$ 5; $\alpha(N)=0.00067$ 9; $\alpha(O)=9.7\times10^{-5}$ 9 $\alpha(P)=4.7\times10^{-6}$ 11 2045.60 (5+) 300.6 2 76 3 2346.21 368.7 2 65 5 1231.04 $(3)^{+}$ 862.50 2+ [M1,E2] 0.034 6 $\alpha(K)=0.028$ 6; $\alpha(L)=0.00439$ 21; $\alpha(M)=0.00094$ 4; $\alpha(N)=0.000209$ 9; $\alpha(O) = 3.09 \times 10^{-5} 23$ $\alpha(P)=1.7\times10^{-6}$ 5 I_{γ} : 1989BhZZ report lower intensity for this transition. 371.1[#] 2 44 4 2416.7 $2045.60(5^+)$ 2^{+} 1000 20 373.8 2 373.80 $0.0 \quad 0^+$ E2 0.0268 $\alpha(K)=0.0217 \ 3; \ \alpha(L)=0.00400 \ 6;$ α (M)=0.000870 13; α (N)=0.000192 3; $\alpha(O)=2.75\times10^{-5}$ 4 $\alpha(P)=1.232\times10^{-6}$ 18 404.5[#] 3 $\alpha(K)=0.01735\ 25;\ \alpha(L)=0.00309\ 5;$ 62 2440.1 (7^{-}) 0.0213 2035.65 (5⁻) E2 *α*(M)=0.000669 *10*; *α*(N)=0.0001478 21 $\alpha(O)=2.13\times10^{-5}$ 3; $\alpha(P)=9.95\times10^{-7}$ 14 420.2[#] 2 24 3 2346.21 1926.02 373.80 2+ 488.7 2 186 8 862.50 2^{+} 0.016 4 α(K)exp=0.0095 20 (1989BhZZ) E2+M1 $\alpha(K)=0.013 4; \alpha(L)=0.0020 3;$ $\alpha(M)=0.00042$ 5; $\alpha(N)=9.3\times10^{-5}$ 12; $\alpha(O) = 1.39 \times 10^{-5} 21$ $\alpha(P) = 8.3 \times 10^{-7} 23$ 503.7[#] 4 72 (5^{+}) *α*(K)=0.012 *3*; *α*(L)=0.00181 25; 2045.60 1541.76 (4+) 0.015 4 [M1,E2] α (M)=0.00038 5; α (N)=8.6×10⁻⁵ 12; $\alpha(O) = 1.28 \times 10^{-5} 20$ $\alpha(P)=7.7\times10^{-7} 21$ 565.2[#] 3 17 5 (4^{+}) *α*(K)=0.0093 *23*; *α*(L)=0.00132 *21*; 1541.76 976.47 4+ 0.0110 25 [M1,E2] α (M)=0.00028 5; α (N)=6.3×10⁻⁵ 10; $\alpha(O)=9.4\times10^{-6}$ 17 $\alpha(P)=5.8\times10^{-7}$ 16 586.9[#] 3 22 3 1231.04 (3)+ 1817.82 602.7 2 384 6 976.47 4^{+} 373.80 2+ E2 0.00723 $\alpha(K)=0.00605 9; \alpha(L)=0.000931 13;$ $\alpha(M)=0.000199 \ 3; \ \alpha(N)=4.43\times 10^{-5} \ 7;$ $\alpha(O) = 6.53 \times 10^{-6} 10$ $\alpha(P) = 3.60 \times 10^{-7} 5$ Mult.: used for normalization α (K)exp=0.0061 8 (1989BhZZ). 679.2 2 50.5 1541.76 (4^{+}) 862.50 2+ 693.1 3 20 3 2440.1 1746.9 6+ 0.0019 3 (7^{-}) E1 1231.04 (3)+ 695.02 46 4 1926.02 6^{+} 976.47 4+ 770.3 2 104 5 1746.9 E2 0.00400 $\alpha(K)=0.00338$ 5; $\alpha(L)=0.000488$ 7; α (M)=0.0001040 15; α (N)=2.32×10⁻⁵ 4; $\alpha(O)=3.45\times10^{-6}$ 5 $\alpha(P)=2.03\times10^{-7}$ 3 814.7 2 151 7 2045.60 (5^{+}) 1231.04 (3)+ 857.2 2 234 5 1231.04 $(3)^+$ 373.80 2+ E2+M1 0.0040 9 α (K)exp=0.0036 6 (1989BhZZ)

 $\alpha(K) = 0.0034 8; \alpha(L) = 0.00046 9;$

Continued on next page (footnotes at end of table)

¹³⁶ Pm ε de			cay:1	E=x,Y	1987KeZZ	(continued)					
γ ⁽¹³⁶ Nd) (continued)											
E_{γ}^{\dagger}	I_{γ}	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α	Comments			
862.5 2	190 <i>15</i>	862.50	2+	0.0	0+	E2	0.00309	$\begin{aligned} &\alpha(\mathbf{M}) = 9.8 \times 10^{-5} \ I8; \ \alpha(\mathbf{N}) = 2.2 \times 10^{-5} \ 4; \\ &\alpha(\mathbf{O}) = 3.3 \times 10^{-6} \ 7 \\ &\alpha(\mathbf{P}) = 2.1 \times 10^{-7} \ 6 \\ &\alpha(\mathbf{K}) \exp = 0.0022 \ 5 \ (1989 \text{BhZZ}) \\ &\alpha(\mathbf{K}) = 0.00262 \ 4; \ \alpha(\mathbf{L}) = 0.000370 \ 6; \\ &\alpha(\mathbf{M}) = 7.87 \times 10^{-5} \ I1; \ \alpha(\mathbf{N}) = 1.754 \times 10^{-5} \ 25; \\ &\alpha(\mathbf{O}) = 2.63 \times 10^{-6} \ 4 \\ &\alpha(\mathbf{P}) = 1.584 \times 10^{-7} \ 23 \end{aligned}$			
955.2 [#] 3 1059.4 3 1069.1 3 1204.7 [#] 3 1251.3 [#] 3 1401.9 [#] 3	22 7 60 5 24 3 21 5 12 3 44 4	1817.82 2035.65 2045.60 2181.2 2227.91 1775.6	(5^{-}) (5^{+}) $(3^{-},4,5,6^{+})$	862.50 976.47 976.47 976.47 976.47 373.80	2^+ 4^+ 4^+ 4^+ 2^+	D					
1660.4 [#] 3	30 5	2522.9		862.50	2^{+}						

[†] From 1987KeZZ. I γ deduced by evaluator based on general comment in 1987KeZZ that $\Delta I \gamma \approx 10\%$. [‡] From the Adopted Gammas. [#] Not observed in decay of E=y isomer.

¹³⁶Pm ε decay:E=x,Y ____1987KeZZ

¹³⁶Pm ε decay:E=x,Y 1987KeZZ

 $^{136}_{60}\mathrm{Nd}_{76}$