Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018

 $Q(\beta^{-}) = -7150 \text{ SY}; S(n) = 10170 \text{ SY}; S(p) = 680 \text{ SY}; Q(\alpha) = 2960 \text{ SY}$ 2017Wa10

 $\Delta Q(\beta^{-})=360$; $\Delta S(n)=280$; $\Delta S(p)=250$; $\Delta Q(\alpha)=250$ (2017Wa10).

S(2n)=22460 syst 360; S(2p)=4080 syst 200; $Q(\varepsilon p)=6520$ syst 210 (2017Wa10).

1989Vi04: 92 Mo(46 Ti,pn) with E(46 Ti)=192 MeV followed by mass separation. Measured E γ , I γ , K xrays, X γ , $\gamma\gamma$, $\beta\gamma$, γ (t) using Si(Au) Δ E-telescope, thin planar HPGe x-ray detector, thick plastic scintillator and n-type Ge detector.

1987Ke05: 92 Mo(48 Ti,p3n) with E(48 Ti)=220 MeV and 112 Sn(28 Si,p3n) with E(28 Si)=170 and 190 MeV followed by mass separation. Measured E γ , I γ , $\gamma\gamma$, γ (t) using two Ge detectors.

¹³⁶Eu Levels

E(level)	\mathbf{J}^{π}	$T_{1/2}$	Comments
X	$\overline{(7^+)}$	3.3 s <i>3</i>	$\%\varepsilon + \%\beta^{+} = 100; \%\beta^{+} p = 0.09 (1989 \text{Vio}4)$
			$T_{1/2}$: from 431.7 γ (t) (1989Vi04).
			$\%\beta^+$ p: from 1989Vi04 who were not able to assign the branch to a particular β -decaying level.
			J^{π} : tentative assignment based on observed feeding to 6 ⁺ and 8 ⁺ levels in ¹³⁶ Sm.
V	(3^{+})	3.8 s <i>3</i>	$\%\varepsilon + \%\beta^{+} = 100; \%\beta^{+} p = 0.09$
,	, ,		$T_{1/2}$: average of $T_{1/2}$ =3.7 s 3 (1989Vi04) and $T_{1/2}$ =3.9 s 5 (1987Ke05). Both groups used the 2 ⁺ to
			g.s. transition (255 keV) in 136 Sm to extract $T_{1/2}$, and thus the value likely has a contribution from
			the high-spin isomer.
			J^{π} : tentative assignment based on observed feeding to 2^+ and 4^+ levels in ¹³⁶ Sm.
			$\%\beta^+$ n: from 1989Vi04 who were not able to assign the branch to a particular β -decaying level