#### <sup>138</sup>Ba(p,3n $\gamma$ ),<sup>133</sup>Cs( $\alpha$ ,n $\gamma$ ) 1985Mo01

| History         |                 |                     |                        |  |  |  |
|-----------------|-----------------|---------------------|------------------------|--|--|--|
| Туре            | Author          | Citation            | Literature Cutoff Date |  |  |  |
| Full Evaluation | E. A. Mccutchan | NDS 152, 331 (2018) | 1-Apr-2018             |  |  |  |

1985Mo01: <sup>138</sup>Ba(p,3n $\gamma$ ) with E(p)=17-45 MeV. Measured E $\gamma$ , I $\gamma$ ,  $\gamma(\theta)$ ,  $\gamma(t)$ ,  $\gamma\gamma$  coincidences, excitation function (3 MeV steps) using three Ge(Li) detectors. In beam measurements made at E(p)=32 MeV.

1980SuZY: <sup>133</sup>Cs( $\alpha$ ,n $\gamma$ ) with E( $\alpha$ )=15 MeV; <sup>136</sup>Ba(p,n $\gamma$ ) E=8 MeV. Measured in-beam  $\gamma$ 's and off-beam K x ray's,  $\gamma$ 's,  $\gamma$ (t), and X(t) (Ge(Li),Si(Li)).

1977Go15: <sup>133</sup>Cs( $\alpha$ ,n $\gamma$ ) with E( $\alpha$ )=15.9 MeV. Measured E $\gamma$  of 96 $\gamma$ .

1973BuYV: <sup>133</sup>Cs(α,nγ) E=12.4-17.2 MeV. Measured Eγ of 507.
 1973BuYV: <sup>133</sup>Cs(α,nγ) E=12.4-17.2 MeV. Measured Eγ. Preliminary results only in form of spectrum with labeled peaks, many of which originate from Coulomb excitation of the <sup>133</sup>Cs target.
 1966Gr19: <sup>136,137</sup>Ba(p,xnγ). Measured excitation functions (E=threshold-20 MeV), Eγ, Iγ, γ(t) using NaI(Tl) crystal. Observe

two transitions at approximately 70 keV and 100 5 keV.

Decay scheme from 1985Mo01, except as noted.

### 136La Levels

| E(level) <sup>†</sup>                                                    | $J^{\pi \ddagger}$                          | T <sub>1/2</sub> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|--------------------------------------------------------------------------|---------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0.0<br>21.80 20<br>44.32 25<br>140.0 3<br>158.3                          | $1^+$<br>$2^+$<br>$3^+$<br>$4^+$<br>$5^+$   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 172.03 25<br>173.5 4<br>211.98 15<br>230.1?                              | (3) <sup>#</sup><br>(5)<br>(2) <sup>@</sup> |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 270.14 25<br>274.6 3<br>331.6 3<br>342.6 4<br>346.0 6                    | (3) <sup>#</sup>                            | 17 ns 4          | T <sub>1/2</sub> : from $\gamma$ (t) (1985Mo01) using 248.8 $\gamma$ , 150.2 $\gamma$ , 130.2 $\gamma$ , 127.7 $\gamma$ , 98.0 $\gamma$ and 95.7 $\gamma$ .                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 381.5 <i>4</i><br>393.0 <i>6</i>                                         | (4) <sup>#</sup>                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 414.19 <i>16</i><br>436.9 <i>4</i><br>548.00 <i>19</i><br>555.0 <i>4</i> | (3) <sup>&amp;</sup>                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 563.8 <i>3</i><br>570.9 <i>3</i><br>659.0 <i>6</i><br>710.7 <i>4</i>     | (3) <sup>&amp;</sup>                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 749.23 <i>19</i><br>752.6 <i>4</i><br>945.5 <i>3</i><br>988.1 <i>3</i>   | (3) <sup>&amp;</sup>                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| x+230                                                                    | J                                           | 114 ms 5         | <ul> <li>T<sub>1/2</sub>: weighted average of 115 ms 5 from γ(t) (1985Mo01), 118 ms 5 from γ(t) (1980SuZY) and 110 ms 5 from γ(t) (1966Gr19).</li> <li>E(level): x ≈10-40 keV.</li> <li>J<sup>π</sup>: =7,8 from lifetime considerations.</li> <li>E(level): isomer is placed at 230.1 keV by 1980SuZY, directly depopulated by the 71.8γ.</li> <li>1985Mo01 tentatively place the isomer as slightly above decaying by a highly converted, low energy transition.</li> <li>Additional information 1.</li> </ul> |  |  |  |

<sup>136</sup><sub>57</sub>La<sub>79</sub>-1

# <sup>138</sup>Ba(p,3n $\gamma$ ),<sup>133</sup>Cs( $\alpha$ ,n $\gamma$ ) **1985Mo01** (continued)

#### <sup>136</sup>La Levels (continued)

| E(level) <sup>†</sup>            | Jπ‡                |
|----------------------------------|--------------------|
| 312.12+x <sup><i>a</i></sup> 18  | (J+1) <sup>@</sup> |
| 510.69+x <sup>a</sup> 15         | (J+1) <sup>@</sup> |
| 569.1+x <sup>a</sup> 3           | (J+2) <sup>@</sup> |
| 770.64+x <sup>a</sup> 22         | (J+2) <sup>@</sup> |
| 831.1+x <sup><i>a</i></sup> 4    |                    |
| 931.19+x <sup>a</sup> 16         | (J+3) <sup>@</sup> |
| 993.1+x <sup>a</sup> 3           | (J+3) <sup>@</sup> |
| 1030.9+x <sup>a</sup> 6          | _                  |
| 1095.37+x <sup>a</sup> 21        | (J+2) <sup>@</sup> |
| 1251.2+x <sup><i>a</i></sup> 3   | (J+3) <sup>@</sup> |
| 1252.8+x <sup><i>a</i></sup> 4   |                    |
| 1281.49+x <sup><i>a</i></sup> 25 | -                  |
| 1306.09+x <sup>a</sup> 20        | (J+3) <sup>@</sup> |
| 1491.8+x <sup><i>a</i></sup> 4   | (J+4) <sup>@</sup> |
| 1657.6+x <sup><i>a</i></sup> 4   | (J+4) <sup>@</sup> |
| $2082.2 + x^{a} 4$               |                    |

<sup>†</sup> From a least-squares fit to  $E\gamma$ , by evaluator; the 158-keV and 230-keV levels are excluded from the fitting procedure.

<sup>‡</sup> As proposed by 1985Mo01 based on  $\gamma$ -ray multipolarities and shell model calculations.

<sup>#</sup>  $\gamma(\theta)$  of 248 $\gamma$ , 150 $\gamma$ , 130 $\gamma$ , 128 $\gamma$  and 114 $\gamma$  have small anisotropies and are considered to be almost pure dipole.

<sup>@</sup> Most transitions show distinct negative anisotropies indicating D+Q with  $\Delta J=1$ .

&  $352\gamma(\theta)$  and  $537\gamma(\theta)$  are in agreement with dipole character and  $414\gamma(\theta)$  with quadrupole character.

<sup>*a*</sup> States built upon the 114 ms isomer. The excitation functions of the 82.1 $\gamma$  and 280.6 $\gamma$  exhibit a shift of  $\approx$ 3 MeV relative to those of the 248.4 $\gamma$  and 211.9 $\gamma$ .

## $\gamma(^{136}\text{La})$

Unplaced gammas are from 1973BuYV. Assignment to <sup>136</sup>La considered uncertain by evaluator. 1966Gr19 suggested mult( $\approx 70\gamma$ )=M2, mult( $100\gamma$ )=E2, and  $\alpha$ (K)exp( $100\gamma$ )=2.5 6 from Iy(K x ray):Iy( $\approx 70\gamma$ ):Iy( $100\gamma$ ).

However, the K x ray peak was probably contaminated by the  $33.5\gamma$ .

| $E_{\gamma}^{\dagger}$  | $I_{\gamma}^{\ddagger}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\alpha^{\boldsymbol{b}}$ | Comments                                                                                                                                                                                                                         |
|-------------------------|-------------------------|---------------|----------------------|--------|----------------------|--------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Х                       |                         | x+230         | J                    | 230.1? |                      |                    |                           | $E_{\gamma}$ : x $\approx$ 10-40 keV.                                                                                                                                                                                            |
| 18.27                   |                         | 158.3         | 5+                   | 140.0  | 4+                   |                    |                           | $E_{\nu}$ : From 1980SuZY. Not observed by others.                                                                                                                                                                               |
| 21.8 2                  | 36 <sup>a</sup> 30      | 21.80         | $2^{+}$              | 0.0    | $1^{+}$              |                    |                           |                                                                                                                                                                                                                                  |
| 22.5 2                  | <54 <sup><i>a</i></sup> | 44.32         | 3+                   | 21.80  | $2^{+}$              |                    |                           | $I_{\gamma}$ : given as $I_{\gamma}=24 \ 30$ in 1985Mo01.                                                                                                                                                                        |
| 33.5 2                  | 4.9×10 <sup>2</sup> 18  | 173.5         | (5)                  | 140.0  | 4+                   | D                  | <3                        | $E_{\gamma}$ : contaminated by K x-ray line of La.<br>Mult.: from $\alpha(\exp)$ (1985Mo01).<br>$\alpha$ : estimated by assuming that the total intensity of the 33.5 $\gamma$ should be less than the 95.7 $\gamma$ (1985Mo01). |
| (56.6+x)<br>$x66.8^{C}$ |                         | x+230         | J                    | 173.5  | (5)                  |                    |                           |                                                                                                                                                                                                                                  |
| 71.8 5                  | 24 12                   | 230.1?        |                      | 158.3  | 5+                   | D                  | ≤3                        | <ul> <li>α: from x-ray intensity off-beam spectra, contribution from 95.7γ assuming M1 multipolarity is subtracted (1985Mo01).</li> <li>E<sub>γ</sub>,I<sub>γ</sub>: contaminated by x-ray lines of Pb; intensity</li> </ul>     |

### <sup>138</sup>Ba(**p**,3nγ),<sup>133</sup>Cs(α,nγ) **1985Mo01** (continued)

#### $\gamma(^{136}La)$ (continued) Ι<sub>γ</sub>‡ $E_{\gamma}^{\dagger}$ $E_i$ (level) $\mathbf{J}_i^{\pi}$ $\mathbf{E}_{f}$ $\mathbf{J}_{f}^{\pi}$ Mult.# Comments estimated from coincidence spectrum. Mult.: from $\alpha(\exp)$ (1985Mo01). 270.14 72.5 2 18 5 342.6 (3)82.1 2 81 20 312.12+x (J+1)x+230 J D+Q Mult.: A<sub>2</sub>=-0.24 5, A<sub>4</sub>=0.06 6 (1985Mo01). $3^{+}$ 4+ 95.7 2 598 60 140.0 44.32 D+Q $E_{\gamma}$ : other: 96.2 5 (1977Go15). Mult.: $A_2 = -0.03 \ I$ , $A_4 = 0.01 \ I$ (1985Mo01). 98.0 2 39.8 270.14 (3)172.03 (3)102.7 2 74 274.6 172.03 (3)111.4 2 20 5 381.5 (4)270.14 (3)D+Q Mult.: A<sub>2</sub>=-0.09 7, A<sub>4</sub>=-0.05 10 (1985Mo01). 75 19 $3^{+}$ 127.7 2 172.03 (3)44.32 D+Q Mult.: A<sub>2</sub>=-0.01 4, A<sub>4</sub>=0.00 6 (1985Mo01). 66 15 140.0 $4^{+}$ D+Q 130.2 2 270.14 (3) Mult.: A<sub>2</sub>=0.06 4, A<sub>4</sub>=0.04 5 (1985Mo01). $2^{+}$ 150.2 2 46 12 172.03 (3) 21.80 D+Q Mult.: A<sub>2</sub>=-0.07 9, A<sub>4</sub>=-0.11 12 (1985Mo01). 155.8 2 24 6 1251.2+x (J+3)1095.37+x (J+2) D+Q Mult.: A<sub>2</sub>=-0.26 7, A<sub>4</sub>=0.08 9 (1985Mo01). 159.5 2 32 8 331.6 172.03 (3) D+Q Mult.: $A_2=0.05$ 7, $A_4=-0.05$ 10 (1985Mo01). <sup>x</sup>169.4<sup>c</sup> 10<sup>@</sup> 5 174.0 5 346.0 172.03 (3)<sup>x</sup>177.0<sup>C</sup> 7<sup>@</sup> 4 181.0 5 393.0 211.98 (2)<sup>x</sup>191.9<sup>c</sup> 11 5 414.19 211.98 (2)202.1 2 (3)100 10 $1^{+}$ 211.9 2 211.98 (2)0.0 D+O Mult.: A<sub>2</sub>=-0.16 4, A<sub>4</sub>=0.02 5 (1985Mo01). 230.2<sup>&</sup> 2 $3^{+}$ 74 274.6 44.32 <sup>x</sup>238.2<sup>C</sup> 248.4258 13 270.14 21.80 $2^{+}$ D+Q Mult.: A<sub>2</sub>=-0.05 6, A<sub>4</sub>=0.01 9 (1985Mo01). (3) 39 10 257.0 2 569.1 + x(J+2)312.12+x (J+1) Mult.: A<sub>2</sub>=-0.14 10, A<sub>4</sub>=0.03 15 (1985Mo01). 262.0 2 10 5 831.1+x 569.1+x (J+2)264.9 2 17 5 436.9 172.03 (3) D+Q Mult.: A<sub>2</sub>=-0.08 12, A<sub>4</sub>=0.20 15 (1985Mo01). <sup>x</sup>276.0<sup>C</sup> 137 14 280.6 2 510.69+x (J+1)x+230 I D+Q Mult.: A<sub>2</sub>=-0.28 3, A<sub>4</sub>=0.02 4 (1985Mo01). 284.9 2 36.9 555.0 270.14 (3) 287.3<sup>&</sup> 2 34 9 44.32 $3^{+}$ 331.6 D+Q Mult.: A<sub>2</sub>=-0.07 10, A<sub>4</sub>=0.00 13 (1985Mo01). 5<sup>@</sup> 3 287.9<sup>°</sup> 5 1281.49 + x993.1+x (J+3)324.7 2 74 1095.37+x (J+2)770.64+x (J+2) 329.2 2 34 9 A<sub>2</sub>=-0.15 7, A<sub>4</sub>=0.23 9 (1985Mo01). 710.7 381.5 (4)13<sup>@</sup> 7 336.0 5 548.00 211.98 (2)13 7 351.8 2 563.8 211.98 (2) D+Q Mult.: A<sub>2</sub>=-0.25 10, A<sub>4</sub>=0.06 15 (1985Mo01). (3) 358.9 2 95 570.9 211.98 (2)375.0 2 179 1306.09 + x(J+3)931.19+x (J+3) Mult.: A<sub>2</sub>=-0.31 12, A<sub>4</sub>=0.07 15 (1985Mo01). D+Q 406.4 2 20 10 1657.6+x (J+4)1251.2+x (J+3)D+Q Mult.: A<sub>2</sub>=-0.27 10, A<sub>4</sub>=0.23 14 (1985Mo01). 414.3<sup>&</sup> 2 26 13 414.19 0.0 $1^{+}$ A<sub>2</sub>=0.23 7, A<sub>4</sub>=0.18 10 (1985Mo01). (3) Q 420.5 2 14 7 931.19+x 510.69+x (J+1) (J+3)10 5 424.6 2 2082.2+x 1657.6+x (J+4)<sup>x</sup>436.5<sup>c</sup> 6<sup>@</sup> 3 447.0 5 659.0 211.98 (2)458.5 2 50 13 770.64+x (J+2)312.12+x (J+1) D+Q Mult.: A<sub>2</sub>=-0.46 10, A<sub>4</sub>=0.12 14 (1985Mo01). <sup>x</sup>481.0<sup>C</sup> 482.5 2 20.5752.6 270.14 (3) <sup>x</sup>492.0<sup>C</sup> 41 10 (J+4) 498.7 2 1491.8+x 993.1+x (J+3)Mult.: A<sub>2</sub>=-0.19 6, A<sub>4</sub>=0.03 9 (1985Mo01). D+Q 14<sup>@</sup> 7 1030.9 + x510.69 + x (J+1)520.2 5 7<sup>@</sup> 4 537.4 5 749.23 211.98 (3)(2)D+Q Mult.: A<sub>2</sub>=-0.13 9, A<sub>4</sub>=0.06 11 (1985Mo01). <sup>x</sup>545.8<sup>C</sup> 548.0<sup>&</sup> 2 11 6 $1^{+}$ 548.00 0.0

Continued on next page (footnotes at end of table)

#### <sup>138</sup>Ba(p,3n $\gamma$ ),<sup>133</sup>Cs( $\alpha$ ,n $\gamma$ ) 1985Mo01 (continued) $\gamma(^{136}$ La) (continued) $I_{\gamma}^{\ddagger}$ Mult.# $E_{\nu}$ E<sub>i</sub>(level) $J_i^{\pi}$ $\mathbf{E}_{f}$ $J_{\mathcal{L}}^{\pi}$ Comments 563.5<sup>&c</sup> 2 22 6 563.8 (3) 0.0 $1^{+}$ 571.2<sup>&c</sup> 2 195 570.9 0.0 $1^{+}$ 584.7 2 510.69+x (J+1) Mult.: A<sub>2</sub>=-0.22 7, A<sub>4</sub>=0.01 8 (1985Mo01). 32.8 1095.37+x (J+2)D+Q 12<sup>@</sup> 6 619.3<sup>c</sup> 5 931.19+x (J+3)312.12+x (J+1) <sup>x</sup>626.1<sup>c</sup> <sup>x</sup>671.3<sup>c</sup> 681.0 2 61 15 993.1+x (J+3)312.12+x (J+1) Q Mult.: A<sub>2</sub>=0.21 7, A<sub>4</sub>=0.01 9 (1985Mo01). 683.7 2 158 1252.8+x 569.1+x (J+2)701.3 2 931.19+x x+230 28 7 (J+3)J 733.5 2 95 945.5 211.98 (2)749.2<sup>&</sup> 2 $1^{+}$ 10 5 749.23 0.0 (3) <sup>x</sup>768.5<sup>C</sup> 770.8 2 18 9 510.69+x (J+1) 1281.49 + x776.1 2 17 4 988.1 211.98 (2)795.3 2 11 6 1306.09 + x(J+3) 510.69+x (J+1)

<sup>x</sup>962.4

<sup>†</sup> From 1985Mo01, except where noted.

<sup>‡</sup> From 1985Mo01. Uncertainties are only given explicitly for transitions below 72 keV. For higher energies 1985Mo01 provide only a general statement that uncertainties are accurate to 10-50% depending upon line strength; based on general statement evaluator has assigned an uncertainty of 10% for I $\gamma \ge 100$ , 25% for I $\gamma$  between 20 and 100 and 50% for I $\gamma \le 20$ .

<sup>#</sup> From  $\gamma(\theta)$  in 1985Mo01, except where noted.

<sup>@</sup> Line contaminated. I $\gamma$  and  $\Delta$ I $\gamma$  estimated from coincidence spectra.

<sup>&</sup> Placement from energy-sum considerations (1985Mo01).

<sup>*a*</sup> Contaminated by 22.7 $\gamma$  from <sup>71</sup>Ge.

<sup>b</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>c</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.



<sup>136</sup><sub>57</sub>La<sub>79</sub>



<sup>136</sup><sub>57</sub>La<sub>79</sub>