¹³⁶Ce(p,2n γ) 1985Ko18

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov	NDS 109, 517 (2008)	22-Jan-2008

Includes ¹³⁹La(α ,8n γ). 1985Ko18: ¹³⁶Ce(p,2n γ) E=16.1-20.0 MeV. Measured E γ , I γ , ce, $\gamma\gamma$. 1975Wi11: ¹³⁹La(α ,8n γ) E=80-104 MeV. Four γ rays reported at E γ (I γ) of 112.0 (10), 204.5 (100), 373.1 (85), 660.3 (65).

¹³⁵Pr Levels

From $\gamma(t)$, 1985Ko18 suggest that $T_{1/2} \le 1.5$ ns for all excited states, except for the isomeric 358 level.

E(level)	J^{π} †	T _{1/2}	Comments
0.0	$3/2^{(+)}$		
41.40 6	5/2(+)		
206.01.8	7/2(+)		
245 43 6	7/2(+)		
357 99 8	$(11/2^{-})$	105 us 10	%IT-100
551.77 0	(11/2)	105 µs 10	T _{1/2} : from 'Adopted Levels'
493 44 7	7/2(+)		
517 37 8	$0/2^{(+)}$		
543 12 0	7/2		
591.00.11	1/2		
688 05 11	$(9/2^+)$		
730 77 12	$(15/2^{-})$		
777.44 9	$(13/2^+)$ $(11/2^+)$		
799 19 11	$9/2^{(-)}$		
951.64 12	$(13/2^{-})$		
985.34 18	$(9/2^+)$		
1016.82 15	(*/=)		
1089.87 15	$(5/2^+, 7/2, 9/2^+)$		
1104.86 17			
1160.1 4	$(9/2^{-})$		
1181.44 <i>13</i>	$(7/2^+, 9/2)$		
1185.10 <i>13</i>	$(9/2^{-}, 11/2^{-})$		
1214.16 15	$(7/2^{-}, 9/2^{-}, 11/2^{-})$		
1221.5 4	$(11/2^+)$		
1232.2 4	$(13/2^+)$		
1289.54 22	$(11/2^{-})$		
1306.6 3	(-)		
1325.2 3	$(11/2^+)$		
1351.7 8	(10/2-)		
1390.9 4	(19/2)		
1409.9 3	$(17/2^{-})$		
1455.5 5	(11/2) $(11/2^+)$		
1400.7 4	(11/2) $(17/2^{-})$		
1505 9 5	$(17/2^{+})$		
1507.7.3	$(13/2^+)$ $(11/2^+)$		
1531.9 4	(
1571.0 6			
1636.3 <i>3</i>	$(13/2^+)$		
1742.2 8	· · /		
1765.9 6	$(7/2^{-}, 9/2^{-}, 11/2^{-})$		
1794.2 6			

¹³⁶Ce(**p**,2**n**γ) **1985Ko18** (continued)

¹³⁵Pr Levels (continued)

E(level)	$J^{\pi \dagger}$	E(level)	E(level)	E(level)	$J^{\pi \dagger}$
1816.0 <i>4</i> 1904.8 <i>8</i>	(^)	1959.2 <i>4</i> 2002.8 <i>8</i>	2014.0 8 2104.4 8	2116.5 7 2155.9 6	(17/2+)

[†] From 'Adopted Levels'.

					13	⁶ Ce(p ,2 n γ)	1985Ko18 (continued)	
							$\gamma(^{135}\mathrm{Pr})$		
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	${f J}_f^\pi$	Mult. [†]	δ^{\ddagger}	α^d	Comments
41.43 8	48 5	41.40	5/2 ⁽⁺⁾	0.0	3/2 ⁽⁺⁾	M1(+E2) ^b	<0.15	3.1 7	α (L)=2.5 5; α (M)=0.53 11; α (N+)=0.14 3 α (N)=0.117 24; α (O)=0.018 4; α (P)=0.001089 18
112.56 8	8.7 5	357.99	(11/2 ⁻)	245.43	7/2 ⁽⁺⁾	M2 ^b		8.28	$\alpha(K)=6.47 \ 10; \ \alpha(L)=1.411 \ 21; \ \alpha(M)=0.313 \ 5; \ \alpha(N+)=0.0818 \ 12 \ \alpha(N)=0.0701 \ 10; \ \alpha(D)=0.01103 \ 16; \ \alpha(P)=0.000709 \ 11$
164.60 8	14 2	206.01	7/2 ⁽⁺⁾	41.40	5/2 ⁽⁺⁾	M1+E2	+0.45 20	0.327 8	$\alpha(K) = 0.001117, \ \alpha(C) = 0.0110510, \ \alpha(T) = 0.000105117$ $\alpha(K) = 0.2704; \ \alpha(L) = 0.0456; \ \alpha(M) = 0.009614;$ $\alpha(N) = 0.00254$ $\alpha(N) = 0.00213; \ \alpha(Q) = 0.000334; \ \alpha(P) = 1.99\times10^{-5}8$
170 65 10	112	688.05	$(0/2^{+})$	517 37	0/2 ⁽⁺⁾	D+O			$A_2 = +0.12 I$, $A_4 = +0.04 2$. $Mult: \alpha(K)exp=0.25 7$ gives M1,E2. $A_2 = +0.13 A (-+0) 11 A$
185.03 <i>10</i>	6.6 7	543.12	(9/2) $7/2^{(-)}$	357.99	$(11/2^{-})$	(E2)		0.247	$\alpha(N)=0.1823; \alpha(L)=0.05098; \alpha(M)=0.0112516; \alpha(N+)=0.002824$
									$\alpha(N)=0.00245 4$; $\alpha(O)=0.000356 5$; $\alpha(P)=1.084\times10^{-6} 16$ Mult.: $\alpha(K)\exp=0.36 10$ is larger by a factor of ≈ 2 than $\alpha(K)(M1)$ or $\alpha(K)(E2)$. The assignment here is from adopted gammas.
204.02 10	100	245.43	7/2 ⁽⁺⁾	41.40	5/2 ⁽⁺⁾	M1		0.1764	$\begin{array}{l} \alpha(\mathrm{K}) = 0.1505 \ 22; \ \alpha(\mathrm{L}) = 0.0205 \ 3; \ \alpha(\mathrm{M}) = 0.00431 \ 6; \\ \alpha(\mathrm{N}+) = 0.001131 \ 16 \\ \alpha(\mathrm{N}) = 0.000965 \ 14; \ \alpha(\mathrm{O}) = 0.0001554 \ 22; \ \alpha(\mathrm{P}) = 1.150 \times 10^{-5} \\ 17 \end{array}$
									A ₂ =-0.03 3, A ₄ =+0.04 5. Mult.: α (K)exp=0.11 3 gives M1,E2; γ (θ) consistent with Δ J=1, dipole.
206.05 15	10 ^c 2	206.01	7/2 ⁽⁺⁾	0.0	3/2 ⁽⁺⁾	E2 ^b		0.1717	$\alpha(K)=0.1295 \ 19; \ \alpha(L)=0.0331 \ 5; \ \alpha(M)=0.00729 \ 11; \ \alpha(N+)=0.00183 \ 3$
220.89 10	0.7 1	951.64	(13/2 ⁻)	730.77	(15/2 ⁻)	M1,E2		0.139 4	$ \begin{aligned} &\alpha(N) = 0.001592\ 23;\ \alpha(O) = 0.000233\ 4;\ \alpha(P) = 1.89 \times 10^{-6}\ 12 \\ &\alpha(K) = 0.113\ 9;\ \alpha(L) = 0.021\ 5;\ \alpha(M) = 0.0045\ 11; \\ &\alpha(N+) = 0.00115\ 25 \end{aligned} $
222 56 10	10.2	1105 10	(0)0= 11/0=)	051.64	(12/2=)				α (N)=0.00099 22; α (O)=0.00015 3; α (P)=7.8×10 ⁻⁶ 15 α (K)exp=0.09 4.
233.56 10	1.9 2 4.5 [°] 9	245.43	(9/2, 11/2) $7/2^{(+)}$	951.64	(13/2) $3/2^{(+)}$	(E2) <mark>b</mark>		0.0963	$\alpha(K)=0.0748$ 11: $\alpha(L)=0.01686$ 24: $\alpha(M)=0.00369$ 6:
			.,_		-/-	()			α (N+)=0.000932 <i>14</i> α (N)=0.000807 <i>12</i> ; α (O)=0.0001198 <i>17</i> ; α (P)=4.71×10 ⁻⁶ 7
248.0 1	0.5.2	493 44	7/2(+)	245 43	$7/2^{(+)}$				$A_2 = +0.01 2, A_4 = -0.05 4.$
256.0 1	2.1 4	799.19	9/2(-)	543.12	7/2(-)	D(+Q)			$A_2 = -0.37 5, A_4 = +0.07 11.$
260.1 <i>1</i>	0.8 2	777.44	$(11/2^+)$	517.37	$9/2^{(+)}$				
271.9 1	5.8 5	517.37	9/2 ⁽⁺⁾	245.43	7/2 ⁽⁺⁾	M1+E2	+0.25 5	0.0807	α (K)=0.0686 <i>11</i> ; α (L)=0.00951 <i>15</i> ; α (M)=0.00201 <i>3</i> ; α (N+)=0.000525 <i>8</i>

ω

 $^{135}_{59}\mathrm{Pr}_{76}$ -3

						<u>γ(¹³⁵P</u>	r) (continue	ed)	
Ε _γ #	$I_{\gamma}^{@}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α^{d}	Comments
									α (N)=0.000448 7; α (O)=7.19×10 ⁻⁵ 11; α (P)=5.19×10 ⁻⁶ 9 A ₂ =+0.07 1, A ₄ =+0.06 2. Mult.: α (K)exp=0.046 14 gives M1+E2, δ >0.75.
287.4 <i>1</i> 316.6 <i>1</i>	0.9 2 1.6 3	493.44 357.99	$7/2^{(+)}$ (11/2 ⁻)	206.01 41.40	7/2 ⁽⁺⁾ 5/2 ⁽⁺⁾	E3		0.1603	α (K)=0.1082 <i>16</i> ; α (L)=0.0406 <i>6</i> ; α (M)=0.00916 <i>13</i> ; α (N+)=0.00229 <i>4</i>
									α (N)=0.00200 3; α (O)=0.000288 4; α (P)=7.32×10 ⁻⁶ 11 α (K)exp=0.094 9.
345.6 <i>1</i> 372.8 <i>1</i>	1.7 <i>3</i> 18 <i>2</i>	591.00 730.77	(15/2 ⁻)	245.43 357.99	$7/2^{(+)}$ (11/2 ⁻)	E2		0.0260	α (K)=0.0212 3; α (L)=0.00380 6; α (M)=0.000818 12; α (N+)=0.000209 3
									α (N)=0.000180 3; α (O)=2.76×10 ⁻⁵ 4; α (P)=1.426×10 ⁻⁶ 20 A ₂ =+0.29 2, A ₄ =-0.04 3. α (K)exp=0.018 5 gives δ (E2/M1)>2.
385.8 <i>I</i> 404.0 <i>I</i> 415.0 <i>I</i>	2.0 <i>4</i> 0.8 <i>2</i>	1185.10 1181.44 1214_16	$(9/2^{-},11/2^{-})$ $(7/2^{+},9/2)$ $(7/2^{-},9/2^{-},11/2^{-})$	799.19 777.44 700.10	$9/2^{(-)}$ (11/2 ⁺) $9/2^{(-)}$				
425.1 <i>I</i>	2.0 4	1816.0	(1/2, 1/2, 1/2)	1390.9	(19/2 ⁻)	M1,E2		0.022 4	$\begin{aligned} &\alpha(\mathbf{K})=0.018 \ 4; \ \alpha(\mathbf{L})=0.00268 \ 22; \ \alpha(\mathbf{M})=0.00057 \ 4; \\ &\alpha(\mathbf{N}+)=0.000148 \ 12 \\ &\alpha(\mathbf{N})=0.000127 \ 10; \ \alpha(\mathbf{O})=2.00\times10^{-5} \ 20; \ \alpha(\mathbf{P})=1.3\times10^{-6} \ 4 \\ &\alpha(\mathbf{K})=0.021 \ 6 \end{aligned}$
441.2 2	12 2	799.19	9/2 ⁽⁻⁾	357.99	(11/2 ⁻)	D+Q		0.0234	$a(\mathbf{K})\exp=0.021$ 0. $A_2=-0.34$ 2, $A_4=+0.05$ 5. $a(\mathbf{K})\exp(441$ 2 $a(442)$ 7 $a(-2)=0.016$ 5.
442.7 2	4 1	688.05	(9/2+)	245.43	7/2 ⁽⁺⁾	D(+Q)			$A_{2}=-0.35 II, A_{4}=+0.17 I7.$ $Mult: \alpha(K)exp(441.2\gamma+442.7\gamma)=0.016 5 \text{ consistent with}$ $M1,E2 \text{ for doublet; } \gamma(\theta) \text{ consistent with } \Delta J=1 \text{ with}$ $\delta <+0.04 >-0.2 \text{ or } -5.5 2.5$
449.7 ^e 2	0.30 9	1181.44	(7/2+,9/2)	730.77	(15/2 ⁻)				Additional information 1. This transition (to $(15/2^-)$) is considered as uncertain (evaluators) due to poor fit in level scheme and improbable $\Delta I=3.4$
452.1 <i>1</i>	11 1	493.44	7/2 ⁽⁺⁾	41.40	5/2 ⁽⁺⁾	M1+E2	+0.4 1	0.0208 6	α (K)=0.0177 5; α (L)=0.00241 5; α (M)=0.000508 9; α (N+)=0.0001330 24 α (N)=0.0001134 20; α (O)=1.82×10 ⁻⁵ 4; α (P)=1.33×10 ⁻⁶ 4 A ₂ =+0.16 5, A ₄ =+0.14 10.
468.0 2	0.4 1	985.34	(9/2 ⁺)	517.37	9/2 ⁽⁺⁾				Mult.: α (K)exp=0.016 3 gives M1,E2. δ =+20 15 is also possible but less likely.
476.0 1	21 2	517.37	9/2 ⁽⁺⁾	41.40	5/2(+)	E2		0.01289	$\begin{aligned} &\alpha(\mathrm{K}) = 0.01069 \ 15; \ \alpha(\mathrm{L}) = 0.001740 \ 25; \ \alpha(\mathrm{M}) = 0.000372 \ 6; \\ &\alpha(\mathrm{N}+) = 9.59 \times 10^{-5} \ 14 \\ &\alpha(\mathrm{N}) = 8.23 \times 10^{-5} \ 12; \ \alpha(\mathrm{O}) = 1.277 \times 10^{-5} \ 18; \ \alpha(\mathrm{P}) = 7.40 \times 10^{-7} \\ &11 \end{aligned}$
	$E_{\gamma}^{\#}$ 287.4 <i>I</i> 316.6 <i>I</i> 345.6 <i>I</i> 372.8 <i>I</i> 385.8 <i>I</i> 404.0 <i>I</i> 415.0 <i>I</i> 425.1 <i>I</i> 441.2 <i>2</i> 442.7 <i>2</i> 449.7 ^e <i>2</i> 4452.1 <i>I</i> 4452.1 <i>I</i> 468.0 <i>2</i> 476.0 <i>I</i>	E_{γ} # I_{γ} @ 287.4 I 0.9 2 316.6 I 1.6 3 345.6 I 1.7 3 372.8 I 18 2 385.8 I 2.0 4 404.0 I 0.8 2 415.0 I 1.1 2 425.1 I 2.0 4 441.2 2 12 2 442.7 2 4 I 449.7 ^e 2 0.30 9 452.1 I 11 I 468.0 2 0.4 I 476.0 I 21 2	E_{γ} # I_{γ} @ $E_i(\text{level})$ 287.4 1 0.9 2 493.44 316.6 1 1.6 3 357.99 345.6 1 1.7 3 591.00 372.8 1 18 2 730.77 385.8 1 2.0 4 1185.10 404.0 1 0.8 2 1181.44 415.0 1 1.1 2 1214.16 425.1 1 2.0 4 1816.0 441.2 2 12 2 799.19 442.7 2 4 1 688.05 449.7 ^e 2 0.30 9 1181.44 452.1 1 11 1 493.44 468.0 2 0.4 1 985.34 476.0 1 21 2 517.37	$E_{\gamma}^{\#}$ $I_{\gamma}^{@}$ $E_i(\text{level})$ J_i^{π} 287.4 1 0.9 2 493.44 $7/2^{(+)}$ 316.6 1 1.6 3 357.99 $(11/2^-)$ 345.6 1 1.7 3 591.00 $(11/2^-)$ 345.8 1 2.0 4 1185.10 $(9/2^-, 11/2^-)$ 404.0 1 0.8 2 1181.44 $(7/2^+, 9/2)$ 415.0 1 1.1 2 1214.16 $(7/2^-, 9/2^-, 11/2^-)$ 441.2 2 12 2 799.19 9/2 ⁽⁻⁾ 442.7 2 4 1 688.05 $(9/2^+)$ 449.7 ^e 2 0.30 9 1181.44 $(7/2^+, 9/2)$ 452.1 1 11 1 493.44 $7/2^{(+)}$ 468.0 2 0.4 1 985.34 $(9/2^+)$ 468.0 2 0.4 1 985.34 $(9/2^+)$ 476.0 1 21 2 517.37 $9/2^{(+)}$	$E_{\gamma}^{\#}$ $I_{\gamma}^{@}$ $E_{l}(\text{level})$ J_{l}^{π} E_{f} 287.4 1 0.9 2 493.44 $7/2^{(+)}$ 206.01 316.6 1 1.6 3 357.99 $(11/2^{-})$ 245.43 345.6 1 1.7 3 591.00 245.43 357.99 385.8 1 2.0 4 1185.10 $(9/2^{-}, 11/2^{-})$ 799.19 404.0 1 0.8 2 1181.44 $(7/2^{+}, 9/2)$ 799.19 425.1 1 2.0 4 1185.00 $(7/2^{-}, 9/2^{-}, 11/2^{-})$ 799.19 425.1 1 2.0 4 1816.00 (7) 799.19 1390.9 441.2 2 12 2 799.19 9/2 ⁽⁻⁾ 357.99 442.7 2 4 1 688.05 $(9/2^{+})$ 245.43 449.7 ^e 2 0.30 9 1181.44 $(7/2^{+}, 9/2)$ 730.77 452.1 1 11 1 493.44 $7/2^{(+)}$ 41.40 468.0 2 0.4 1 985.34 $(9/2^{+})$ 517.37 476.0 1 21 2 517.37 $9/$	$E_{\gamma}^{\#}$ $I_{\gamma}^{@}$ $E_{l}(\text{level})$ J_{l}^{π} E_{f} J_{f}^{π} 287.4 l0.9 2493.44 $7/2^{(+)}$ 206.01 $7/2^{(+)}$ 316.6 l1.6 3357.99 $(11/2^{-})$ 245.43 $7/2^{(+)}$ 345.6 l1.7 3591.00 $(15/2^{-})$ 245.43 $7/2^{(+)}$ 372.8 l18 2730.77 $(15/2^{-})$ 245.43 $7/2^{(+)}$ 385.8 l2.0 41185.10 $(9/2^{-}, 11/2^{-})$ 799.19 $9/2^{(-)}$ 404.0 l0.8 21181.44 $(7/2^{+}, 9/2)$ 799.19 $9/2^{(-)}$ 415.0 l1.1 21214.16 $(7/2^{-}, 9/2^{-}, 11/2^{-})$ 799.19 $9/2^{(-)}$ 441.2 212 2799.19 $9/2^{(-)}$ 357.99 $(11/2^{-})$ 442.7 24 1688.05 $(9/2^{+})$ 245.43 $7/2^{(+)}$ 449.7 ^e 20.30 91181.44 $(7/2^{+}, 9/2)$ 730.77 $(15/2^{-})$ 452.1 l11 l493.44 $7/2^{(+)}$ 41.40 $5/2^{(+)}$ 468.0 20.4 l 985.34 $(9/2^{+})$ 517.37 $9/2^{(+)}$ 41.40 $5/2^{(+)}$ 517.37 $9/2^{(+)}$ 41.40 $5/2^{(+)}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4

 $^{135}_{59}\mathrm{Pr}_{76}$ -4

					130	⁶ Ce(p,2n γ)	1985Ko	18 (continue	<u>d)</u>		
γ ⁽¹³⁵ Pr) (continued)											
$E_{\gamma}^{\#}$	$I_{\gamma}^{@}$	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\ddagger}	α^{d}	Comments		
481.6 <i>3</i>	2.7 ^a 5	1433.3	(17/2 ⁻)	951.64	(13/2 ⁻)				A ₂ =+0.19 2, A ₄ =-0.05 4. α (K)exp=0.009 2. For 481.6 γ +482.2 γ : α (K)exp=0.008 2; A ₂ =+0.14 3,		
482.2 3	1.9 ^a 4	688.05	(9/2+)	206.01	7/2 ⁽⁺⁾				$A_4 = +0.08 \ 5.$ For 481.6 γ +482.2 γ : α (K)exp=0.008 2; $A_2 = +0.14 \ 3,$		
490.4 2 493.4 <i>1</i>	1.4 2 3.5 5	1289.54 493.44	(11/2 ⁻) 7/2 ⁽⁺⁾	799.19 0.0	9/2 ⁽⁻⁾ 3/2 ⁽⁺⁾	D+Q E2	-1.5 10	0.01169	$A_{2} = -0.78 \ 3, \ A_{4} = +0.20 \ 6.$ $\alpha(K) = 0.00971 \ 14; \ \alpha(L) = 0.001561 \ 22; \ \alpha(M) = 0.000333 \ 5;$ $\alpha(N+) = 8.60 \times 10^{-5} \ 12$ $\alpha(N) = 7.38 \times 10^{-5} \ 11; \ \alpha(O) = 1.147 \times 10^{-5} \ 16; \ \alpha(P) = 6.74 \times 10^{-7} \ 10$		
									A ₂ =+0.15 5, A ₄ =-0.01 7. Mult.: α (K)exp=0.011 3 gives δ (E2/M1)>0.5, ΔJ forbids L=1.		
499.6 2 501.7 <i>1</i>	0.5 2 13 2	1016.82 543.12	7/2 ⁽⁻⁾	517.37 41.40	9/2 ⁽⁺⁾ 5/2 ⁽⁺⁾	E1		0.00373	$\alpha(K)=0.00321 5; \alpha(L)=0.000414 6; \alpha(M)=8.65\times10^{-5} 13; \alpha(N+)=2.26\times10^{-5} 4$ $\alpha(N)=1.93\times10^{-5} 3; \alpha(O)=3.08\times10^{-6} 5; \alpha(P)=2.21\times10^{-7} 4$ $A_2=-0.18 3, A_4=+0.06 6.$ $\alpha(K)=x_0=0.0018 5$		
523.3 2 532.0 1	2.4 2 11 <i>1</i>	1016.82 777.44	(11/2 ⁺)	493.44 245.43	7/2 ⁽⁺⁾ 7/2 ⁽⁺⁾	(E2)		0.00954	$\alpha(K)=0.00796 \ 12; \ \alpha(L)=0.001249 \ 18; \ \alpha(M)=0.000266 \ 4; \\ \alpha(N+)=6.88\times10^{-5} \ 10 \\ \alpha(N)=5.90\times10^{-5} \ 9; \ \alpha(O)=9.20\times10^{-6} \ 13; \ \alpha(P)=5.57\times10^{-7} \ 8 \\ A_2=+0.22 \ 5, \ A_4=-0.01 \ 7. \\ Mult.: \ \alpha(K)\exp=0.0044 \ 13 \ is \ lower \ by \ a \ factor \ of \approx 2 \ than \\ \alpha(K)(F2) \ \alpha(K)\exp=0.0044 \ 13 \ a \ b \ a \ a$		
549.5 2 568.3 2 572.3 2 575.8 2	$3.5 \ 4 \\ 2.0 \ 2 \\ 0.5^{c} \ 1 \\ 2.0^{c} \ 3$	591.00 1959.2 1089.87 1306.6	(5/2 ⁺ ,7/2,9/2 ⁺) (⁻)	41.40 1390.9 517.37 730.77	5/2 ⁽⁺⁾ (19/2 ⁻) 9/2 ⁽⁺⁾ (15/2 ⁻)	(E2)		0.00776	$\alpha(K)=0.00650 \ 10; \ \alpha(L)=0.000995 \ 14; \ \alpha(M)=0.000212 \ 3; \ \alpha(N)=4.70\times10^{-5} \ 8 \ \alpha(N)=4.70\times10^{-5} \ 7; \ \alpha(O)=7.35\times10^{-6} \ 11; \ \alpha(P)=4.57\times10^{-7} \ 7 \ \alpha(D)=7.35\times10^{-6} \ 11; \ \alpha(P)=4.5\times10^{-7} \ 1$		
587.6 2 594.0 2	0.7 2 8.0 <i>15</i>	1104.86 951.64	(13/2 ⁻)	517.37 357.99	9/2 ⁽⁺⁾ (11/2 ⁻)	M1+E2	-1.5 10	0.0083 19	$\alpha(\mathbf{K})\exp=0.0047/14.$ $\alpha(\mathbf{K})=0.0071/17; \ \alpha(\mathbf{L})=0.00101/17; \ \alpha(\mathbf{M})=0.00021/4; \ \alpha(\mathbf{N}+)=5.6\times10^{-5}/9$ $\alpha(\mathbf{N})=4.8\times10^{-5}/8; \ \alpha(\mathbf{O})=7.6\times10^{-6}/13; \ \alpha(\mathbf{P})=5.1\times10^{-7}/14$ $A_2=-0.97/2; \ A_4=+0.17/3.$ Mult : $\alpha(\mathbf{K})\exp=0.009/3$ gives M1 E2		
596.6 2 611.0 <i>3</i>	1.0 <i>3</i> 1.2 <i>3</i>	1089.87 1104.86	(5/2+,7/2,9/2+)	493.44 493.44	7/2 ⁽⁺⁾ 7/2 ⁽⁺⁾				mun u(K)chp-0.007 5 gives wi1,E2.		

S

 $^{135}_{59}\mathrm{Pr}_{76}$ -5

н

					¹³⁶ Ce(p,	2n γ) 1 9	985Ko18 (co	ontinued)	
						γ ⁽¹³⁵ Pr) ((continued)		
${\rm E_{\gamma}}^{\#}$	$I_{\gamma}^{@}$	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. [†]	δ^{\ddagger}	α^{d}	Comments
617.0 <i>3</i> <i>x</i> 630.7 <i>3</i>	3.4 <i>6</i> 0.7 <i>2</i>	1160.1	(9/2 ⁻)	543.12	7/2 ⁽⁻⁾	D+Q	-2.0 15		$A_2 = -0.60 \ 4, A_4 = +0.16 \ 8.$ $A_2 = +0.14 \ 7, A_4 = +0.15 \ 10.$
632.5 <i>3</i> 637.4 <i>3</i>	0.5 2 1.0 2	1409.9 1325.2	$(11/2^+)$	777.44 688.05	$(11/2^+)$ $(9/2^+)$ $(5/2^{(+)})$	D+Q	-73		$A_2 = -0.225, A_4 = +0.219.$
646.73 651.03 660.13	1.9° 3 3.1 6 1.9 3	688.05 1636.3 1390.9	$(9/2^+)$ $(13/2^+)$ $(19/2^-)$	41.40 985.34 730.77	$5/2^{(+)}$ (9/2 ⁺) (15/2 ⁻)	(Q) (O)			$A_2=+0.09$ 3, $A_4=+0.04$ 4. $A_2=+0.28$ 5, $A_4=-0.04$ 7. $A_2=+0.35$ 8, $A_4=-0.10$ 13.
664.4 <i>4</i> 670.4 ^{&} 5	$1.0^{\circ} 4$ 1.4 4	1181.44 1214.16	$(7/2^+, 9/2)$ $(7/2^-, 9/2^-, 11/2^-)$	517.37 543.12	$9/2^{(+)}$ $7/2^{(-)}$				
683.5 <i>4</i> 687.8 <i>4</i> 702 5 5	$0.5\ 2$ $0.9\ 3$ $0\ 3^{a}\ 1$	1460.7 1181.44 1433.3	$(11/2^+)$ $(7/2^+, 9/2)$ $(17/2^-)$	777.44 493.44 730.77	$(11/2^+)$ $7/2^{(+)}$ $(15/2^-)$				A ₂ =+0.28 15, A ₄ =+0.10 24.
704.1 5 708.4 5	$1.0^{a} 3$ 0.3 1	1221.5 1507.7	$(11/2^+)$ $(11/2^+)$ $(11/2^+)$	517.37 799.19	$9/2^{(+)}$ $9/2^{(-)}$	D+Q	+3.3 27		$A_2 = +0.37 6, A_4 = +0.21 8.$
714.8 4	4.3 4	1232.2	$(13/2^+)$	517.37	9/2 ⁽⁺⁾	E2		0.00454	α (K)=0.00383 6; α (L)=0.000555 8; α (M)=0.0001175 17; α (N+)=3.05×10 ⁻⁵ 5
									α (N)=2.61×10 ⁻⁵ 4; α (O)=4.13×10 ⁻⁶ 6; α (P)=2.73×10 ⁻⁷ 4
									A_2 =+0.22 4, A_4 =0.00 6. Mult.: α(K)exp=0.0027 8 is lower by≈30% than α(K)(F2)
721.6 5	4.6 ^{<i>a</i>} 10	1409.9		688.05	$(9/2^+)$				For 721.6 γ +722.6 γ : α (K)exp=0.0021 6; A ₂ =-0.16 4, A ₄ =+0.04 6.
722.6 5	2.7 ^{<i>a</i>} 10	2155.9		1433.3	(17/2 ⁻)				For 721.6 γ +722.6 γ : α (K)exp=0.0021 6; A ₂ =-0.16 4, A ₄ =+0.04 6.
728.0 5	$1.3^{a} 5$	1221.5	$(11/2^+)$	493.44	$7/2^{(+)}$	(0)			For 728.0 γ +728.5 γ : α (K)exp=0.0028 8; A ₂ =+0.22 2, A ₄ =-0.05 3.
728.5 5	4.5 ² 10	985 34	$(13/2^{+})$	245 43	$(11/2^{+})$ $7/2^{(+)}$	(Q) M1+F2	-2015	0 0046 14	For $728.07 + 728.57$: $\alpha(\mathbf{K}) \exp[=0.0028, 3; A_2 = +0.22, 2; A_4 = -0.05, 3]$ $\alpha(\mathbf{K}) = 0.0039, 12$: $\alpha(\mathbf{L}) = 0.00055, 13$: $\alpha(\mathbf{M}) = 0.00012, 3$:
157.95	5.5 0	705.54		243.43	1/2	1111122	2.0 15	0.0040 14	$\alpha(N)=0.505712, \alpha(2)=0.5055715, \alpha(3)=0.505125, \alpha(N)=0.505125, \alpha(N)=0.50515, \alpha(N)=0.505125, \alpha(N)=0.505125, \alpha(N)=0.505125, \alpha(N)=0.505125, \alpha(N)$
746 1 5	2.1	1290 54	$(11/2^{-})$	542 10	7/2(-)				$A_2 = -0.35$ 2, $A_4 = +0.11$ 4. Mult.: $\alpha(K) \exp = 0.0042$ 13 gives M1,E2. Exer 246 Lev 247 Lev $\alpha(K) \exp = 0.0010$ 2, $A_1 = 0.40$ 4
740.1 5	21	1209.34	$(11/2^{-})$	720.77	(15/2=)				For $740.19+747.19$: $a(K) exp=0.0010.3$; $A_2 = -0.40.4$, $A_4 = +0.05.7$. For $747.192.47$, $A_4 = -0.40.4$.
141.1 3	21	1477.9	(1//2)	/30.//	(15/2)				For $740.1\gamma + 747.1\gamma$: $\alpha(K) exp=0.0010.3$; A ₂ =-0.40.4, A ₄ =+0.05.7.
771.0 <i>5</i> 779.2 <i>5</i>	1.8 5 3.7 8	1016.82 985.34	$(9/2^+)$	245.43 206.01	$7/2^{(+)}$ $7/2^{(+)}$				$A_2 = +0.12 8, A_4 = -0.01 12.$
807.4 5	3.1 7	1325.2	$(11/2^+)$	517.37	9/2 ⁽⁺⁾	D+Q			$A_2=0.00 4$, $A_4=+0.05 7$. δ : +0.2 <i>I</i> or >30.

6

 $^{135}_{59}\mathrm{Pr}_{76}$ -6

$\gamma(^{135}\text{Pr})$ (continued)

${\rm E_{\gamma}}^{\#}$	Ι _γ @	E_i (level)	${ m J}^{\pi}_i$	E_f J_j^r	\int_{f}^{π} Mult.	δ^{\ddagger}	Comments
843.7 5	0.6 ^{<i>a</i>} 2	1531.9		688.05 (9/2	(+)		
858.8 <i>5</i>	0.6 2	1636.3	$(13/2^+)$	777.44 (11/	(2 ⁺)		
884.3 5	0.7 2	2116.5	$(17/2^+)$	1232.2 (13/	(2+)		
899.3 <i>5</i>	1.0 4	1104.86		206.01 7/2(-	+)		
943.0 <i>5</i>	2.6 5	1460.7	$(11/2^+)$	517.37 9/2(-	⁺⁾ D+Q	+5.1 44	$A_2 = +0.30 \ 11, \ A_4 = +0.33 \ 16.$
966.7 <i>5</i>	1.3 3	1765.9	$(7/2^{-}, 9/2^{-}, 11/2^{-})$	799.19 9/2 ⁽⁻	⁻⁾ D+Q		$A_2 = -0.62 \ I8, \ A_4 = -0.13 \ I3.$
975.3 <i>5</i>	1.9 4	1181.44	$(7/2^+, 9/2)$	206.01 7/2(-	+)		$A_2 = -0.04 \ I, \ A_4 = -0.02 \ 2.$
990.1 5	2.6 5	1507.7	$(11/2^+)$	517.37 9/2 ⁽⁻	⁺⁾ D+Q	+6 4	$A_2 = +0.13 2, A_4 = +0.11 3.$
1014.6 5	0.2 ^a 1	1507.7	$(11/2^+)$	493.44 7/2 ⁽⁻	+)		
1038.6 5	0.6 2	1531.9		493.44 7/2(-	+)		
1048.6 5	1.9 5	1089.87	$(5/2^+, 7/2, 9/2^+)$	41.40 5/2(-	+)		
1063.4 5	2.3 6	1794.2		730.77 (15/	(2-)		
1077.6 8	1.0 3	1571.0		493.44 7/2 ^{(·}	+)		
1079.6 8	1.2 3	1325.2	$(11/2^+)$	245.43 7/2 ^{(·}	+)		
1127.4 8	1.9 5	1904.8		777.44 (11/	(2+)		
1145.7 8	0.9 3	1351.7		206.01 7/2	+)		
1224.8 8	0.9 3	1742.2		517.37 9/2	+)		
1272.0 8	1.2 4	2002.8		730.77 (15/	(2-)		
1283.2 8	1.5 4	2014.0		730.77 (15/	(2-)		
1302.0 8	1.1 3	1507.7	$(11/2^+)$	206.01 7/2	+)		
1325.6 8	1.1 3	1571.0		245.43 7/2	+)		
1373.6 8	0.7 2	2104.4		730.77 (15/	(2-)		
[†] From [‡] Estim	$\gamma(\theta)$ and ated (by e	$\alpha(K)$ exp. evaluators) f	rom $\gamma(\theta)$ data.				

[#] From 1985Ko18. 1975Wi11 report cascade of four transitions above 41.5-keV level with $E\gamma(I\gamma)$: 204.5 (100)-112.0 (10)-373.1 (85)-660.3 (65).

[@] From 1985Ko18 at E(p)=19.9 MeV.

[&] Doublet line.

^{*a*} From $\gamma\gamma$ data.

^b From 'adopted gammas'.

^c Composite line, contribution from an impurity is subtracted.

^d Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 e Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

<u>Level Scheme</u> Intensities: Relative I_{γ}

¹³⁵₅₉Pr₇₆

¹³⁵₅₉Pr₇₆

¹³⁵₅₉Pr₇₆