Adopted Levels, Gammas

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	Balraj Singh	ENSDF	31-Dec-2016					

 $Q(\beta^{-})=8038 4$; S(n)=3740 3; S(p)=10546 4; Q(α)=-4089 4 2012Wa38 S(2n)=6910 4, S(2p)=26800 200 (syst), $Q(\beta^{-}n)=4775 4$ (2012Wa38). Additional information 1.

¹³⁵Sb Levels

Cross Reference (XREF) Flags

 $^{135}\mathrm{Sn}\;\beta^-$ decay (515 ms) $^{136}\mathrm{Sn}\;\beta^-$ n decay (327 ms) $^{248}\mathrm{Cm}\;\mathrm{SF}$ decay A

В

С

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments		
0.0&	(7/2 ⁺) [‡] @	1.679 s <i>15</i>	ABC	%β ⁻ =100; %β ⁻ n=22 3 (2002Sh08) T _{1/2} : weighted average of 1.696 s 21 (1968To19,1968To18), 1.706 s 14 (1977Ru04), 1.662 s 10 (1993Ru01). Others: 1.82 s 4 (1976Lu02 superseded by 1993Ru01), 2.0 s 2 (1966To02, superseded by 1968To19 1964Be06, 1967De01, 1973Bo42, 1978Cr03. %β ⁻ n is adopted from 2002Sh08 (same value in 2002Pf04 evaluation) based on the least-squares fit of their β-delayed neutron curves. Use of %β ⁻ n=17.6 22 recommended by 1993Ru01 (from weighted average of 21.0 11 (1993Ru01), 14 1 (1978Cr03), 22 4 (revision by 1993Ru01 of 19.9 21 in 1977Ru04), 25 4 (revision by 1993Ru01 of 8 in 1968To19)) gave a very poor fit (by a factor of 10 or so) to the decay curve obtained by 2002Sh08 (according to an e-mail reply of April 30, 2002 by the leatuthor of 2002Sh08). If one excludes the low value of 14 1 in 1978Cr0 the weighted average of other three values quoted by 1993Ru01 is 21.3 11, which is consistent with that obtained by 2002Sh08 and the value adopted by 2002Pf04. Measurements: 1966To02, 1968To19, 1968To18 1974Sh18, 1974Fr09, 1976Lu02, 1976Kr18, 1977Ru04, 1978Cr03, 1979Kr03, 1980Lu04, 1981Ho07, 1993Ru01. See 2002Pf04, 1993Ru01 1989BrZI, 1984Ma39, 1982Ru01, 1977Ru10, 1975Iz03 for analysis, reviews and compilations. Additional information 2.		
281.8 <i>I</i>	(5/2 ⁺) [‡]	6.1 ns 4	AB	T _{1/2} : from $\beta\gamma\gamma(t)$ in ¹³⁵ Sn β^- decay. Configuration= $\pi d_{5/2} \otimes (^{134}$ Sn core).		
439.9 <i>3</i>	$(3/2^+)^{\ddagger}$		AB			
523 1	$(1/2^+)$	1.2 ns <i>1</i>	В	J^{π} : shell-model calculations (2005Sh36) predict first $1/2^{+}$ at 527 keV. T _{1/2} : preliminary value from $\beta\gamma\gamma(t)$; advanced time-delay method (2007Ma40).		
706.9 <mark>&</mark> 1	$(11/2^+)^{\ddagger@}$		AC			
798.0 <i>3</i>	$(9/2^+)^{\ddagger}$		Α			
1014.1 2	$(5/2^+, 7/2, 9/2^+)^{\#}$		Α	J^{π} : γ rays to (5/2 ⁺) and (9/2 ⁺). 2005Sh36 suggest (7/2 ⁺).		
1026.8 2	(7/2+,9/2)#		A	J ^π : γ rays to (11/2 ⁺) and (7/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (9/2 ⁺).		
1112.9 3	$(5/2^+,7/2^+)^{\#}$		A	J ^π : γ rays to $(3/2^+)$ and $(7/2^+)$; possible β feeding from $(7/2^-)$. 2005Sh36 suggest $(5/2^+)$.		
1118.1 <mark>&</mark> 2	$(15/2^+)^{@}$		С			
1206.9 3	$(5/2^+, 7/2, 9/2^+)^{\#}$		Α	J ^{π} : γ rays to (5/2 ⁺) and (9/2 ⁺). 2005Sh36 suggest (7/2 ⁺).		
1333.0 <i>3</i>	$(7/2^+, 9/2)^{\#}$		Α	J^{π} : γ rays to (7/2 ⁺) and (11/2 ⁺); possible β feeding from (7/2 ⁻).		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁵Sb Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments				
				2005Sh36 suggest (9/2 ⁺).				
1343.2 <mark>&</mark> 2	$(19/2^+)^{@}$	≈20 ns	С	$T_{1/2}$: from γ (t) (1998Bh09).				
1352.9 6	$(5/2,7/2^+)^{\#}$		Α	J^{π} : γ to (3/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (5/2 ⁺).				
1386.9 2	(5/2,7/2,9/2 ⁺) [#]		A	J^{π} : γ rays to (5/2 ⁺) and (7/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (7/2 ⁺).				
1455.9 <i>3</i>	(5/2,7/2,9/2 ⁺) [#]		A	J ^π : γ rays to (5/2 ⁺) and (7/2 ⁺); β feeding from (7/2 ⁻). 2005Sh36 suggest (7/2 ⁺).				
1549.0 5			Α	J^{π} : γ to (7/2 ⁺) suggests (3/2 ⁺ to 11/2 ⁺).				
1596.9 4	(7/2 ⁺ ,9/2) [#]		А	J^{π} : γ rays to (9/2 ⁺) and (11/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (9/2 ⁺).				
1630.0 4	$(5/2,7/2,9/2^+)^{\#}$		Α	J^{π} : γ to (5/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (7/2 ⁺).				
1733.9 <i>3</i>	$(5/2,7/2^+)^{\#}$		A	J^{π} : γ rays to (3/2 ⁺) and (7/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (5/2 ⁺).				
1830.9 6	(5/2,7/2,9/2) [#]		Α	J ^{π} : γ to (7/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (5/2 ⁺).				
1855.2 3	(5/2,7/2,9/2 ⁺) [#]		A	J^{π} : γ rays to (5/2 ⁺) and (7/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (7/2 ⁺).				
1972.7 3	$(23/2^+)$		С	J^{π} : proposed configuration= $\pi g_{7/2} \otimes \nu(f_{7/2}h_{9/2})$ based on shell-model calculations by 1998Bh09.				
2037.8 5			Α	J^{π} : γ to (5/2 ⁺) suggests (1/2 ⁺ to 9/2 ⁺).				
2088.9 3	$(5/2,7/2^+)^{\#}$		А	J^{π} : γ rays to $(3/2^+)$ and $(7/2^+)$; β feeding from $(7/2^-)$. 2005Sh36 suggest $(5/2^+)$.				
2169.9 4	$(5/2^+, 7/2, 9/2)^{\#}$		Α	J ^π : γ to (9/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (7/2 ⁺ ,9/2 ⁺).				
2211.9 5			Α	J^{π} : γ to $(11/2^+)$ suggests $(7/2^+$ to $15/2^+)$.				
2440.0 5			Α	J^{π} : γ to (7/2 ⁺) suggests (3/2 ⁺ to 11/2 ⁺).				
2461.9 4	(5/2,7/2,9/2 ⁺) [#]		A	J^{π} : γ rays to (5/2 ⁺) and (7/2 ⁺); possible β feeding from (7/2 ⁻). 2005Sh36 suggest (5/2 ⁺ ,7/2 ⁺).				
2764.0 5			Α	J^{π} : γ to (7/2 ⁺) suggests (3/2 ⁺ to 11/2 ⁺).				
2837.7 4	(21/2,23/2)		С	J^{π} : 23/2 ⁻ suggested from proposed configuration= $\pi h_{11/2} \otimes r_{7/2}^2 \epsilon_+$. However, a 21/2 ⁺ state is also predicted (see Figure 3 in 2015Ko05) in shell-model calculations.				
3249.2 4	$(27/2^{-})$		С	Configuration= $\pi g_{7/2} \otimes \nu (i_{13/2} f_{7/2})_{10-}$.				
3263.0 5			Α	J^{π} : γ to $(7/2^+)$ suggests $(3/2^+$ to $11/2^+)$.				
3687.9 <i>5</i>	$(29/2^{-})$		С	Configuration= $\pi g_{7/2} \otimes \nu (i_{13/2} h_{9/2})_{11-}$.				

 † From least-squares fit to Ey data.

[‡] From consistency of experimental and calculated (using shell model) level spectrum for the first five states up to ≈900 keV. It should be pointed out, however, that a $1/2^+$ state at ≈ 530 keV predicted by calculations has not been observed.

2005Sh36 assign tentative single spin value on the assumption that M1 transitions are more likely than E2 transitions for near closed-shell Z=51 nuclide. ^{(@} Probable member of $\pi g_{7/2} \nu(f_{7/2}^2)$ multiplet.

 $\frac{\&}{\pi g_{7/2} \nu(f_{7/2}^2)}$ multiplet. This multiplet together with the long half-life of $19/2^+$ state is consistent with the calculated (1998Bh09) spectrum from shell model.

Adopted Levels, Gammas (continued)

$\gamma(^{135}\text{Sb})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult. [#]	α [@]	Comments
281.8	$(5/2^+)$	281.7 <i>1</i>	100	0.0	$(7/2^+)$	[M1,E2]	0.041 4	
439.9	$(3/2^+)$	158.0 5	15 8	281.8	$(5/2^+)$			
		440.0 5	100 5	0.0	$(7/2^+)$			
523	$(1/2^+)$	2417	100	281.8	$(5/2^+)$	[E2]	0.0765	B(E2)(W.u.)=13 1
706.9	$(11/2^+)$	706.9 1	100	0.0	$(7/2^+)$	Q		
1014.1	$(9/2^{+})$ $(5/2^{+},7/2,0/2^{+})$	798.0 5	1653	708.0	$(1/2^{+})$			
1014.1	(3/2, 7/2, 9/2)	732 4 2	10.5 5	281.8	$(5/2^+)$			
		1014.0.5	29.5 11	0.0	$(7/2^+)$			
1026.8	$(7/2^+, 9/2)$	320.0 5	5.0 17	706.9	$(11/2^+)$			
		1027.0 5	100 8	0.0	$(7/2^+)$			
1112.9	$(5/2^+, 7/2^+)$	673.0 5	24 4	439.9	$(3/2^+)$			
		831.0 5	100 12	281.8	$(5/2^+)$			
		1113.0 5	76 16	0.0	$(7/2^+)$			
1118.1	$(15/2^+)$	411.2 1	100	706.9	$(11/2^+)$	Q		
1206.9	$(5/2^{+}, 1/2, 9/2^{+})$	180.0 5	3.4 9	1026.8	$(1/2^+, 9/2)$			
		409.0 5	10.0 5	796.0	(9/2) $(5/2^+)$			
		1207.0.5	48 3 17	201.0	$(7/2^+)$			
1333.0	$(7/2^+, 9/2)$	535.0 5	48 6	798.0	$(9/2^+)$			
		626.0 5	35 3	706.9	$(11/2^+)$			
		1333.0 5	100 10	0.0	$(7/2^+)$			
1343.2	$(19/2^+)$	225.1 <i>I</i>	100	1118.1	$(15/2^+)$	(E2)	0.0964	B(E2)(W.u.)≈1.1
1352.9	$(5/2,7/2^+)$	913.0 5	100	439.9	$(3/2^+)$			
1386.9	$(5/2,7/2,9/2^+)$	180.0 5	17 3	1206.9	$(5/2^+, 7/2, 9/2^+)$			
		274.0 5	10.0 17	1026.9	$(5/2^+, 1/2^+)$			
		1105.0.5	0.717	281.8	(1/2, 9/2) $(5/2^+)$			
		1387.0.5	100 7	0.0	$(7/2^+)$			
1455.9	$(5/2,7/2,9/2^+)$	429.0 5	13.7 16	1026.8	$(7/2^+, 9/2)$			
		1174.0 5	35 4	281.8	$(5/2^+)$			
		1456.0 5	100.0 24	0.0	$(7/2^+)$			
1549.0		1549.0 5	100	0.0	$(7/2^+)$			
1596.9	$(7/2^+, 9/2)$	570.0 5	57 4	1026.8	$(7/2^+, 9/2)$			
		799.0 5	56 12	798.0	$(9/2^+)$			
1630.0	$(5/2 7/2 0/2^{+})$	890.0 J 243.0 5	100 19	1386.0	(11/2) $(5/27/20/2^+)$			
1050.0	(3/2, 7/2, 9/2)	1630.0.5	100 24	1380.9	(3/2, 7/2, 9/2)			
1733.9	$(5/2,7/2^+)$	1294.0 5	51 7	439.9	$(3/2^+)$			
	(-1)-1)	1452.0 5	100 7	281.8	$(5/2^+)$			
		1734.0 5	14.6 24	0.0	$(7/2^+)$			
1830.9	(5/2,7/2,9/2)	1391.0 5	100	439.9	$(3/2^+)$			
1855.2	$(5/2,7/2,9/2^+)$	829.0 5	52 7	1026.8	$(7/2^+, 9/2)$			
		1573.0 5	21.4 24	281.8	$(5/2^+)$			
1072 7	$(22/2^{+})$	1855.0 5	100.5	0.0	$(1/2^{+})$	0		
2037.8	(23/2)	1756.0.5	100	281.8	(19/2) $(5/2^+)$	Q		
2088.9	$(5/2,7/2^+)$	633.0.5	25.2.10	1455.9	$(5/2,7/2,9/2^+)$			
20000	(0/=,//=)	976.0 5	23 6	1112.9	$(5/2^+, 7/2^+)$			
		1649.0 5	22.9 21	439.9	$(3/2^+)$			
		1807.0 5	100 8	281.8	$(5/2^+)$			
		2089.0 5	38.3 13	0.0	$(7/2^+)$			
2169.9	$(5/2^+, 7/2, 9/2)$	1143.0 5	100 10	1026.8	$(1/2^+, 9/2)$			
2211.0		15/2.05	50 <i>I</i> 5 100	/98.0	$(9/2^{+})$ $(11/2^{+})$			
2211.9		1505.0 5	100	/06.9	$(11/2^{+})$			

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{135}\text{Sb})$ (co	ntinued)
-------------------------------	----------

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^π
2440.0		2440.0 5	100	0.0	$(7/2^+)$
2461.9	$(5/2, 7/2, 9/2^+)$	2179.0 5	100 19	281.8	$(5/2^+)$
		2463.0 5	84 11	0.0	$(7/2^+)$
2764.0		2764.0 5	100	0.0	$(7/2^+)$
2837.7	(21/2,23/2)	1494.5 <i>3</i>	100	1343.2	$(19/2^+)$
3249.2	$(27/2^{-})$	1276.5 2	100	1972.7	$(23/2^+)$
3263.0		3263.0 5	100	0.0	$(7/2^+)$
3687.9	$(29/2^{-})$	438.7 <i>3</i>	100	3249.2	$(27/2^{-})$

[†] From either ¹³⁵Sn β^- decay or ²⁴⁸Cm SF decay; unless otherwise specified. Most levels are populated independently in these two datasets, low-spin (J<11/2) levels in β^- decay and high-spin (J>9/2) levels in SF decay.

[‡] From ¹³⁶Sn β ⁻n decay.

[#] Stretched quadrupole from $\gamma\gamma(\theta)$ in ²⁴⁸Cm SF decay, assigned as (E2) in 2015Ko15. Evaluator assigns Q, in the absence of strong supporting data for parity assignment.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{135}_{51}{
m Sb}_{84}$

5

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

