Adopted Levels, Gammas

Туре				Author	History Citation	Literature Cutoff Date						
Full Evaluat			tion E	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018						
$Q(\beta^{-})=6884 I$ S(2n)=11644	4; S(n)=3837 15, S(2p)=201	<i>14</i> ; S(p)=910 103 <i>14</i> (2017))5 <i>14</i> ; Q Wa10).	Q(<i>a</i>)=-2335 <i>14</i>	2017Wa10							
				-	¹³⁶ I Levels							
				Cross Refe	erence (XREF) Flags							
A 136 Te β ⁻ decay (17.63 s) B 137 Te β ⁻ n decay C 252 Cf SF decay D 248 Cm SF decay												
E(level) [†]	J^{π}	T _{1/2}	1/2 XREF Comments									
0	(1 ⁻)	83.4 s <i>4</i>	ABCD	$%β^-=100$ J ^π : log ft=6.46 supported by T _{1/2} : weighted s 2 (γ(t), β(t 1959Jo37).	$\%\beta^{-}=100$ J ^{π} : log <i>ft</i> =6.46 for β^{-} decay to 2 ⁺ state, no decays to 3 ⁻ states (1991Ma07), supported by Shell Model calculations (2009Co15,2010Co17). T _{1/2} : weighted average of 85.1 s 20 (γ (t), 1977We04), 83.4 s 4 (1972Wa21), 83 s 2 (γ (t), β (t), 1971Lu02), 83 s 3 (γ (t), 1970Ca25), and 82.8 s 15 (β (t), 1050Lo37)							
86.73 7	(2^-,1^-,0^-)	0.4 ns 1	ABCD	J^{π} : M1(+E2) 8	J^{π} : M1(+E2) 87.3 γ to (1 ⁻), population in ²⁴⁸ Cm SF decay favors $J^{\pi}=2^{-}$.							
201 26	(6 ⁻)	46.6 s <i>11</i>	D	T _{1/2} . from ce(t) in ⁻ Cl SF decay. %β ⁻ =100 E(level): from β endpoint energies in 2007Fo02. Note that 2007Fo02, interpreted this as 7 ⁻ isomer, however, observation of prompt, 42.6 keV transition from (7 ⁻) level by 2006Ur02 indicates that the isomer is J^{π} =(6 ⁻). Other: 640 <i>110</i> from 1985Wa04, based on βγ coincidence data of 1980KeZQ. T _{1/2} : weighted average of 44.8 s <i>10</i> (γ(t), 1977We04), 48 s <i>2</i> (γ(t), β(t), 1971Lu02), 48 s <i>1</i> (γ(t), 1970Ca25). J ^π : from log <i>ft</i> =6.4 for β decay to 6 ⁺ , weak or no β decay to 4 ⁺ , no observed IT decay, supported by shell model calculations (2006Ur02). configuration= $\pi \sigma^2$ decayfor (2006Ur02)								
222.10 7			AB D	J ^{π} : (3 ⁻) proposed ^{''} in ²⁴⁸ Cm SF decay based on assignment to γ -cascade, feeding from 0 ⁺ parent in β ⁻ decay suggests J=0,1,2.								
243.6 316.7 333.97 6	(7^{-}) $(0^{-},1)$		CD D AB	J^{π} : M1+E2 42.6 γ to (6 ⁻). J^{π} : log <i>tt</i> =6.3 for β^{-} decay from 0 ⁺ parent.								
578.77 <i>3</i> 630.53 <i>16</i> 738.21 <i>19</i> 1355.4 <i>26</i> 1616.1 <i>26</i>	(0,1,2) $(0^{-},1)$ (0,1,2) (9^{-}) (11^{-})	≈4 ns	AB AB AB CD CD	J^{π} : 5797 to 1 ⁻ , 20787 from 1 ⁺ . J^{π} : log $ft=6.3$ for β^{-} decay from 0 ⁺ parent. J^{π} : 7387 to (1 ⁻), 24977 from 1 ⁺ . J^{π} : (E2) 11127 to (7 ⁻). $T_{1/2}$: unplaced 2617 in ²⁵² Cf SF decay observed with $T_{1/2}=4$ ns (1970Io20)								
1859.4 26 2656.42 22 2685.1 18	(12 ⁻) 1 ⁺		CD A D	Other: 3.4 ns 6 also for unplaced 261 γ (1974ClZX). J ^{π} : (E2) 261 γ to (9 ⁻). J ^{π} : 243 γ to (11 ⁻). J ^{π} : log <i>ft</i> =4.7 from 0 ⁺ parent. J ^{π} : (12 ⁻) proposed by 1997Bh06 in ²⁴⁸ Cm SF decay based on shell model calculations.								
3079.1	1		D	J^{π} : (12 ⁺) proposed by 1997Bh06 in ²⁴⁸ Cm SF decay based on shell model calculations.								
3137.1 <i>5</i> 3143.4	1+		A D	J^{π} : log <i>ft</i> =5.3 from 0 ⁺ parent. J^{π} : (13 ⁺) proposed by 1997Bh06 in ²⁴⁸ Cm SF decay based on shell model calculations.								

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁶I Levels (continued)

E(level) [†]	\mathbf{J}^{π}	XREF	Comments
3235.2 3	1+	A	J^{π} : log ft=4.5 from 0 ⁺ parent.
3260		D	J^{π} : (14 ⁺) proposed by 1997Bh06 in ²⁴⁸ Cm SF decay based on shell model calculations.
3321		D	
4319		D	

[†] From least-squares fit to $E\gamma$, by evaluator. For states built upon the 201-keV isomer, the uncertainty in the excitation energy is not propagated.

Adopted Levels, Gammas (continued)											
γ ⁽¹³⁶ I)											
E _i (level)	${ m J}^{\pi}_i$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_{f}	J_f^π	Mult.	δ	α [@]	Comments		
86.73	(2 ⁻ ,1 ⁻ ,0 ⁻)	87.3 2	100	0 (1-)	M1(+E2)	<0.18	1.22 6	α(K)=0.960 21; α(L)=0.135 11; α(M)=0.0273 24; α(N)=0.0055 5; α(O)=0.00063 4 B(E2)(W.u.)<120; B(M1)(W.u.)=0.036 10 Mult.,δ: from α(exp)=1.22 6 in 136Te β- decay. Other: α(K)exp=3.2 8 in 248Cm SF decay, however, theory gives α(K)=0.96 and 1.8 for M1 and E2 multipolarities. α: experimental value from 136Te β- decay.		
222.10		135.385 <i>3</i>	100	86.73 (2	2^-,1^-,0^-)						
243.6	(7 ⁻)	42.6 [#]	100	201 (6 ⁻)	M1+E2		24 16	$\alpha(K)=9.1 \ 15; \ \alpha(L)=12 \ 11; \ \alpha(M)=2.6 \ 24; \ \alpha(N)=0.5 \ 5; \ \alpha(O)=0.04 \ 4$ Mult : from $\alpha(K)=27 \ 1 \ in \ 248 \ Cm \ SE \ decay$		
316.7		94 5 [#]	100	222.10					ware. non a (re)exp-7 7 m Cm of accay.		
333.97	$(0^{-},1)$	333.99 6	100	0 (1-)						
578.77	(0,1,2)	356.78 6	11	222.10	<i>,</i>						
		491.3 <i>3</i>	13	86.73 (2	2^-,1^-,0^-)						
(20.52	(0 = 1)	578.75 3	100		1^{-})						
030.33	(0,1)	297.5 J 543 2 3	21	86 73 ($2^{-}1^{-}0^{-}$						
		630.7 2	100	0 ()	1^{-})						
738.21	(0,1,2)	738.2 2	100	0 (1-)						
1355.4	(9 ⁻)	1111.8 [‡]	100	243.6 (*	7-)	(E2)		1.22×10 ⁻³	α (K)=0.001054 <i>15</i> ; α (L)=0.0001322 <i>19</i> ; α (M)=2.65×10 ⁻⁵ 4; α (N)=5.36×10 ⁻⁶ 8; α (O)=6.25×10 ⁻⁷ 9 Mult.: Q from $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay, assumed member		
									of E2 cascade.		
1616.1	(11 ⁻)	260.7 [‡]	100	1355.4 (9	9 ⁻)	(E2)		0.0636	$\alpha(K)=0.0521 \ 8; \ \alpha(L)=0.00919 \ 13; \ \alpha(M)=0.00189 \ 3; \ \alpha(N)=0.000373 \ 6; \ \alpha(O)=3.94\times10^{-5} \ 6$ B(E2)(W.u.) ≈ 2.7 Mult: O from $\gamma\gamma(\theta)$ in ²⁵² Cf SF decay, assumed member		
									of E2 cascade.		
1859.4	(12 ⁻)	243.3 [‡]	100	1616.1 (11-)						
2656.42	1+	2077.9 3	100	578.77 ((0,1,2)						
		2569.43	69 2 &	86.73 (.	2,1,0)						
0(05.1		2656.0 ^{eee} 0	≈3 ~~	0 (1)						
2685.1		1069"	100	1010.1 (11)						
3079.1 3137.1	1+	1463" 2804.0.6	100	1010.1 ((11) $(0^{-}1)$						
5157.1	1	3049.5 6	92	86.73 (J	$2^{-},1^{-},0^{-})$						
3143.4		1284	100	1859.4 (12-)						
3235.2	1+	2496.9 5	33	738.21 ((0,1,2)						
		2004.8 0	ð	030.33 (1	0,1)						

ω

 $^{136}_{53}I_{83}$ -3

 $^{136}_{53}\mathrm{I}_{83}\text{--}3$

From ENSDF

$\gamma(^{136}I)$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	${ m J}_f^\pi$	E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}
3235.2	1^{+}	2656.0 ^{&a} 6	≈4 <mark>&</mark>	578.77	(0,1,2)	3260		1402 [#]		1859.4	(12 ⁻)
		3235.1 4	100	0	(1 ⁻)			1644 <mark>#</mark>		1616.1	(11 ⁻)
3260		117 [#]		3143.4		3321		242 [#]	100	3079.1	
		182 [#]		3079.1		4319		1058 [#]	100	3260	

[†] From ¹³⁶Te β^- decay, except where noted. [‡] From ²⁵²Cf SF decay. [#] From ²⁴⁸Cm SF decay.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

^{*a*} Placement of transition in the level scheme is uncertain.

 $^{136}_{53}\mathrm{I}_{83}\text{--}4$

¹³⁶₅₃I₈₃