¹³⁵Nd ε decay (12.4 min) 1975Wi11

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov	NDS 109, 517 (2008)	22-Jan-2008

Parent: ¹³⁵Nd: E=0.0; $J^{\pi}=9/2^{(-)}$; $T_{1/2}=12.4$ min 6; $Q(\varepsilon)=4722$ 23; $\%\varepsilon+\%\beta^+$ decay=100.0

1975Wi11: measured $E\gamma$, $I\gamma$, $\gamma\gamma$, ce.

Others: 1968BrZX, 1970Ab07, 1972Ar02.

Total decay energy of 4576 keV 195 calculated (by RADLIST code) from level scheme agrees with the expected value of 4722 keV 23.

¹³⁵Pr Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$3/2^{(+)}$		
41.47.5	5/2(+)		
206 17 7	$7/2^{(+)}$		
245 53 7	7/2 7/2(+)		
358 15 8	$(11/2^{-})$	105 <i>us 10</i>	%IT=100
550.15 0	(11/2)	105 µ5 10	T _{1/2} : from 'Adopted Levels'
493 37 17	$7/2^{(+)}$		
517 35 15	$9/2^{(+)}$		
543 20 11	7/2 $7/2^{(-)}$		
688 6 4	$(9/2^+)$		
730.95 21	$(15/2^{-})$		Apparent ε , β^+ feeding deduced from an intensity balance of 1.0% 4 must be due
100000 21	(10/2))		to unobserved γ transitions feeding this level, since no β feeding is expected for $\Delta J=(3), \Delta \pi=(no)$.
777.4 3	$(11/2^+)$		
799.25 16	$9/2^{(-)}$		
951.78 25	(13/2 ⁻)		Apparent ε , β^+ feeding deduced from an intensity balance of 2.0% 7 must be due to unobserved γ transitions feeding this level, since β feeding is expected as <0.003% for $\Delta J=(2)$, $\Delta \pi=(n_0)$.
984.4 <i>4</i>	$(9/2^+)$		
1159.7? 4	$(9/2^{-})$		
1185.16 23	$(9/2^{-}, 11/2^{-})$		
1214.2 3	$(7/2^{-}, 9/2^{-}, 11/2^{-})$		
1289.5 <i>3</i>	$(11/2^{-})$		
1303.2 4	$(11/2^{-})$		
1765.9? 8	$(7/2^{-}, 9/2^{-}, 11/2^{-})$		
1998.0 7	$(7/2, 9/2, 11/2^+)$		
2129.2? 7	$(7/2, 9/2, 11/2^{-})$		
[†] From lea	st-squares fit to $E\gamma'$ s		

[‡] From 'Adopted Levels'.

ε, β^+ radiations

From γ -ray intensity balance, the levels at 731 and 952 have apparent but improbable $\varepsilon + \beta^+$ feedings of 1.0% 4 and 2.2% 7, respectively. Almost no feedings are expected from log *ft* limits for J^{π}'s involved.

¹³⁵Nd ε decay (12.4 min) 1975Wi11 (continued)

ε, β^+ radiations (continued)

E(decay)	E(level)	$I\beta^+$ †	$I\varepsilon^{\dagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger}$	Comments
(2593 23)	2129.2?	0.16 5	0.59 20	6.69 15	0.75 25	av E β =707 11; ε K=0.668 7; ε L=0.0940 10;
	1000 0					ε M+=0.0266 3
(2724-23)	1998.0	0.8 3	2.3 9	6.15 17	3.1 12	av $E\beta = 766 \ 11; \ \varepsilon K = 0.629 \ 7; \ \varepsilon L = 0.0884 \ 10;$
$(2956\ 23)$	1765.9?	0.9.3	1.7.5	6.35 14	2.6.8	av $E\beta = 871 / l$; $\varepsilon K = 0.558 8$; $\varepsilon L = 0.0782 / l$;
(,						ε M+=0.0222 3
(3419 23)	1303.2	0.75 15	0.75 15	6.84 9	1.5 3	av $E\beta$ =1081 11; ε K=0.422 7; ε L=0.0590 9;
(3/33 23)	1280 5	0.81.20	0 70 20	682 12	164	$\mathcal{E}M$ +=0.016/ 3 av E \mathcal{B} =1088 11: cK=0.418 7: cI =0.0585 9:
(3433-23)	1209.3	0.61 20	0.79 20	0.62 12	1.0 4	$e^{M+=0.01655} 25$
(3508 23)	1214.2	0.85 16	0.75 14	6.86 9	1.6 3	av Eβ=1122 11; εK=0.398 6; εL=0.0556 9;
						<i>ε</i> M+=0.01576 24
(3537 23)	1185.16	1.6 2	1.3 1	6.61 6	2.9 3	av $E\beta$ =1135 <i>11</i> ; ε K=0.391 6; ε L=0.0546 9;
(3562, 23)	1159 72	102	0.86.18	6 81 10	194	$\epsilon_{M1+=0.01340}$ 24 av $\epsilon_{B=1147}$ 11: $\epsilon_{K=0.384}$ 6: $\epsilon_{L=0.0537}$ 9:
(3302 23)	1109.11	1.0 2	0.00 10	0.01 10	1.9 7	$\epsilon M += 0.01520 \ 24$
(3738 23)	984.4	0.83 24	0.57 16	7.03 13	1.4 4	av Eβ=1228 11; εK=0.343 6; εL=0.0478 8;
(2022.23)	700.05	7.2.10	415	(22 7	11 4 15	$\varepsilon M += 0.01353 21$
(3923-23)	199.25	1.3 10	4.1.5	6.22 /	11.4 15	av $E\beta = 1313 \ II; \ \varepsilon K = 0.303 \ J; \ \varepsilon L = 0.0422 \ I;$ $cM_{\pm} = 0.01195 \ I0$
(3945 23)	777.4	1.8 5	0.95 25	6.86 12	2.7 7	av $E\beta = 1323$ 11: $\epsilon K = 0.298$ 5: $\epsilon L = 0.0416$ 7:
						<i>є</i> М+=0.01177 <i>19</i>
(4033 23)	688.6	1.8 5	0.90 23	6.90 12	2.7 7	av E β =1364 11; ε K=0.281 5; ε L=0.0392 6;
(4170, 23)	542 20	447	102	6 61 8	6210	εM +=0.01110 18 ov $\Xi \ell_{-}$ 1422 11: εK =0.256 4: εL =0.0256 6:
(4179-23)	545.20	4.4 /	1.9.5	0.01 0	0.3 10	$e^{1452} 11, e^{-0.2504}, e^{-0.05506}, e^{-0.0000}$
(4205 23)	517.35	6.3 7	2.7 3	6.46 6	9.0 10	av $E\beta = 1444 \ 11; \ \varepsilon K = 0.251 \ 4; \ \varepsilon L = 0.0350 \ 6;$
						<i>ε</i> M+=0.00990 <i>16</i>
(4229 23)	493.37	4.3 <i>3</i>	1.7 1	6.65 4	6.0 4	av $E\beta = 1455 \ 11; \ \varepsilon K = 0.247 \ 4; \ \varepsilon L = 0.0344 \ 6;$
(4364, 23)	358.15	14 4	5.1 13	6.22.12	19.5	EMI = 0.00974 TS av $EB = 1518 TT$: $EK = 0.226 4$: $EL = 0.0315 5$:
(1001 20)	000110	1.1.7	011 10	0.22 12	1,70	$\epsilon M += 0.00891 \ 14$
(4476 23)	245.53	94	3.0 12	6.47 19	12 5	av Eβ=1570 11; εK=0.210 4; εL=0.0293 5;
(451(-22)	20(17	4.0.5	1 ()	(7()	(= 7	εM +=0.00828 13
(4516 23)	206.17	4.9 5	1.6 2	0.70.0	0.5 /	av $E\beta$ =1589 11; ε K=0.205 3; ε L=0.0285 3; ε M+=0.00807 13
(4681 [‡] 23)	41.47	<4	<2	$>8.5^{1u}$	<6	av $F\beta = 1655$ 11: $\epsilon K = 0.347$ 5: $\epsilon L = 0.0490$ 6:
(1001 -0)			-			$\varepsilon M += 0.01391 17$
						$I(\varepsilon + \beta^+)$: from log $f^{lu}t > 8.5$. Intensity balance gives 6
						±30.

[†] Absolute intensity per 100 decays.
[‡] Existence of this branch is questionable.

 $\gamma(^{135}{\rm Pr})$

I γ normalization: from Ti(206.0 γ +245.4 γ +493.4 γ + γ 's to 41.5 level)=100. Direct ε , β^+ feeding to 41.5 level is assumed as <6% corresponding to log $f^{1u}t$ >8.5. No direct ε , β^+ feeding to g.s. is expected.

Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α [@]	Comments
41.48 5	45 10	41.47	5/2 ⁽⁺⁾	0.0	3/2 ⁽⁺⁾	M1(+E2)	<0.15	3.1 6	α (L)=2.5 5; α (M)=0.53 11; α (N+)=0.14 3 α (N)=0.116 24; α (O)=0.018 4; α (P)=0.001085 18 α (L)exp=2.0 10.
112.62 5	9.0 10	358.15	(11/2 ⁻)	245.53	7/2 ⁽⁺⁾	M2		8.26	$\alpha(\mathbf{K}) = 6.46 \ l0; \ \alpha(\mathbf{L}) = 1.408 \ 20; \ \alpha(\mathbf{M}) = 0.312 \ 5; \ \alpha(\mathbf{N}+) = 0.0817$ l2 $\alpha(\mathbf{N}) = 0.0699 \ l0; \ \alpha(\mathbf{Q}) = 0.01101 \ l6; \ \alpha(\mathbf{P}) = 0.000707 \ l0$
164.70 <i>5</i>	8.0 6	206.17	7/2 ⁽⁺⁾	41.47	5/2 ⁽⁺⁾	M1+E2	+0.45 20	0.326 8	$\alpha(K)=0.0099$ 10, $\alpha(G)=0.01101$ 10, $\alpha(I)=0.000707$ 10 $\alpha(K)\exp=6.7$ 15, K/L=4.1 11. $\delta(E3/M2)<0.2$. $\alpha(K)=0.269$ 4; $\alpha(L)=0.045$ 6; $\alpha(M)=0.0096$ 14; $\alpha(N+)=0.0025$ 4
195.07.9	556	542.20	7/2(-)	250 15	(11/2-)	(F2)		0.247	α (N)=0.0021 3; α (O)=0.00033 4; α (P)=1.98×10 ⁻⁵ 8 Mult., δ : α (K)exp=0.35 6 gives M1,E2; δ : 0.94 13 from K/L=4.6 17, +0.45 20 from $\gamma(\theta)$ in (p,2n γ).
185.07 8	5.5 0	545.20	1/2	558.15	(11/2)	(E2)		0.247	$\alpha(\text{K})=0.182$ 3; $\alpha(\text{L})=0.0509$ 8; $\alpha(\text{M})=0.01124$ 76; $\alpha(\text{N}+)=0.00282$ 4 $\alpha(\text{N})=0.00245$ 4; $\alpha(\text{O})=0.000356$ 5; $\alpha(\text{P})=1.084\times10^{-5}$ 16 Mult.: $\alpha(\text{K})$ exp=0.20 4 gives M1.E2: K/L=2.7 6 is slightly
204.09 5	100	245.53	7/2 ⁽⁺⁾	41.47	5/2 ⁽⁺⁾	M1		0.1762	lower than K/L(E2)(theory). $\alpha(K)=0.1503 \ 21; \ \alpha(L)=0.0205 \ 3; \ \alpha(M)=0.00431 \ 6; \ \alpha(N+)=0.001130 \ 16$
206.0.2	() 5	206.17	7/2(+)	0.0	2.0(+)	52		0.172	α (N)=0.000964 <i>14</i> ; α (O)=0.0001553 <i>22</i> ; α (P)=1.149×10 ⁻⁵ <i>17</i> α (K)exp=0.18 <i>2</i> , K/L=8.7 <i>12</i> .
206.0 3	6.0 5	206.17	1/2	0.0	3/2(1)	E2		0.172	$\alpha(\mathbf{K})=0.1296\ 20;\ \alpha(\mathbf{L})=0.0332\ 5;\ \alpha(\mathbf{M})=0.00730\ 11;\ \alpha(\mathbf{N}+)=0.00184\ 3$ $\alpha(\mathbf{N})=0.001594\ 25;\ \alpha(\mathbf{O})=0.000233\ 4;\ \alpha(\mathbf{P})=7.90\times10^{-6}\ 12$
221.0 5	1.4 5	951.78	(13/2 ⁻)	730.95	(15/2 ⁻)	M1,E2		0.139 4	Mult.: α (K)exp=0.16 5 gives M1,E2; adopted Δ J forbids L=1. α (K)=0.112 9; α (L)=0.021 5; α (M)=0.0045 11; α (N+)=0.00115 25
222.4.2	25.3	1105 16	(0/0= 11/0=)	051 70	(12/2=)			0 1 1 9 5	α (N)=0.00099 22; α (O)=0.00015 3; α (P)=7.8×10 ⁻⁶ 15 α (K)exp=0.09 4.
233.4 3	2.5 3	1185.16	(9/2 ,11/2)	951.78	(13/2)	M1,E2		0.118 5	$\alpha(\mathbf{K})=0.096\ 9;\ \alpha(\mathbf{L})=0.017\ 4;\ \alpha(\mathbf{M})=0.0037\ 8;$ $\alpha(\mathbf{N}+)=0.00096\ 18$ $\alpha(\mathbf{N})=0.00082\ 16;\ \alpha(\mathbf{Q})=0.000126\ 19;\ \alpha(\mathbf{P})=6.7\times10^{-6}\ 13$
245 4 2	685	245 53	7/2(+)	0.0	3/2(+)	(F2)		0.0963	$a(K) \exp[-0.10 2.$ $a(K) \exp[-0.10 2.$ $a(K) = 0.0748 \ L^{2} \ \alpha(L) = 0.01686 \ 25^{\circ} \ \alpha(M) = 0.00369 \ 6^{\circ}$
243.4 2	0.8 3	243.33	1/2* /	0.0	5/2**	(E2)		0.0903	$\alpha(N)=0.0748\ 11;\ \alpha(L)=0.01080\ 23;\ \alpha(M)=0.00509\ 0;$ $\alpha(N+)=0.000932\ 14$ $\alpha(N)=0.000807\ 12;\ \alpha(O)=0.0001198\ 18;\ \alpha(P)=4.71\times10^{-6}\ 7$ Mult.: $\alpha(K)exp=0.065\ 13$ gives M1+E2 with $\delta<0.5;\ K/L=7.2$ 38 gives $\delta>2$. Adopted ΔJ forbids L=1.

 $\boldsymbol{\omega}$

¹³⁵ Nd ε decay (12.4 min) 1975Wi11 (continued)											
γ ⁽¹³⁵ Pr) (continued)											
Eγ	$I_{\gamma}^{\#}$	E _i (level)	${ m J}^{\pi}_i$	E_f	J_f^{π}	Mult. [†]	δ^{\ddagger}	α [@]	Comments		
247.5 <i>10</i> 256.1 2	0.4 2 5.3 6	493.37 799.25	7/2 ⁽⁺⁾ 9/2 ⁽⁻⁾	245.53 543.20	7/2 ⁽⁺⁾ 7/2 ⁽⁻⁾	M1(+E2)	<0.35	0.0949 15	$\alpha(K)=0.0807 \ 15; \ \alpha(L)=0.01121 \ 25; \ \alpha(M)=0.00237 \ 6; \ \alpha(N+)=0.000619 \ 14 \ \alpha(N)=0.000528 \ 12; \ \alpha(O)=8.47\times10^{-5} \ 16; \ \alpha(P)=6.10\times10^{-6} \ 15 \ \alpha(K)\exp=0.097 \ 16.$		
259.8 ^{&} 3	1.5 5	777.4	(11/2 ⁺)	517.35	9/2 ⁽⁺⁾				This γ may be contributed by an impurity, since expected $I\gamma=0.3 \ I$ (from adopted gammas); and α (K)exp<0.01 gives E1 but ΔI^{π} requires M1 E2.		
271.9 2	4.9 6	517.35	9/2 ⁽⁺⁾	245.53	7/2 ⁽⁺⁾	M1+E2	+0.25 5	0.0807	α(K)=0.0686 11; α(L)=0.00951 15; α(M)=0.00201 4; α(N+)=0.000525 8 α(N)=0.000448 7; α(O)=7.19×10-5 11; α(P)=5.19×10-6 9 α(K)exp=0.100 15, K/L=6.9 29. α(K)exp is higher by≈20% than α(K)(M1). δ: <0.8 (from K/L=6.9 29), +0.25 5 from (p,2nγ).		
316.7 3	2.2 4	358.15	(11/2 ⁻)	41.47	5/2 ⁽⁺⁾	E3		0.1601	$\alpha(K)=0.1081 \ 16; \ \alpha(L)=0.0405 \ 6; \ \alpha(M)=0.00914 \ 14; \ \alpha(N+)=0.00229 \ 4 \ \alpha(N)=0.00200 \ 3; \ \alpha(O)=0.000288 \ 5; \ \alpha(P)=7.31\times10^{-6} \ 11 \ \alpha(K)\exp=0.070 \ 13, \ K/L=2.1 \ 7. \ \alpha(K)\exp$ is lower by $\approx 30\%$ than $\alpha(K)(F3)$		
^x 322.6 10	1.2 4					E1(+M2)	<0.3	0.019 9	$\begin{aligned} \alpha(\mathbf{K}) &= 0.016 \ 7; \ \alpha(\mathbf{L}) = 0.0023 \ 12; \ \alpha(\mathbf{M}) = 0.00050 \ 25; \\ \alpha(\mathbf{N}+) &= 0.00013 \ 7 \\ \alpha(\mathbf{N}) &= 0.00011 \ 6; \ \alpha(\mathbf{O}) = 1.8 \times 10^{-5} \ 9; \ \alpha(\mathbf{P}) = 1.2 \times 10^{-6} \ 7 \\ \alpha(\mathbf{K}) &= 0.015 \ 8. \end{aligned}$		
351.6 5 372.8 2	2.0 <i>4</i> 4.5 <i>4</i>	1303.2 730.95	(11/2 ⁻) (15/2 ⁻)	951.78 358.15	(13/2 ⁻) (11/2 ⁻)	E2		0.0260	$\alpha(K)=0.0212 \ 3; \ \alpha(L)=0.00380 \ 6; \ \alpha(M)=0.000818 \ 12; \ \alpha(N+)=0.000209 \ 3 \ \alpha(N)=0.000180 \ 3; \ \alpha(O)=2.76\times10^{-5} \ 4; \ \alpha(P)=1.426\times10^{-6} \ 20 \ Mult.: \ \alpha(K)exp=0.020 \ 5 \ gives \ \delta(E2/M1)>1.2; \ \gamma(\theta) \ in \ (\alpha \ 8nv) \ (1975Will) \ gives \ \Delta I=2$		
385.9 2	2.9 4	1185.16	(9/2 ⁻ ,11/2 ⁻)	799.25	9/2 ⁽⁻⁾	(E2)		0.0235	$\alpha(K)=0.0192 \ 3; \ \alpha(L)=0.00339 \ 5; \ \alpha(M)=0.000729 \ 11; \ \alpha(N+)=0.000187 \ 3 \ \alpha(N)=0.0001608 \ 23; \ \alpha(O)=2.46\times10^{-5} \ 4; \ \alpha(P)=1.297\times10^{-6} \ 19 \ Mult : \ \alpha(K)exp=0.013 \ 6 \ gives \ E1 \ or \ E2$		
415.0 <i>3</i>	2.2 3	1214.2	(7/2 ⁻ ,9/2 ⁻ ,11/2 ⁻)	799.25	9/2 ⁽⁻⁾	M1,E2		0.023 4	$\begin{aligned} \alpha(K) = 0.019 \ 4; \ \alpha(L) = 0.00288 \ 21; \ \alpha(M) = 0.00061 \ 4; \\ \alpha(N+) = 0.000159 \ 12 \\ \alpha(N) = 0.000136 \ 10; \ \alpha(O) = 2.14 \times 10^{-5} \ 20; \ \alpha(P) = 1.4 \times 10^{-6} \ 4 \\ \alpha(K) \exp = 0.022 \ 8. \end{aligned}$		

4

 $^{135}_{59}\mathrm{Pr}_{76}$ -4

	¹³⁵ Nd ε decay (12.4 min) 1975Wi11 (continued)										
	γ ⁽¹³⁵ Pr) (continued)										
E	γ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. [†]	δ^{\ddagger}	α [@]	Comments	
441.	.1 2	28.8 20	799.25	9/2 ⁽⁻⁾	358.15	(11/2 ⁻)	M1,E2		0.020 4	$\alpha(K)=0.016 \ 4; \ \alpha(L)=0.00242 \ 22; \ \alpha(M)=0.00051 \ 5; \ \alpha(N+)=0.000133 \ 12$	
442. 451.	.7 7 .9 2	2.0 <i>10</i> 8.5 <i>5</i>	688.6 493.37	(9/2 ⁺) 7/2 ⁽⁺⁾	245.53 41.47	7/2 ⁽⁺⁾ 5/2 ⁽⁺⁾	M1+E2	+0.4 1	0.0208 6	$\alpha(N)=0.000114 \ 70; \ \alpha(O)=1.80\times 10^{-5} \ 20; \ \alpha(P)=1.2\times 10^{-5} \ 3 \\ \alpha(K)=0.0178 \ 5; \ \alpha(L)=0.00241 \ 5; \ \alpha(M)=0.000508 \ 9; \\ \alpha(N+)=0.0001331 \ 24$	
475.	.8 2	16.5 10	517.35	9/2 ⁽⁺⁾	41.47	5/2 ⁽⁺⁾	E2		0.01291	$\alpha(N)=0.0001136\ 20;\ \alpha(O)=1.82\times10^{-5}\ 4;\ \alpha(P)=1.33\times10^{-6}\ 4$ Mult.: $\alpha(K)$ exp=0.014 3 gives M1,E2; δ from (p,2n γ). $\alpha(K)=0.01070\ 15;\ \alpha(L)=0.001742\ 25;\ \alpha(M)=0.000373\ 6;$ $\alpha(N+)=9.60\times10^{-5}\ 14$	
482.	.6 4	3.4 7	688.6	(9/2+)	206.17	7/2 ⁽⁺⁾	M1(+E2)	<1.5	0.0164 <i>21</i>	$\alpha(N) = 8.25 \times 10^{-5} \ 12; \ \alpha(O) = 1.278 \times 10^{-5} \ 18; \ \alpha(P) = 7.41 \times 10^{-7} \ 11 \\ \alpha(K) \exp = 0.0090 \ 20 \ \text{gives} \ \delta(E2/M1) > 4. \\ \alpha(K) = 0.0139 \ 20; \ \alpha(L) = 0.00195 \ 15; \ \alpha(M) = 0.00041 \ 3; \\ \alpha(N+) = 0.000107 \ 9$	
490.	.3 3	1.7 <i>3</i>	1289.5	(11/2 ⁻)	799.25	9/2 ⁽⁻⁾	M1+E2	-1.5 10	0.014 3	$\alpha(N)=9.2\times10^{-5}$ 7; $\alpha(O)=1.46\times10^{-5}$ 13; $\alpha(P)=1.03\times10^{-6}$ 17 $\alpha(K)\exp=0.022$ 10. $\alpha(K)=0.012$ 3; $\alpha(L)=0.00172$ 21; $\alpha(M)=0.00037$ 4; $\alpha(N)=0.5\times10^{-5}$ 12	
493.	.4 3	2.9 3	493.37	7/2 ⁽⁺⁾	0.0	3/2 ⁽⁺⁾	E2		0.01169	$\alpha(N+)=9.3\times10^{-5} I2$ $\alpha(N)=8.1\times10^{-5} I0; \ \alpha(O)=1.28\times10^{-5} I8; \ \alpha(P)=8.3\times10^{-7} 23$ Mult.: $\alpha(K)\exp=0.014 5$ gives M1,E2; δ from (p,2n γ). $\alpha(K)=0.00971 I4; \ \alpha(L)=0.001561 22; \ \alpha(M)=0.000333 5;$ $\alpha(N+)=8.60\times10^{-5} I3$ $\alpha(N)=7.38\times10^{-5} I1; \ \alpha(O)=1.147\times10^{-5} I7; \ \alpha(P)=6.74\times10^{-7} I0$	
501.	.6 2	19.4 <i>12</i>	543.20	7/2 ⁽⁻⁾	41.47	5/2 ⁽⁺⁾	E1		0.00373		
531.	.9 3	3.9 10	777.4	(11/2 ⁺)	245.53	7/2 ⁽⁺⁾	(E2)		0.00955	$\begin{aligned} &\alpha(N) = 1.93 \times 10^{-5} \ 3; \ \alpha(O) = 3.09 \times 10^{-6} \ 5; \ \alpha(P) = 2.22 \times 10^{-7} \ 4 \\ &\alpha(K) = 0.0023 \ 8. \\ &\alpha(K) = 0.00796 \ 12; \ \alpha(L) = 0.001249 \ 18; \ \alpha(M) = 0.000266 \ 4; \\ &\alpha(N+) = 6.88 \times 10^{-5} \ 10 \\ &\alpha(N) = 5.90 \times 10^{-5} \ 9; \ \alpha(O) = 9.21 \times 10^{-6} \ 13; \ \alpha(P) = 5.57 \times 10^{-7} \ 8 \end{aligned}$	
572. 593.	.05 .74	1.1 <i>4</i> 7.6 <i>10</i>	1303.2 951.78	(11/2 ⁻) (13/2 ⁻)	730.95 358.15	(15/2 ⁻) (11/2 ⁻)	M1+E2	-1.5 10	0.0084 19	Mult.: $\alpha(K)\exp=0.0073 \ 34 \text{ gives } \delta(E2/M1)>0.8$, but ΔJ^{π} requires E2. $\alpha(K)=0.0071 \ 17; \ \alpha(L)=0.00101 \ 17; \ \alpha(M)=0.00021 \ 4;$ $\alpha(N+)=5.6\times10^{-5} \ 9$ $\alpha(N)=4.8\times10^{-5} \ 8; \ \alpha(O)=7.6\times10^{-6} \ 14; \ \alpha(P)=5.1\times10^{-7} \ 14$ Mult.: $\alpha(K)\exp=0.0110 \ 25 \text{ gives } M1+E2, \ \delta<0.65.$ From (p,2n γ), $\delta=-1.5 \ 10.$	

S

From ENSDF

 $^{135}_{59}\mathrm{Pr}_{76}$ -5

 $^{135}_{59}\mathrm{Pr}_{76}$ -5

н

¹³⁵ Nd ε decay (12.4 min) 1975Wi11 (continued)													
$\gamma(^{135}\text{Pr})$ (continued)													
Eγ	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ^{\ddagger}	α [@]	Comments				
616.5 <i>3</i>	3.8 6	1159.7?	(9/2 ⁻)	543.20	7/2(-)								
670.6 7	1.0 4	1214.2	$(7/2^{-}, 9/2^{-}, 11/2^{-})$	543.20	$7/2^{(-)}$								
^x 708.4 5	1.6 3					M2,E3		0.016 5	$\alpha(K)=0.013 \ 4; \ \alpha(L)=0.0020 \ 4; \ \alpha(M)=0.00043 \ 8; \\ \alpha(N+)=0.000113 \ 21 \\ \alpha(N)=9.7\times10^{-5} \ 18; \ \alpha(O)=1.5\times10^{-5} \ 3; \ \alpha(P)=1.0\times10^{-6} \ 4$				
									$\alpha(K) \exp = 0.012 \ 6.$				
739.4 5	1.6 <i>3</i>	984.4	(9/2+)	245.53	7/2 ⁽⁺⁾	M1+E2	-2.0 15	0.0046 14	$\alpha(K)=0.0039 \ 12; \ \alpha(L)=0.00055 \ 13; \ \alpha(M)=0.00012 \ 3; \ \alpha(N+)=3.0\times10^{-5} \ 7 \ \alpha(N)=2.6\times10^{-5} \ 6; \ \alpha(O)=4.1\times10^{-6} \ 11; \ \alpha(P)=2.8\times10^{-7} \ 10 \ Mult.\delta; \ from (p,2n\gamma).$				
746.1 5	1.5 5	1289.5	$(11/2^{-})$	543.20	$7/2^{(-)}$								
777.7 5	1.2 6	984.4	$(9/2^+)$	206.17	$7/2^{(+)}$								
966.6 7	5.2 15	1765.9?	$(7/2^{-}, 9/2^{-}, 11/2^{-})$	799.25	$9/2^{(-)}$								
1172.1 <mark>&</mark> 7	2.2 7	1214.2	$(7/2^{-}, 9/2^{-}, 11/2^{-})$	41.47	$5/2^{(+)}$								
1480.7 7	2.3 7	1998.0	$(7/2, 9/2, 11/2^+)$	517.35	$9/2^{(+)}$								
1586.0 7	1.5 5	2129.2?	$(7/2, 9/2, 11/2^{-})$	543.20	$7/2^{(-)}$								
1752.0 15	4.0 20	1998.0	$(7/2, 9/2, 11/2^+)$	245.53	$7/2^{(+)}$								

[†] From α(K)exp and K/L.
[‡] Estimated (by evaluators) from α(K)exp and/or K/L.
[#] For absolute intensity per 100 decays, multiply by 0.496 *16*.
[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

 $^{135}_{59}\mathrm{Pr}_{76}$ -6

From ENSDF

 $^{135}_{59}\mathrm{Pr}_{76}$ -7

 $^{135}_{59}\mathrm{Pr}_{76}$

7