## <sup>92</sup>Mo(<sup>46</sup>Ti,3pγ) 1988Wa01

## History

| Туре            | Author                                                 | Citation            | Literature Cutoff Date |
|-----------------|--------------------------------------------------------|---------------------|------------------------|
| Full Evaluation | Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov | NDS 109, 517 (2008) | 22-Jan-2008            |

1988Wa01: <sup>92</sup>Mo(<sup>46</sup>Ti,3p $\gamma$ ) E=210 MeV. Enriched target, measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma(\theta)$ (DCO),  $\gamma\gamma$  using an array of 12 BGO suppressed Ge detectors and 50 inner ball BGO detectors.

1987Wa02:  ${}^{92}$ Mo( ${}^{46}$ Ti,3p $\gamma$ ) E=210 MeV. Measured lifetime by Recoil-Distance Doppler Shift (RDDS) method.  ${}^{135}$ Pm also produced in  ${}^{92}$ Mo( ${}^{50}$ Cr,3p $\alpha\gamma$ ) E=230 MeV.

1987Wa18:  ${}^{106}$ Pd( ${}^{34}$ S,p4n $\gamma$ ) E=152 MeV. Intensity of possible SD band $\leq 2\%$ .

Other: 1986LuZX: <sup>107</sup>Ag( $^{32}$ S,2n2py) E=125-150 MeV. Measured  $\gamma$ ,  $\gamma\gamma$ ,  $\gamma(\theta)$ , T<sub>1/2</sub> by  $\gamma\gamma(t)$  and RDDS.

## <sup>135</sup>Pm Levels

| E(level) <sup>‡</sup>    | $J^{\pi \#}$ | T <sub>1/2</sub> † | Comments                                                                      |
|--------------------------|--------------|--------------------|-------------------------------------------------------------------------------|
| 0.0+z <sup>@</sup>       | $(11/2^{-})$ |                    | E(level): systematics (see figure 3 in $1993BrZU$ ) suggest $11/2^{-}$ as g.s |
| 286.2+z <sup>@</sup> 2   | $(15/2^{-})$ | 49 ps 2            |                                                                               |
| 799.0+z <sup>@</sup> 3   | $(19/2^{-})$ | 4.2 ps 5           |                                                                               |
| 1456.3+z <sup>@</sup> 4  | $(23/2^{-})$ | 1.7 ps 4           |                                                                               |
| 1990.7+z 9               | $(21/2^+)$   |                    |                                                                               |
| 2204.6+z <sup>@</sup> 4  | $(27/2^{-})$ |                    |                                                                               |
| 2393.4+z 12              | $(25/2^+)$   |                    |                                                                               |
| 3008.6+z <sup>@</sup> 6  | $(31/2^{-})$ |                    |                                                                               |
| 3854.8+z <sup>@</sup> 7  | $(35/2^{-})$ |                    |                                                                               |
| 4752.6+z <sup>@</sup> 8  | $(39/2^{-})$ |                    |                                                                               |
| 5716.3+z <sup>@</sup> 9  | $(43/2^{-})$ |                    |                                                                               |
| 6747.1+z <sup>@</sup> 12 | $(47/2^{-})$ |                    |                                                                               |

<sup>†</sup> RDDS (1987Wa02).

<sup>‡</sup> From least-squares fit to  $E\gamma$ 's. Value of z=68.9+y in 'Adopted Levels.

<sup>#</sup> From  $\gamma\gamma(\theta)$  (DCO) data and band assignments, assuming  $11/2^{-}$  as the lowest populated state.

<sup>(a)</sup> Band(A):  $\pi h_{11/2}$  decoupled band,  $\alpha = -1/2$ . first band crossing (backbend) is observed at h\' $\omega \approx 430-450$  keV attributable (from cranked shell-model calculations) to the alignment of a pair of  $h_{11/2}$  protons. The results are also consistent with the alignment of a pair of  $h_{11/2}$  neutrons, but from systematics proton alignment is expected.

 $\gamma(^{135}\text{Pm})$ 

DCO values correspond to gates on  $\Delta J=2$ , quadrupole transitions. Expected values are  $\geq 1$  for  $\Delta J=2$ , quadrupole and <1 for  $\Delta J=1$ , dipole transitions.

| Eγ      | $I_{\gamma}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ | ${ m J}_f^\pi$       | Mult.           | α <sup>@</sup> | $I_{(\gamma+ce)}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|--------------|---------------|----------------------|-------|----------------------|-----------------|----------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 286.2 2 | 94           | 286.2+z       | (15/2 <sup>-</sup> ) | 0.0+z | (11/2 <sup>-</sup> ) | E2 <sup>#</sup> | 0.0629         | 100               | $\begin{aligned} & \text{ce}(\mathbf{K})/(\gamma + \text{ce}) = 0.0462 \ 7; \ \text{ce}(\mathbf{L})/(\gamma + \text{ce}) = 0.01018 \\ & 15; \ \text{ce}(\mathbf{M})/(\gamma + \text{ce}) = 0.000225 \ 4; \\ & \text{ce}(\mathbf{N} + )/(\gamma + \text{ce}) = 0.000570 \ 9 \\ & \text{ce}(\mathbf{N})/(\gamma + \text{ce}) = 0.000498 \ 8; \\ & \text{ce}(\mathbf{O})/(\gamma + \text{ce}) = 6.91 \times 10^{-5} \ 10; \\ & \text{ce}(\mathbf{P})/(\gamma + \text{ce}) = 2.49 \times 10^{-6} \ 4 \\ & \text{I}_{\gamma}: \ \text{from I}(\gamma + \text{ce}) = 100 \ (1988\text{Wa01}) \ \text{and} \\ & \text{mult}(286\gamma) = \text{E2}. \\ & \text{R}(\text{DCO}) = 1.30 \ 4. \end{aligned}$ |

|                                          |                |                        |                      | <sup>92</sup> <b>Mo</b> ( <sup>46</sup> | Τ <b>i,3p</b> γ)     | 1988W           | a01 (contin    | nued)                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------|----------------|------------------------|----------------------|-----------------------------------------|----------------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\gamma$ <sup>(135</sup> Pm) (continued) |                |                        |                      |                                         |                      |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                  |
| Eγ                                       | Iγ             | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$                                   | $\mathrm{J}_f^\pi$   | Mult.           | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                         |
| 402.7 8                                  | 6.0 <i>3</i>   | 2393.4+z               | $(25/2^+)$           | 1990.7+z                                | $(21/2^+)$           |                 |                | Contaminated peak.                                                                                                                                                                                                                                                                                                                                                                               |
| 512.8 2                                  | 100 1          | 799.0+z                | (19/2 <sup>-</sup> ) | 286.2+z                                 | (15/2 <sup>-</sup> ) | E2 <sup>#</sup> | 0.01149        | $\begin{aligned} &\alpha(\mathbf{K}) = 0.00949 \ I4; \ \alpha(\mathbf{L}) = 0.001572 \ 22; \\ &\alpha(\mathbf{M}) = 0.000341 \ 5; \ \alpha(\mathbf{N}+) = 8.76 \times 10^{-5} \ I3 \\ &\alpha(\mathbf{N}) = 7.60 \times 10^{-5} \ I1; \ \alpha(\mathbf{O}) = 1.101 \times 10^{-5} \ I6; \\ &\alpha(\mathbf{P}) = 5.52 \times 10^{-7} \ 8 \\ &\mathbf{R}(\mathbf{DCO}) = 1.33 \ 4. \end{aligned}$ |
| 657.3 2                                  | 86.9 <i>13</i> | 1456.3+z               | (23/2 <sup>-</sup> ) | 799.0+z                                 | (19/2 <sup>-</sup> ) | E2 <sup>#</sup> | 0.00611        | $\begin{aligned} &\alpha(\mathrm{K}) = 0.00512 \ 8; \ \alpha(\mathrm{L}) = 0.000782 \ 11; \\ &\alpha(\mathrm{M}) = 0.0001684 \ 24; \ \alpha(\mathrm{N}+) = 4.35 \times 10^{-5} \ 7 \\ &\alpha(\mathrm{N}) = 3.77 \times 10^{-5} \ 6; \ \alpha(\mathrm{O}) = 5.53 \times 10^{-6} \ 8; \\ &\alpha(\mathrm{P}) = 3.03 \times 10^{-7} \ 5 \\ &\mathrm{R}(\mathrm{DCO}) = 1.49 \ 9. \end{aligned}$    |
| 748.3 2                                  | 65.2 12        | 2204.6+z               | $(27/2^{-})$         | 1456.3+z                                | $(23/2^{-})$         | Q <sup>†</sup>  |                | R(DCO)=1.46 10.                                                                                                                                                                                                                                                                                                                                                                                  |
| 804.0 4                                  | 56.3 15        | 3008.6+z               | $(31/2^{-})$         | 2204.6+z                                | $(27/2^{-})$         | Q <sup>†</sup>  |                | R(DCO)=1.41 10.                                                                                                                                                                                                                                                                                                                                                                                  |
| 846.2 4                                  | 47.8 14        | 3854.8+z               | $(35/2^{-})$         | 3008.6+z                                | $(31/2^{-})$         | Q <sup>†</sup>  |                | R(DCO)=1.51 10.                                                                                                                                                                                                                                                                                                                                                                                  |
| 897.8 4                                  | 32.1 14        | 4752.6+z               | $(39/2^{-})$         | 3854.8+z                                | $(35/2^{-})$         | Q <sup>†</sup>  |                | R(DCO)=1.48 15.                                                                                                                                                                                                                                                                                                                                                                                  |
| 933.6 8                                  | 7.0 8          | 2393.4+z               | (25/2+)              | 1456.3+z                                | (23/2 <sup>-</sup> ) | D‡              |                | $E_{\gamma}$ : the quoted energy seems to be low<br>by≈3.5 keV. Corresponding energy in<br><sup>116</sup> Sn( <sup>24</sup> Mg,p4nγ) is 938.4 <i>3</i> (1987Be22).<br>Inspection of figure 1 in 1987Be22 and<br>level energy difference suggest 937.<br>R(DCO)=0.83 25.                                                                                                                          |
| 963.7 4                                  | 17.1 9         | 5716.3+z               | $(43/2^{-})$         | 4752.6+z                                | (39/2 <sup>-</sup> ) | Q <sup>†</sup>  |                | R(DCO)=1.39 27.                                                                                                                                                                                                                                                                                                                                                                                  |
| 1030.8 8                                 | 9.9 15         | 6747.1+z               | $(47/2^{-})$         | 5716.3+z                                | $(43/2^{-})$         | Q <sup>†</sup>  |                | R(DCO)=1.60 35.                                                                                                                                                                                                                                                                                                                                                                                  |
| 1191.7 8                                 | 6.0 11         | 1990.7+z               | $(21/2^+)$           | 799.0+z                                 | $(19/2^{-})$         | D‡              |                | R(DCO)=0.78 28.                                                                                                                                                                                                                                                                                                                                                                                  |

<sup>†</sup> R(DCO) ratio indicates  $\Delta J$ =2, stretched quadrupole (E2).

<sup>\*</sup> R(DCO) ratio indicates ΔJ=2, succeive quadruppic (D2).
<sup>\*</sup> R(DCO) ratio indicates ΔJ=1, dipole.
<sup>#</sup> R(DCO) (indicates ΔJ=2) and RUL(for E2 and M2).
<sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.





<sup>135</sup><sub>61</sub>Pm<sub>74</sub>

## <sup>92</sup>Mo(<sup>46</sup>Ti,3pγ) 1988Wa01



<sup>135</sup><sub>61</sub>Pm<sub>74</sub>