¹³⁶La ε decay (9.87 min) 1969Me18

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. A. Mccutchan	NDS 152, 331 (2018)	1-Apr-2018				

Parent: ¹³⁶La: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=9.87 \text{ min } 3$; $Q(\varepsilon)=2.85\times10^3 5$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0 1969Me18: ¹³⁶La activity from ¹³⁶Ba(p,n) reaction with E(p)=14 MeV. Measured E γ , γ , γ (t) using Ge(Li) detector. 1987PaZS: ¹³⁶La activity from 9.2 MeV protons on BaCO₃ targets. Measured Ey, Iy, Ece, Ice; deduced E0/E2 transition probabilities.

Others: 1968Ju02, 1959Gi50.

 α : Additional information 1.

¹³⁶Ba Levels

Levels at 2333 (1514γ ,2333 γ), 2285 (1466γ), and 2607 (1791γ) suggested by 1969Me18 are not confirmed in any other experiment. Evaluator has not included these level here and their corresponding depopulating transitions are given as unplaced γ 's.

E(level) [†]	$J^{\pi \ddagger}$						
0.0	0^{+}	1579.02 5	0^{+}	2141.52 5	0^{+}	2532.1? 7	3-
818.52 4	2^{+}	2080.63 8	2^{+}	2315.44 10	0^{+}	2640.5? 5	(1^{+})
1551.14 9	2+	2128.97 6	2+	2485.60 13	2+	2772.6? 3	2+

[†] From a least-squares fit to $E\gamma$, by evaluator.

[‡] From the Adopted Levels.

ε, β^+ radiations

 $I_{\gamma}(\gamma^{\pm})=3090\ 430$ if $I_{\gamma}(818\gamma)=100\ (1968Ju02)$ compared to 3090 180 from decay scheme.

E(decay)	E(level)	Ιβ ⁺ †‡	$I\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(8×10 ^{1#} 5)	2772.6?		0.0020 10	5.5 15	0.0020 10	εK=0.6 7; εL=0.3 5; εM+=0.09 21
$(2.1 \times 10^{2\#} 5)$	2640.5?		0.0040 20	6.3 4	0.0040 20	εK=0.806 21; εL=0.150 16; εM+=0.044 6
$(3.2 \times 10^2 5)$	2532.1?		2.0×10 ⁻⁴ 20	7.6^{1u} 6	2.0×10 ⁻⁴ 20	εK=0.76 3; εL=0.183 22; εM+=0.055 8
$(3.6 \times 10^2 5)$	2485.60		0.018 3	6.23 16	0.018 3	εK=0.829 5; εL=0.133 4; εM+=0.0379 12
$(5.3 \times 10^{2\#} 5)$	2315.44		0.043 3	6.21 10	0.043 3	εK=0.8380 19; εL=0.1263 14; εM+=0.0357 5
$(7.1 \times 10^2 5)$	2141.52		0.260 20	5.69 8	0.260 20	εK=0.8423 10; εL=0.1231 8; εM+=0.03462 25
$(7.2 \times 10^2 5)$	2128.97		0.150 10	5.95 8	0.150 10	εK=0.8425 10; εL=0.1229 8; εM+=0.03457 24
$(7.7 \times 10^2 5)$	2080.63		0.049 3	6.49 7	0.049 3	εK=0.8433 9; εL=0.1223 7; εM+=0.03437 21
$(1.27 \times 10^3 5)$	1579.02		0.290 10	6.17 4	0.290 10	εK=0.8476 1; εL=0.11884 25; εM+=0.03323 8
$(1.30 \times 10^3 5)$	1551.14		0.019 3	7.37 8	0.019 3	εK=0.8476 3; εL=0.1187 3; εM+=0.03319 8
$(2.03 \times 10^3 5)$	818.52	0.115 19	1.44 [†] 6	5.89 4	1.55 6	av Eβ=456 22; εK=0.788 11; εL=0.1083 15; εM+=0.0302 5
$(2.85 \times 10^3 5)$	0.0	35.2 20	62.4 [†] 20	4.55 3	97.61 9	av Eβ=822 23; εK=0.545 17; εL=0.0743 24; εM+=0.0207 7

E(decay): other: 2870 70 (1959Gi50).

[†] See comment on I γ normalization.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

$\gamma(^{136}\text{Ba})$

I γ normalization, I(γ +ce) normalization: from I γ (818.5 γ)/I γ (γ^{\pm})=0.032 6 (1968Ju02), Σ I γ (to 818), Σ I γ (1+ α)(to g.s.), and theoretical ε/β^+ ratios.

Eγ	Ι _γ @	E _i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [#]	δ#	α	Comments
x541.5 <i>I</i> 732.6 <i>I</i>	0.20 8 0.48 6	1551.14	2+	818.52 2+	M1+E2	-1.00 4	0.00443	α (K)=0.00380 6; α (L)=0.000500 8; α (M)=0.0001029 16; α (N)=2.22×10 ⁻⁵ 4; α (O)=3.38×10 ⁻⁶ 6
760.50 4	12.55 25	1579.02	0+	818.52 2+	E2		0.00337	$\alpha(P)=2.40\times10^{-7} 4$ $\alpha(K)=0.00287 4; \ \alpha(L)=0.000393 6; \ \alpha(M)=8.11\times10^{-5} 12;$ $\alpha(N)=1.742\times10^{-5} 25; \ \alpha(O)=2.63\times10^{-6} 4$ $\alpha(P)=1.769\times10^{-7} 25$
^x 767 ^{&} 1	0.16 8							
818.51 4	100	818.52	2+	0.0 0 ⁺	E2		0.00283	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00242 \ 4; \ \alpha(\mathrm{L}) = 0.000327 \ 5; \ \alpha(\mathrm{M}) = 6.75 \times 10^{-5} \ 10; \\ &\alpha(\mathrm{N}) = 1.450 \times 10^{-5} \ 21; \ \alpha(\mathrm{O}) = 2.19 \times 10^{-6} \ 3 \\ &\alpha(\mathrm{P}) = 1.495 \times 10^{-7} \ 21 \end{aligned}$
^x 894 ^{&}	0.2							
906.8 2 935 1	$\leq 0.05 \\ 0.09 \ 7$	2485.60 2485.60	$2^+_{2^+}$	$\begin{array}{rrrr} 1579.02 & 0^+ \\ 1551.14 & 2^+ \end{array}$	[E2]		0.00490	
981.3 ^{&}	≤0.005	2532.1?	3-	1551.14 2+	E1+M2	+0.11 2	0.00086 3	$\alpha(K)=0.00074 \ 3; \ \alpha(L)=9.2\times10^{-5} \ 4; \ \alpha(M)=1.88\times10^{-5} \ 7; \\ \alpha(N)=4.05\times10^{-6} \ 15; \ \alpha(O)=6.20\times10^{-7} \ 23 \\ \alpha(P)=4.56\times10^{-8} \ 17$
$(1221.4^{\ddagger \ddagger} 3)$	0.04 2	2772.6?	2+	1551.14 2+				
1262.10 9	1.30 9	2080.63	2+	818.52 2+	M1+E2	-1.00 5	1.31×10 ⁻³ 2	$\alpha(K)=0.001114 \ 18; \ \alpha(L)=0.0001405 \ 22; \ \alpha(M)=2.88\times10^{-5}$ 5; $\alpha(N)=6.21\times10^{-6} \ 10$ $\alpha(Q)=9.53\times10^{-7} \ 15; \ \alpha(P)=7.03\times10^{-8} \ 12$
1310.41 7	4.31 17	2128.97	2+	818.52 2+	M1(+E2)	+0.005 9	1.37×10^{-3}	$\alpha(\text{K}) = 0.001166 \ 17; \ \alpha(\text{L}) = 0.0001456 \ 21; \ \alpha(\text{M}) = 2.98 \times 10^{-5}$ 5; \alpha(\text{N}) = 6.44 \times 10^{-6} \ 9
1322.99 4	11.50 35	2141.52	0+	818.52 2+	E2		1.04×10^{-3}	$\alpha(O) = 9.92 \times 10^{-7} \ 14; \ \alpha(P) = 7.44 \times 10^{-6} \ 11$ $\alpha(K) = 0.000872 \ 13; \ \alpha(L) = 0.0001109 \ 16; \ \alpha(M) = 2.27 \times 10^{-5}$ $4; \ \alpha(N) = 4.90 \times 10^{-6} \ 7$ $\alpha(O) = 7.49 \times 10^{-7} \ 11; \ \alpha(P) = 5.42 \times 10^{-8} \ 8$
^x 1466 1	0.12 5							$u(0) = 7.49 \times 10^{-11}, u(1) = 5.42 \times 10^{-0}$
1496.91 9	1.86 8	2315.44	0+	818.52 2+	E2		8.71×10 ⁻⁴	$ \begin{aligned} &\alpha(\mathrm{K}) = 0.000685 \ 10; \ \alpha(\mathrm{L}) = 8.62 \times 10^{-5} \ 12; \ \alpha(\mathrm{M}) = 1.766 \times 10^{-5} \\ &25; \ \alpha(\mathrm{N}) = 3.81 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 5.83 \times 10^{-7} \ 9 \\ &\alpha(\mathrm{P}) = 4.26 \times 10^{-8} \ 6 \end{aligned} $
^x 1514.5 2 1551.2 2	0.10 <i>4</i> 0.48 <i>6</i>	1551.14	2+	0.0 0+	E2		8.37×10 ⁻⁴	α (K)=0.000640 9; α (L)=8.03×10 ⁻⁵ 12; α (M)=1.644×10 ⁻⁵ 23; α (N)=3.55×10 ⁻⁶ 5; α (O)=5.43×10 ⁻⁷ 8 α (P)=3.98×10 ⁻⁸ 6

¹³⁶ La ε decay (9.87 min) 1969Me18 (continued)										
γ ⁽¹³⁶ Ba) (continued)										
Eγ	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^{π}	E_f .	\mathbf{J}_{f}^{π}	Mult.#	$\delta^{\#}$	α	$I_{(\gamma+ce)}^{(a)}$	Comments
1579.0 [†]		1579.02	0+	0.0 (0+	E0			0.00035 CA	ce(K)/(γ +ce)=0.89; ce(L)/(γ +ce)=0.11 B(E0)/B(E2 to 2 ⁺ , 818 level)=0.173 <i>15</i> (1987PaZS); B(E2 to 2 ⁺ , 1551 level)/B(E2 to 2 ⁺ , 818 level)≈0 (1987PaZS).
1666.9 2	0.48 6	2485.60	2+	818.52	2+	M1+E2	+0.24 4	9.30×10 ⁻⁴ 14		$\alpha(K)=0.000680 \ 10; \ \alpha(L)=8.43\times10^{-5} \ 13; \\ \alpha(M)=1.726\times10^{-5} \ 25; \ \alpha(N)=3.73\times10^{-6} \ 6; \\ \alpha(O)=5.74\times10^{-7} \ 9 \\ \alpha(P)=4.32\times10^{-8} \ 7$
1713.2 ^{&}	≤0.01	2532.1?	3-	818.52 2	2+	E1+M2	+0.010 8	6.76×10 ⁻⁴		$\alpha(K) = 0.000257 \ 4; \ \alpha(L) = 3.11 \times 10^{-5} \ 5; \alpha(M) = 6.34 \times 10^{-6} \ 9; \ \alpha(N) = 1.368 \times 10^{-6} \ 20; \alpha(O) = 2.10 \times 10^{-7} \ 3 \alpha(P) = 1.573 \times 10^{-8} \ 22$
^x 1791.4 3	0.29 8									u(1)-1.575×10 22
1822.0 ^{&} 5	0.15 6	2640.5?	(1^{+})	818.52 2	2+	D+Q	0.1 +50-1			
1955 ^{&} 1	0.07 2	2772.6?	2+	818.52 2	2+	M1+E2	+0.65 25	8.17×10 ⁻⁴ 18		$\alpha(K)=0.000466 \ 13; \ \alpha(L)=5.76\times10^{-5} \ 16; \\ \alpha(M)=1.18\times10^{-5} \ 4; \ \alpha(N)=2.54\times10^{-6} \ 7; \\ \alpha(O)=3.92\times10^{-7} \ 11 \\ \alpha(P)=2 \ 94\times10^{-8} \ 9$
2080.60 15	0.84 5	2080.63	2+	0.0 (0+	E2		7.61×10 ⁻⁴		$\alpha(K) = 0.000370 \ 6; \ \alpha(L) = 4.56 \times 10^{-5} \ 7; \alpha(M) = 9.33 \times 10^{-6} \ 13; \ \alpha(N) = 2.01 \times 10^{-6} \ 3; \alpha(O) = 3.09 \times 10^{-7} \ 5 \alpha(D) = 2.20 \times 10^{-8} \ 4$
2129.00 8	2.04 8	2128.97	2+	0.0 (0+	E2		7.67×10 ⁻⁴		$\alpha(P)=2.50\times10^{-4} 4$ $\alpha(K)=0.000355 5; \alpha(L)=4.37\times10^{-5} 7;$ $\alpha(M)=8.94\times10^{-6} 13; \alpha(N)=1.93\times10^{-6} 3;$ $\alpha(O)=2.96\times10^{-7} 5$ $\alpha(P)=2.21\times10^{-8} 3$
2141.5 [†]	0.02 1	2141.52	0+	0.0 (0+	[E0]				B(E0)/B(E2 to 2 ⁺ , 818 level)=0.125 <i>15</i> (1987PaZS); B(E2 to 2 ⁺ , 1551 level)/B(E2 to 2 ⁺ , 818 level)≈0 (1987PaZS).
x2332.5 10 2485.4 3	0.1 <i>1</i> 0.14 2	2485.60	2+	0.0 (0+	E2		8.38×10 ⁻⁴		$\begin{aligned} &\alpha(\mathbf{K}) = 0.000269 \ 4; \ \alpha(\mathbf{L}) = 3.29 \times 10^{-5} \ 5; \\ &\alpha(\mathbf{M}) = 6.73 \times 10^{-6} \ 10; \ \alpha(\mathbf{N}) = 1.452 \times 10^{-6} \ 21; \\ &\alpha(\mathbf{O}) = 2.23 \times 10^{-7} \ 4 \\ &\alpha(\mathbf{P}) = 1.674 \times 10^{-8} \ 24 \end{aligned}$

ω

[†] From 1987PaZS.
[‡] Expected if placement of 1955γ is correct.

 $^{136}_{56}\mathrm{Ba}_{80}$ -3

¹³⁶La ε decay (9.87 min) **1969Me18** (continued)

 $\gamma(^{136}\text{Ba})$ (continued)

4

From the Adopted Gammas.
[@] For absolute intensity per 100 decays, multiply by 0.0230 8.
[&] Placement of transition in the level scheme is uncertain.
^x γ ray not placed in level scheme.

 $^{136}_{56}\text{Ba}_{80}\text{-}5$

¹³⁶La ε decay (9.87 min) 1969Me18

