Adopted Levels, Gammas

		r	Гуре	Author	History Citation	Literature Cutoff Date				
		Full E	Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018				
$Q(\beta^{-})=2548.2$ S(2n)=15590. See ¹³⁸ Ba(μ^{-}	2 19; S(n) .2 19; S(2 ,2nγ) for	=6828.4 <i>21</i> ; p)=16873 <i>5</i> possible unp	; S(p)=721; (2017Wa10 blaced game	5 4; $Q(\alpha) = -3060$ 4 0).	2017Wa10					
				1	³⁶ Cs Levels					
				Cross Ref	erence (XREF) Flags					
				A ¹³⁶ Cs B ¹³⁶ Xe C ¹³⁸ Ba D ²³⁸ U(IT decay (17.5 s) $e^{(^{3}\text{He},t)}$ $(\mu^{-},2n\gamma)$ $\mu^{12}\text{C},\text{F}\gamma),^{208}\text{Pb}(^{18}\text{O},\text{F}\gamma)$					
E(level) [†]	J <i>π</i> ‡	T _{1/2}	XREF		Com	iments				
0.0	5+	13.01 d 5	A	$\frac{\%\beta^{-}=100}{Q=+0.213} \frac{15}{15} (1975Ac01,2016St14); \mu=+3.711 \frac{15}{15} (1975Ac01)$ T _{1/2} : weighted average of 13.04 d 3 (2004Pa06, 819γ(t) and 1048γ(t), 3 T _{1/2} 's), 13.16 d 3 (1975Fl03 av of two β(t) and nine γ(t) measurements), 13.00 d 3 (1971Ba28, 6 to 8 T _{1/2} 's, 4πβ(t)), 12.93 d 2 (1963Fr13, 18 T _{1/2} 's, average of 9 measurements). Other: 12.63 d 4 (1997Ka37, γ(t), 3 T _{1/2} 's, average of 6 measurements). μ : from optical level crossing (1975Ac01). Others: +3.71 2 (1981Th06; atomic beam laser spectroscopy), +3.68 4 (1971Da01, atomic beam). $\%\beta^{-}$: $\%\varepsilon$ is negligible since $\Delta J=5$ and $Q(\varepsilon)=80 8$. J ^π : J from atomic beam magnetic resonance method (1981Th06,1976Fu06,1971Da01); $\pi=+$ from μ and J which are consistent only with indicated shell-model configurations. configuration: $(\pi g7/2)(vd3/2)^{-1}$. Q: re-evaluated value from 2016St14, based on Q=+0.225 <i>10</i> from 1975Ac01 using optical level crossing including polarization corrections. Other: 0.17 6 (1981Th06, 1000)						
104.8 3	4+		А	E(level): from the energy difference of the 518 γ and 413 γ depopulating the 518-keV level.						
517.9 <i>1</i>	8-	17.5 s 2	A D	 J[*]: M4 413γ from 8⁻, 105γ to 5⁺. %[T>0; %β⁻=? Q=+0.74 <i>I0</i> (1981Th06,2016St14) μ=+1.319 7 (1981Th06) T_{1/2}: from 518γ(t) in ¹³⁶Cs IT decay. Others: 17 s 2 (1987BaYL), 19 s 2 (1975Ra03), 19 s 8 (1981Th06). %IT: γ-ray decay from the isomer has been observed, but the branching ratio is not known. J^π: J from atomic-beam magnetic-resonance method (1981Th06). π=- from μ and J which are consistent only with indicated shell-model configurations. configuration: (πg7/2)(vh11/2)⁻¹. μ: from atomic beam high resolution laser spectroscopy (1981Th06). Q: re-evaluated value from 2016St14, based on Q=+0.74 <i>10</i> from 1981Th06 using atomic beam high resolution laser spectroscopy. 						
583.9 5 590 5 850 5 1000 5 1910 5 1982.3 [#] 6	$9^{-} \\ 1^{+a} \\ 1^{+a} \\ (2^{-})^{a} \\ 1^{+a} \\ (11^{-})$		D B B B D	atomic beam high J^{π} : M1 66 γ to 8 ⁻ .	resolution laser spectros	сору.				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁶Cs Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
2010 5	1 ^{+<i>a</i>}	В	
2243.9 [#] 6	(12^{-})	D	
2290 5	1+ <i>a</i>	В	
2360 5	1+ a	В	
2450 5	1+ a	В	
2500 5	1 ^{+<i>a</i>}	В	
2550 5	1 ^{+<i>a</i>}	В	
2600 5	1 ^{+<i>a</i>}	В	
2710 5	1+ <i>a</i>	В	
2810 5	1+ a	В	
2910 5	1+ u	В	
2927.6 [@] 7	(12^{-})	D	
2973.7 [#] 7	(13 ⁻)	D	
3257.8 [@] 7	(13 ⁻)	D	
3380.1 [#] 7	(14^{-})	D	
3420 5	1+ a	В	
3486.8 [@] 7	(14 ⁻)	D	
3520 5	1+ a	В	
3562.5 <mark>&</mark> 7	(13 ⁺)	D	
3684.0 <mark>&</mark> 7	(14^{+})	D	
3929.1 <mark>&</mark> 8	(15 ⁺)	D	
4086.7 [@] 7	(15 ⁻)	D	
4359.2 [#] 9	(16 ⁻)	D	
4396.1 [@] 8	(16 ⁻)	D	
4645.8 <mark>&</mark> 9		D	
13380	0^{+}	В	E(level), J^{π} : IAS of 0 ⁺ g.s. ¹³⁶ Xe parent state (2011Pu06).

[†] From a least-squares fit to E γ for level connected by γ -rays, except where noted. Levels with $\Delta E > 1$ keV are from 136 Xe(³He,t).

[‡] From ${}^{238}\text{U}({}^{12}\text{C},\text{F}\gamma), {}^{208}\text{Pb}({}^{18}\text{O},\text{F}\gamma)$ based on the assumptions that 1) spin values increase with excitation energy along the yrast line and 2) most of the transitions are dipole in character as well as comparisons with shell model calculations, except where noted.

where noted. # Seq.(A): Sequence based on (11⁻). Configuration= $\pi d_{5/2} \otimes \pi g_{7/2}^4 \otimes \nu h_{11/2}^{-1}$.

[@] Seq.(B): Sequence based on (12⁻). Configuration= $\pi g_{7/2}^3 \otimes \pi d_{5/2}^2 \otimes \nu h_{11/2}^{-1}$.

& Seq.(C): Sequence based on (13⁺). Possible configuration= $\pi h_{11/2} \otimes \pi g_{7/2}^2 \otimes \nu h_{11/2}^{-1}$.

^{*a*} From shapes of measured $\sigma(\theta)$ in (³He,t) and comparison with DWBA calculations.

 $\gamma(^{136}Cs)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	Comments
104.8	4+	104.8	100	0.0 5+	(E2)	E_{γ} , I_{γ} : from ¹³⁶ Cs IT Decay.
517.9	8-	413.1 <i>3</i>	0.072	104.8 4+	M4	E_{γ} , I_{γ} : from ¹³⁶ Cs IT Decay.
		517.9 <i>1</i>	100	$0.0 \ 5^+$	E3	E_{γ} , I_{γ} : from ¹³⁶ Cs IT Decay.
583.9	9-	66.0 5	100	517.9 8-	M1	Mult.: from $\alpha(\exp)$ in ${}^{238}U({}^{12}C,F\gamma),{}^{208}Pb({}^{18}O,F\gamma)$.
1982.3	(11^{-})	1398.4 <i>3</i>	100	583.9 9-		
2243.9	(12^{-})	261.6 2	100	1982.3 (11-)		
2927.6	(12^{-})	945.3 <i>4</i>	100	1982.3 (11-)		

Adopted Levels, Gammas (continued)

$\gamma(^{136}Cs)$ (continued)

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	Comments
2973.7	(13^{-})	729.8 3	100	2243.9 (1	12-)		
3257.8	(13^{-})	330.2 3	100 25	2927.6 (1	12 ⁻)		
	(-)	1013.7 5	100 40	2243.9 (1	12 ⁻)		
3380.1	(14^{-})	406.4 3	100	2973.7 (1	13 ⁻)		
3486.8	(14^{-})	229.0 4	100 25	3257.8 (1	13-)		
	. ,	513.2 4	100 30	2973.7	13-)		
3562.5	(13^{+})	635.0 5	50 25	2927.6	12 ⁻)		
	. ,	1318.5 5	100 40	2243.9	12^{-1}		
3684.0	(14^{+})	121.4 5	17 4	3562.5	13^{+}	M1	Mult.: from $\alpha(\exp)$ in ${}^{238}U({}^{12}C.F\gamma), {}^{208}Pb({}^{18}O.F\gamma)$.
		710.4 3	100 30	2973.7 (1	13-)		
3929.1	(15^{+})	245.1 <i>3</i>	100	3684.0	$14^{+})$		
4086.7	(15-)	599.8 <i>5</i>	100 30	3486.8 (1	14 ⁻)		
	. ,	706.5 5	11 6	3380.1	14^{-1}		
		1113.2 5	56 22	2973.7	13-)		
4359.2	(16^{-})	979.1 5	100	3380.1	14 ⁻)		
4396.1	(16 ⁻)	309.4 4	100 50	4086.7	15^{-1}		
	. /	1015.9 5	50 25	3380.1	14 ⁻)		
4645.8		716.7 4	100	3929.1	15+)		

[†] From ²³⁸U(¹²C,F γ),²⁰⁸Pb(¹⁸O,F γ), except where noted. [‡] From experimental conversion coefficients and subshell ratios in ¹³⁶Cs IT Decay, except where noted.

 $^{136}_{55}\mathrm{Cs}_{81}$

Adopted Levels, Gammas

¹³⁶₅₅Cs₈₁