	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov	NDS 109,517 (2008)	22-Jan-2008

 $Q(\beta^{-}) = -6.19 \times 10^{3} 7$; S(n) = 8638 23; $S(p) = 4.97 \times 10^{3} 3$; $Q(\alpha) = 1.07 \times 10^{3} 4$ 2012Wa38

Note: Current evaluation has used the following Q record -6240 60 8639 23 4990 40 1080 40 2003Au03. Q(ϵ p)=1333 28 (2003Au03).

Mass measurements: 2000Be42 and 1997Be63 (penning-trap method), 2000Ra23 (Schottky mass spectrometry).

С

Theoretical calculations and/or analyses: 2004Ra08 (rotational bands), 2000Ri18 (rotational bands), 1997Kr04 (SD bands, possible E0 decay mode), 1996Af03 (SD bands), 1992Zh10 (identical bands), 1988Wy03 (deformed bands), 1988Si18 (SD bands).
 Additional information 1.

¹³⁵Nd Levels

Cross Reference (XREF) Flags

A 135 Pm ε decay (49 s)

B ¹³⁵Pm ε decay (45 s)

 $(HI,xn\gamma)$

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
0.0&	9/2 ⁽⁻⁾	12.4 min 6	BC	$%ε+%β^+=100$ μ=-0.78 3 (1992Le09) Q=+1.9 5 (1992Le09) (<r<sup>2>)^{1/2}=4.908 fm 4 (2004An14, evaluation). μ,Q: from resonance ionization spectroscopy (1992Le09 (also 1988Al41,1987Al25)). 1989Ra17 quote Q=+2.05 41 from 1988Al41. See also 2005St24 compilation. <math>Δ<r^2>(^{142}Nd-^{135}Nd)=-0.04 fm^2 3</r^2></math> (1988Al41). Additional information 2. J^π: spin from atomic beam (1972Ek04), parity from consistency of measured μ with ν9/2[504] configuration. T_{1/2}: from 1975Wi11. Others: 12 min (1968BrZX), 15 min 1 (1971ArYY), 12 min L (1973VaYZ)</r<sup>
64.95 24	(1/2+)	5.5 m ? 5	AB	we +%β ⁺ >99.97; %IT<0.03 %E+%β ⁺ >99.97; %IT<0.03 %IT: from B(M4)(W.u.)<30 (RUL). E(level), $T_{1/2}$,J ^π : while the existence of a level at 65 keV is fairly certain, evidence for its association with a 5.5 min 5 activity (reported by 1970Ab07 in spallation reaction) is lacking since no data are available for its decay by ε , β ⁺ or isomer decay. From systematics, it was assumed (1989Ko07,1989Vi04) that the 5.5 min activity corresponds to the 65 level of expected J ^π =(1/2 ⁺). The half-life was measured (1970Ab07) by growth and decline of intensity of 296γ from the decay of daughter activity of ¹³⁵ Pr produced from the neodymium fraction. A similar T _{1/2} =6 min <i>I</i> was measured (1970Ab07) from the decay of 266γ from ¹³⁵ Ce decay
193.7 <i>3</i> 198.74 ^{<i>a</i>} <i>12</i>	(3/2 ⁺) (11/2 ⁻)	39 ps 5	AB BC	J ^π : γ to (1/2 ⁺). μ =-0.50 31 (1989Ra17,1987Bi13) μ : integral perturbed angular distribution method after ion implantation (IMPAD) (1987Bi13). See also 2005St24 compilation. Configuration=v9/2[514] from h _{11/2} orbital (1987Bi13). J ^π : ΔJ=1 γ to 9/2 ⁽⁻⁾ . T _{1/2} : from RDDS in (HI,xnγ). Average of 42 ps 5 (1999K111) and 35 ps 5 (1987Bi13)
273.03 <i>24</i> 328.1 <i>3</i>	(3/2,5/2) (1/2 ⁺)		AB AB	J^{π} : γ to $(1/2^+)$. J^{π} : γ 's to $(1/2^+)$ and $(3/2^+)$.

Continued on next page (footnotes at end of table)

¹³⁵Nd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
347.1 3	(1/2, 3/2, 5/2)		A	J^{π} : γ to $(1/2^+)$.
371.12 22	$(5/2^+)$		AB	J^{π} : γ' s to $(1/2^+)$ and $(3/2^+)$.
463.66? 25	$(5/2^+)$		AB	J^{π} : γ' s to $(1/2^+)$ and $(3/2^+)$.
493.17 18	(7/2,9/2,11/2)		В	J^{π} : γ to $9/2^{(-)}$.
560.52 ^{&} 14	$(13/2^{-})$	5.4 ps 4	BC	$T_{1/2}$: from RDDS (1999K111) in (HI.xn γ).
	(F		J^{π} : $\Lambda J=(2)$, (E2) γ to $9/2^{(-)}$: $\Lambda J=1$, (M1+E2) γ to $(11/2^{-})$.
565.0 <i>3</i>			BC	
588.1 4	$(3/2^+, 5/2^+)$		Α	J^{π} : γ' s to $(1/2^+)$ and $(3/2^+)$.
602.9 4	$(3/2^+, 5/2^+)$		Α	J^{π} : γ to $(3/2^+)$.
663.7? 7			С	
671.7 <i>3</i>			Α	
712.99 15	$(7/2^+)$		В	J^{π} : γ' s to $9/2^{(-)}$ and $(5/2^+)$.
717.0 5			В	Level proposed by 1989Ko07 only.
744.2 4			Α	
793.08 ^a 18	$(15/2^{-})$	3.20 ps 17	С	$T_{1/2}$: from RDDS (1999K111).
				J ^π : Δ J=2, (E2) γ to (11/2 ⁻); Δ J=1, (M1+E2) γ to (13/2 ⁻).
826.2? 10			В	Level proposed by 1989Ko07 only.
1109.7? 5			C	
11/6./6 16			BC	Population uncertain in (HI,xn γ) since only the 9/8.2 γ is reported in this study, not the 463.8 γ and 1176.7 γ .
1181.8? 7			С	• • • •
1214.95 23			BC	
1269.67 ^{&} 21	$(17/2^{-})$		С	J^{π} : $\Delta J=2 \gamma$ to (13/2 ⁻); $\Delta J=1 \gamma$ to (15/2 ⁻).
1357.8 5			В	Level proposed by 1989Ko07 only.
1463.8? 5			С	
1469.5? 5			С	
1520.2 ^{<i>a</i>} 3	$(19/2^{-})$		С	J ^π : Δ J=2 γ to (15/2 ⁻); Δ J=1 γ to (17/2 ⁻).
1776.8 6	$(15/2^+)$		С	J^{π} : γ to (13/2 ⁻).
1954.3 ^d 4	$(17/2^+)$		С	J^{π} : $\Delta J=1$, dipole γ to $(15/2^{-})$.
2105.5 ^{&} 4	$(21/2^{-})$		С	J^{π} : $\Delta J = (2) \gamma$ to $(17/2^{-})$; $\Delta J = 1 \gamma$ to $(19/2^{-})$.
2122.8? 6			С	
2158.1 ^d 4	$(19/2^+)$		С	J^{π} : γ' s to $(17/2^{-})$ and $(17/2^{+})$.
2209.7? 11	(17/2)		C	J^{π} : γ to $(17/2^{-})$.
2259.4 7	(17/2)		С	J^{π} : possible γ' 's to (15/2 ⁻) and (19/2 ⁻).
2350.4 ^d 4	$(21/2^+)$		С	J^{π} : $\Delta J=1 \gamma$ to (19/2 ⁺): γ 's to (19/2 ⁻) and (17/2 ⁺).
2375.8 ^{<i>a</i>} 4	$(23/2^{-})$		C	J^{π} : $\Delta J = (2) \gamma$ to $(19/2^{-})$.
2533.2 11	(23/2)		C	J^{π} : possible γ to (19/2 ⁻).
2557.8 ^d 4	$(23/2^+)$		C	I^{π} : γ' s to (19/2 ⁺) and (21/2 ⁺).
2703.7 5	$(21/2^+)$		c	J^{π} : $\Delta J = (1) \gamma$ to $(19/2^{-})$.
2775.7 6	$(21/2^+)$		C	J^{π} : $\Delta J = (1) \gamma$ to $(19/2^+)$.
2795.4 5	$(21/2^+)$		С	J^{π} : γ to (19/2 ⁻).
2801.0^{d} 4	$(25/2^+)$		С	J^{π} : $\Lambda J=1 \gamma$ to (23/2 ⁺).
2820.1 [°] 5	$(23/2^{-})$		C	J^{π} : possible γ 's to $(21/2^{-})$ and $(23/2^{-})$.
				E(level): ordering of 121-444 cascade is from 1987Be57. 1987Pi05 show reverse ordering, defining a level at 2496 instead of 2820.
2940.6 ^b 4	$(25/2^{-})$		C	J^{π} : $\Lambda J=(2) \gamma$ to $(21/2^{-})$: $\Lambda J=1 \gamma$ to $(23/2^{-})$.
3102 1d 5	$(27/2^+)$		c	$I^{\pi} \cdot \Lambda I - (1) \propto t_0 (25/2^+)$
3110.6 ^C A	$(27/2^{-})$		Ċ	$J = (1) \gamma \text{ to } (23/2)$. $I^{\pi} \cdot \Lambda I = (2) \gamma \text{ to } (23/2) \cdot \Lambda I = 1 \gamma \text{ to } (25/2)$
22245f	$(25/2^+)$	$1.7 m^{-6}$		I_{π}^{π} , AL-1, M1 of to $(22/2^{+})$, AL-2, (E2) of a to $(21/2^{+})$
<i>332</i> 4. <i>3⁷ 4</i>	(23/2)	1.7 ps o	C	$J : \Delta J = 1$, with γ to (23/2); $\Delta J = 2$, (E2) γ 8 to (21/2). J^{π} : from 1995De40 and 1987Be57.
				Q(intrinsic)=1.4 4 (1993Wi09). Q deduced from $T_{1/2}$ of 620 γ which connects the SD band to normal states.

Transitions to normal states are from 1995De40 (see also 1987Be57 and

Continued on next page (footnotes at end of table)

¹³⁵Nd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	XREF	Comments
				1993Wi09).
3340.6 5	$(25/2^+)$		C	$J^{\pi}: \Delta J = (1) \gamma \text{ to } (23/2^{-}).$
3346.2?5	(20)(2-)	0.(02@ 25	C	
3358.6° 5	(29/2)	0.693 ps 35	C	$J^{n}: \Delta J = I \gamma \text{ to } (2/2).$
$34/1.1^{\circ}$ 3 3607 6 ^e 9	$(29/2^{+})$ $(27/2^{-})$		C	$J^{*}: \Delta J = 1 \gamma \text{ to } (2/2^{-}).$
3649.9 [°] 5	$(21/2^{-})$ $(31/2^{-})$	$0.52^{@}$ ns 6	c	J^{π} : $\Lambda I = 1 \gamma \text{ to } (29/2^{-})$
3780.6 ^e 7	$(29/2^{-})$	0.52 ps 0	c	J^{π} : $\Delta J=1 \gamma$ to $(27/2^{-})$; (M1+E2) γ to $(27/2^{-})$.
3861.1 ^d 5	$(31/2^+)$		С	J^{π} : $\Delta J=(2) \gamma$ to $(27/2^+)$; $\Delta J=1 \gamma$ to $(29/2^+)$.
3869.8 ^{<i>f</i>} 5	$(29/2^+)$	1.0 ps 4	С	J^{π} : $\Delta J=2$, E2 γ to (25/2 ⁺).
		•		Q(intrinsic) = 5.2 + 20 - 10 (1993Wi09).
4006.7 ^e 7	$(31/2^{-})$	1.012 [@] ps <i>14</i>	С	J^{π} : $\Delta J=(2) \gamma$ to $(27/2^{-})$; $\Delta J=1 \gamma$ to $(29/2^{-})$.
4008.1 ^b 5	$(33/2^{-})$	0.305 [@] ps 14	С	J^{π} : $\Delta J=1 \gamma$ to (31/2 ⁻); γ to (29/2 ⁻).
4288.9 ^e 7	$(33/2^{-})$	0.60 [@] ps 4	С	J^{π} : γ 's to (29/2 ⁻) and (31/2 ⁻).
4347.1 ^{<i>a</i>} 8	$(33/2^+)$	0	С	J^{π} : γ 's to (29/2 ⁺) and (31/2 ⁺).
4414.5 [°] 6	$(35/2^{-})$	0.194 [@] ps <i>14</i>	C	J^{π} : ΔJ=1 γ to (33/2 ⁻); γ to (31/2 ⁻).
4417.16	(22/2+)	0.44	C	
44/1./ 5	$(33/2^{+})$	0.44 ps +26-8	C	Q(intrinsic)=6.8 + 8 - 14 (1993 W109). $I^{\pi} \cdot \Lambda I - 2 = F2 \times \text{to} (29/2^{+})$
4598 6 ^e 7	$(35/2^{-})$	$0.444^{@}$ ps 35	C	I^{π} : χ'_{s} to $(31/2^{-})$ and $(33/2^{-})$
4772.1^{d} 9	$(35/2^+)$	0.111 ps 55	C	I^{π} : γ' 's to $(31/2^+)$ and $(33/2^+)$.
4852.6 ^b 6	$(37/2^{-})$	$0.159^{@}$ ps 14	C	I^{π} : $\Lambda I=1 \gamma$ to $(35/2^{-})$: γ to $(33/2^{-})$.
4970.7 ^e 8	$(37/2^{-})$	$0.333^{(0)}$ ps 21	C	I^{π} : γ' 's to $(33/2^{-})$ and $(35/2^{-})$.
5147.6 ^f 6	$(37/2^+)$	0.21 ps + 14 - 6	c	O(intrinsic)=7.2 + 12 - 15 (1993Wi09).
		I I		J^{π} : $\Delta J=2$, E2 γ to (33/2 ⁺).
5286.1? ^d 11	$(37/2^+)$		С	J^{π} : γ 's to (33/2 ⁺) and (35/2 ⁺).
5315.5 [°] 9	$(39/2^{-})$	0.152 [@] ps <i>14</i>	С	J^{π} : γ 's to (35/2 ⁻) and (37/2 ⁻).
5410.7 ^e 13	$(39/2^{-})$	0.166 [@] ps 28	С	J^{π} : γ to (37/2 ⁻).
5734.1 ^d 14	$(39/2^+)$	0	С	J^{π} : γ to (35/2 ⁺).
5787.5 ^b 9	$(41/2^{-})$	0.125 [@] ps <i>14</i>	С	J^{π} : γ 's to (37/2 ⁻) and (39/2 ⁻).
5895.9 ⁵ 6	$(41/2^+)$	<0.15 ps	C	Q(intrinsic) > 6.7 (1993Wi09).
5022 7° 16	$(41/2^{-})$		C	$J^{n}: \Delta J=2, E2 \gamma \text{ to } (3//2^{-}).$
6281 5 ^C 11	(41/2) $(43/2^{-})$	$0.111^{@} \text{ ps} 14$	C	$J : \gamma = 0 (39/2^{-})$. $I^{\pi} : \alpha's \text{ to } (30/2^{-}) \text{ and } (41/2^{-})$
6712.6f 7	$(+5/2^{+})$ $(45/2^{+})$	0.111 ps 14	C	I^{π} : $\Lambda I - 2$ E2 γ to $(41/2^{+})$
$67995^{b}12$	$(45/2^{-})$		c	$I^{\pi} \cdot \alpha' s \text{ to } (41/2^{-}) \text{ and } (43/2^{-})$
7328.5? ^C 15	$(47/2^{-})$		c	J^{π} : γ to $(43/2^{-})$.
7594.0 ^{<i>f</i>} 7	$(49/2^+)$		С	J^{π} : $\Delta J=2$, E2 γ to (45/2 ⁺).
8539.5 ^f 8	$(53/2^+)$		С	
9549.7 <mark>5</mark> 8	$(57/2^+)$		С	
10626.5 ^f 9	$(61/2^+)$		С	
11771.5 ^f 9	$(65/2^+)$		С	
12986.3 ^f 9	$(69/2^+)$		С	
14273.7 <mark>f</mark> 10	$(73/2^+)$		С	
15635.7 ^f 14	$(77/2^+)$		С	
17072.9 ^f 15	$(81/2^+)$		С	
18592.4 ^{<i>f</i>} 15	$(85/2^+)$		С	

135Nd Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF		
20197.4 ^{<i>f</i>} 17	$(89/2^+)$	С		
21889.4 ^{<i>f</i>} 20	$(93/2^+)$	С		

[†] From least-squares fit to $E\gamma's$.

- [#] From RDDS in (HI,xn γ) (1993Wi09), unless otherwise indicated.
- [@] From DSAM in (HI,xnγ) (2007Mu14).
- [&] Band(A): $\nu h_{11/2}$ 9/2[514], $\alpha = +1/2$. Backbend at J=25/2 due to alignment of pair of $h_{11/2}$ protons in 3/2[541] orbit (AB crossing) (1987Pi05). This band is extended to 45/2⁻ by 1987Be57. Q(transition)<3.0 (2001Ri20). VMI analysis: parameter $\Delta < 1$ keV, 72 keV for both signature partners treated as one band. Band assignment by 1987Pi05.
- ^{*a*} Band(a): $vh_{11/2}$ 9/2[514], $\alpha = -1/2$. Backbend at J=27/2 due to alignment of pair of $h_{11/2}$ protons in 3/2[541] orbit (AB crossing) (1987Pi05). This band is extended to 47/2⁻ by 1987Be57. Q(transition)<3.0 (2001Ri20). VMI analysis: parameter $\Delta = 1$ keV, 72 keV for both signature partners treated as one band. Band assignment by 1987Pi05.
- ^b Band(B): $\pi h_{11/2}^2 \nu h_{11/2}^{-1}$, $\alpha = +1/2$. Possibly forms a chiral pair with band based on 3607, 27/2⁻. Q(transition)=3.0 3 (2001Ri20). VMI analysis: parameter $\Delta = 91$ keV, 120 keV for both signature partners treated as one band.
- ^c Band(b): $\pi h_{11/2}^2 \nu h_{11/2}^{-1}$, $\alpha = -1/2$. Possibly forms a chiral pair with band based on 3607, 27/2⁻. Q(transition)=3.0 *3* (2001Ri20). VMI analysis: parameter $\Delta = 137$ keV, 120 keV for both signature partners treated as one band.
- ^d Band(C): $\Delta J=1$ band. Band assignment from 1987Pi05 and 1987Be57. Possible configuration= $vh_{11/2} \otimes \pi g_{7/2}$ (?) (1987Pi05). VMI analysis: parameter $\Delta=93$ keV.
- ^{*e*} Band(D): $\pi h_{11/2}^2 \nu h_{11/2}^{-1}$. Possible chiral-partner of $\pi h_{11/2}^2 \nu h_{11/2}^{-1}$. VMI analysis: parameter Δ =85 keV.
- ^{*f*} Band(E): SD band. Band assignment from 1987Be57,1987Wa18,1995De40,1997Ko37. Q(transition)=7.3 *10* (1998Pe01,1998Pe15), 7.4 *10* (1990Di01); average value over the entire spin range in the SD band; 1999Ko28 measure Q(transition)=5.1 2 and 5.7 2, the first for low-spin gating on stopped transitions, the second for Doppler-shifted high-spin transitions. The strongly deformed shape is mainly caused by the occupation of a $v_{13/2}$ intruder orbital (1997Ko37,1998Pe01). Percent population=10 (1987Be57) in ¹⁰⁰Mo(⁴⁰Ar,5n\gamma); 9 (1987Wa18) in ¹⁰⁴Ru(³⁴S,3n\gamma); 7 2 (1993Mu09). VMI analysis: parameter Δ =44 keV.

[‡] From $\gamma(\theta)$ and/or $\gamma\gamma(\theta)$ (DCO) data in (HI,xn γ) experiments and possible band assignments. For low-spin levels (J<11/2), assignments are from 1989Vi04 based on possible ε feedings (as given by 1989Vi04) from the decay of low-spin (49 s) ¹³⁵Pm activity. In J^{π} arguments, $\Delta J=2$ statement refers to stretched quadrupole (most likely E2) transition and $\Delta J=1$ to stretched dipole (with possible quadrupole admixture) transition.

					Ado	pted Levels,	Gammas (continued)	
						$\frac{\gamma}{\gamma}$	(¹³⁵ Nd)		
E _i (level)	J_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
193.7 198.74	(3/2 ⁺) (11/2 ⁻)	128.8 2 198.82 <i>15</i>	100 100	64.95 0.0	$(1/2^+)$ $9/2^{(-)}$	(M1+E2)	-0.22 7	0.206	$\alpha(K)=0.175 \ 3; \ \alpha(L)=0.0249 \ 7; \ \alpha(M)=0.00531 \ 15; \ \alpha(N+)=0.00138 \ 4 \ \alpha(N)=0.00119 \ 4; \ \alpha(O)=0.000179 \ 4; \ \alpha(P)=1.117\times10^{-5} \ 20 \ B(M1)(W.u.)=0.057 \ 8; \ B(E2)(W.u.)=40 \ 30 \ E_{v}$ from (HI xny)
273.03 328.1	(3/2,5/2) (1/2 ⁺)	208.1 2 135.5 ^{&} 5	$100 \\ \approx 4^{\&}$	64.95 193.7	$(1/2^+)$ $(3/2^+)$ $(1/2^+)$				
347.1 371.12	(1/2,3/2,5/2) $(5/2^+)$	262.9 2 282.1 2 98.1 2 177.4 3 306.2 2	$ \begin{array}{c} 100 \ 30 \\ 100 \\ 23 \ 6 \\ 17 \ 3 \\ 100 \ 14 \end{array} $	64.95 64.95 273.03 193.7 64.95	$(1/2^+)$ $(1/2^+)$ (3/2,5/2) $(3/2^+)$ $(1/2^+)$				282 γ shown to deexcite a 746.0 level by 1989Ko07.
463.66?	(5/2+)	135.5 ^{&} 5 190.6 5 270.0 2 398.7 ^{&} 2	$\approx 4^{\&}$ ≈ 5 $100 \ 35$ $88^{\&} \ 22$	328.1 273.03 193.7 64.95	$(1/2^+)$ (3/2,5/2) $(3/2^+)$ $(1/2^+)$				
493.17 560.52	(7/2,9/2,11/2) (13/2 ⁻)	493.2 <i>2</i> 361.88 <i>15</i>	100 100 <i>I</i>	0.0 198.74	9/2 ⁽⁻⁾ (11/2 ⁻)	(M1+E2)	-0.9 6	0.036 5	$\alpha(K)=0.030\ 5;\ \alpha(L)=0.00466\ 15;\ \alpha(M)=0.000998\ 23;\ \alpha(N+)=0.000257\ 8$ $\alpha(N)=0.000222\ 7;\ \alpha(O)=3.29\times10^{-5}\ 17;\ \alpha(P)=1.9\times10^{-6}\ 4$ B(M1)(W.u.)=0.029\ 18;\ B(E2)(W.u.)=110\ 90 E _y : 362.2 2 (1989Vi04), 362.8 (1989Ko07) in ¹³⁵ Pm decay.
		560.35 20	61 <i>I</i>	0.0	9/2 ⁽⁻⁾	(E2)		0.00871	$\alpha(K)=0.00726 \ 11; \ \alpha(L)=0.001143 \ 16; \ \alpha(M)=0.000245 \ 4; \\ \alpha(N+)=6.29\times10^{-5} \ 9 \\ \alpha(N)=5.44\times10^{-5} \ 8; \ \alpha(O)=8.00\times10^{-6} \ 12; \ \alpha(P)=4.29\times10^{-7} \ 6 \\ B(E2)(W.u.)=17.0 \ 13 \\ E_{\gamma}: \ 560.8 \ 3 \ (1989Vi04), \ 561.5 \ (1989Ko07) \ in \ ^{135}Pm \ decay.$
565.0		366.22 <i>25</i> 564.2 ^{<i>a</i>} <i>3</i>		198.74 0.0	(11/2 ⁻) 9/2 ⁽⁻⁾				E_{γ} : 365.4 4 (1989Vi04), 366.8 (1989Ko07) in ¹³⁵ Pm decay. γ reported by 1989Vi04 only in ¹³⁵ Pm decay, with Iγ(564γ)/Iγ(366γ)=3.7 10. It is considered uncertain by the evaluators.
588.1	$(3/2^+, 5/2^+)$	394.2 <i>3</i> 523.3 <i>3</i>	100 <i>50</i> 90 <i>30</i>	193.7 64.95	$(3/2^+)$ $(1/2^+)$				
602.9 663.7?	$(3/2^+, 5/2^+)$	409.2 2 465.0 ^{<i>a</i>} 6	100 100	193.7 198.74	$(3/2^+)$ $(11/2^-)$				

S

Adopted Levels, Gammas (continued) γ ⁽¹³⁵Nd) (continued) $I_{\gamma}^{\dagger \#}$ E_{γ}^{\dagger} $\alpha^{(0)}$ Mult.[‡] δ^{\ddagger} J_{c}^{π} Comments J_i^{π} \mathbf{E}_{f} 324.6 2 100 30 347.1 (1/2, 3/2, 5/2)398.7[&] 2 ≈20[&] 273.03 (3/2, 5/2)219.9 3 $(7/2^+)$ 20 10 493.17 (7/2,9/2,11/2) 249.3 3 37 10 $463.66? (5/2^+)$ 341.9 2 67 17 $371.12 (5/2^+)$ 439.9 4 23 10 273.03 (3/2,5/2) 1989Ko07 suggest a separate level at 712.4 deexciting through a 439.3γ . 514.0 198.74 (11/2⁻) Reported by 1989Ko07 only. 713.0 2 0.0 $9/2^{(-)}$ 100 17 Placement from 1989Ko07. $E\gamma$ from 1989Vi04. 518.3 4 100 $198.74 (11/2^{-})$ 471.2 3 100 273.03 (3/2, 5/2) $(15/2^{-})$ 232.61 20 25 2 $560.52 (13/2^{-})$ (M1+E2) -0.13 7 0.1345 20 $\alpha(K)=0.1145 \ 17; \ \alpha(L)=0.0158 \ 3; \ \alpha(M)=0.00336 \ 6;$ α (N+..)=0.000873 15 α (N)=0.000752 *13*; α (O)=0.0001141 *18*; $\alpha(P)=7.35\times10^{-6}$ 12 B(M1)(W.u.)=0.104 11; B(E2)(W.u.)=20 +22-20 594.31 20 100 2 (E2) 0.00749 α(K)=0.00626 9; α(L)=0.000968 14; α(M)=0.000207 $198.74 (11/2^{-})$ 3; α (N+..)=5.32×10⁻⁵ 8 $\alpha(N)=4.61\times10^{-5}$ 7; $\alpha(O)=6.79\times10^{-6}$ 10;

 α (P)=3.72×10⁻⁷ 6 B(E2)(W.u.)=45 3

Not reported in $(HI,xn\gamma)$.

Not reported in (HI, $xn\gamma$).

 γ reported by 1989Ko07 only.

(HI, $xn\gamma$).

 E_{γ} : from ε decay.

 γ reported by 1989Ko07 only.

 E_{γ} : 978.2 in (HI,xn γ) may be from some other level

since the other two γ rays are not reported in

 E_i (level)

671.7

712.99

717.0

744.2

793.08

826.2?

1109.7?

1176.76

1181.8?

1214.95

1269.67

1357.8

1463.8?

1469.5?

1520.2

1776.8

1954.3

 $(17/2^{-})$

 $(19/2^{-})$

 $(15/2^+)$

 $(17/2^+)$

627.5

911.0^{*a*} 4

463.8 2

978.0 2

1176.7 3

1016.2 2

644.8

1159.0 5

670.7^{*a*} 4

676.4^{*a*} 4

250.5 5

727.0 4

1217

178 *1*

1161.1 25

518.04^{*a*} 20

476.70 25

709.10 20

100

100.8

63 8

52 8

100

100

75 8

100 8

100

100

11 *I*

100 1

100 2

 $198.74 (11/2^{-})$

198.74 (11/2⁻)

 $198.74 (11/2^{-})$

 $198.74 (11/2^{-})$

712.99 $(7/2^+)$

 $198.74 (11/2^{-})$

793.08 (15/2⁻)

793.08 (15/2⁻)

 $1269.67 (17/2^{-})$

793.08 (15/2⁻)

560.52 (13/2⁻)

793.08 $(15/2^{-})$

 $(7/2^+)$

 $9/2^{(-)}$

 $(15/2^{-})$

 $(13/2^{-})$

 $(15/2^+)$

D(+Q)

D+Q

Q

D

Q

-0.0911

-0.198

712.99

0.0

663.7?

793.08

560.52

1776.8

 $^{135}_{60}\text{Nd}_{75}\text{-}6$

ç

γ (¹³⁵Nd) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
2105.5	$(21/2^{-})$	585.38 25	38 9	1520.2	$(19/2^{-})$	D(+Q)	0.00 6		
		836.0 4	100 24	1269.67	$(17/2^{-})$	(Q)			
2122.8?		602.6 ^a 5	100	1520.2	$(19/2^{-})$				
2158.1	$(19/2^+)$	203.85 25	95 11	1954.3	$(17/2^+)$				
		381 <i>I</i>		1776.8	$(15/2^+)$				
		888.4 <i>3</i>	100 13	1269.67	$(17/2^{-})$				
2209.7?	(17/2)	940 ^a 1		1269.67	$(17/2^{-})$				
2259.4	(17/2)	483 ^a 1		1776.8	$(15/2^+)$				
		739 ^a 1		1520.2	$(19/2^{-})$				
		1466 ^a 1		793.08	$(15/2^{-})$				
2350.4	$(21/2^+)$	192.24 20		2158.1	$(19/2^+)$	D(+Q)	-0.03 3		
		396 1		1954.3	$(17/2^+)$				
		830		1520.2	$(19/2^{-})$				
2375.8	$(23/2^{-})$	270.5 5	≈5	2105.5	$(21/2^{-})$				
		855.2 4	100 1	1520.2	$(19/2^{-})$	(Q)			
2533.2	(23/2)	1013 ^a 1		1520.2	$(19/2^{-})$				
2557.8	$(23/2^+)$	207.45 25	100 14	2350.4	$(21/2^+)$				
		400 1		2158.1	$(19/2^+)$				
2703.7	$(21/2^+)$	1183.7 4	100	1520.2	$(19/2^{-})$	(D)			
2775.7	$(21/2^+)$	515 ^a 1		2259.4	(17/2)				
		565 ^{<i>a</i>} 1		2209.7?	(17/2)				
		618 1	100 20	2158.1	$(19/2^+)$	(D)			
2795.4	$(21/2^+)$	1275 ^{<i>a</i>} 1		1520.2	$(19/2^{-})$				
2801.0	$(25/2^+)$	243.20 20	100 17	2557.8	$(23/2^+)$	D+Q	-0.06 4		
		450 1		2350.4	$(21/2^+)$				
2820.1	$(23/2^{-})$	444.2 ^{<i>a</i>} 4		2375.8	$(23/2^{-})$				
		715 ^a		2105.5	$(21/2^{-})$				
2940.6	$(25/2^{-})$	120.76 ^{<i>a</i>} 20	22.0 5	2820.1	$(23/2^{-})$				
		564.79 20	77 12	2375.8	$(23/2^{-})$	D(+Q)	-0.02 7		
		835.2 4	100 13	2105.5	$(21/2^{-})$	(Q)			
3102.1	$(27/2^+)$	301.13 20		2801.0	$(25/2^+)$	(D)			
	(0= (0-)	544	100 5	2557.8	$(23/2^+)$				
3110.6	$(2^{7}/2^{-})$	170.05 20	100 6	2940.6	$(25/2^{-})$	D(+Q)	+0.01 4		
2224.5	(0,5 /0±)	734.6 4	17 11	2375.8	$(23/2^{-})$	(Q)		0.010.0	
3324.5	$(25/2^+)$	523.5 4	0.06 2	2801.0	$(25/2^+)$	(M1,E2)		0.013 3	$\alpha(K)=0.011 \ 3; \ \alpha(L)=0.00163 \ 24; \ \alpha(M)=0.00035 \ 5;$
									α (N+)=8.9×10 ° 13
									$\alpha(N) = 7.7 \times 10^{-5} II; \alpha(O) = 1.16 \times 10^{-5} I9; \alpha(P) = 7.0 \times 10^{-7} I9$
									Mult.: From $\alpha_{\rm K}(\exp)$. No EU admixture was detected.
		0_	0.						If M1, $B(M1)(W.u.)=0.008$ 5.
		529.0 ^{&} 4	0.10 2	2795.4	$(21/2^+)$	(E2)		0.01013	B(E2)(W.u.)=30 13

7

$^{135}_{60}\mathrm{Nd_{75}}$ -7

From ENSDF

						Adopted	Levels, Gai	nmas (contin	uued)
							γ(¹³⁵ Nd) (c	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α [@]	Comments
									$\alpha(K)=0.00841 \ 12; \ \alpha(L)=0.001350 \ 20; \ \alpha(M)=0.000290 \ 5;$
									$\alpha(N+)=7.43\times10^{-5}$ 11 $\alpha(N)=6.42\times10^{-5}$ 10; $\alpha(O)=0.42\times10^{-6}$ 14; $\alpha(D)=4.06\times10^{-7}$ 7
3324.5	$(25/2^+)$	548.9 <i>4</i>	0.14 3	2775.7	$(21/2^{+})$	(E2)		0.00919	$a(N)=0.45\times10^{-10}, a(O)=9.42\times10^{-14}, a(P)=4.90\times10^{-7}$ B(E2)(W.u.)=35 15
	(-1)								$\alpha(K)=0.00765 \ 11; \ \alpha(L)=0.001213 \ 18; \ \alpha(M)=0.000260 \ 4;$
									α (N+)=6.67×10 ⁻⁵ 10
		621.0.4	0 13 3	2703.7	$(21/2^{+})$	(F2)		0.00671	$\alpha(N)=5.78 \times 10^{-5}$ 9; $\alpha(O)=8.48 \times 10^{-6}$ 12; $\alpha(P)=4.52 \times 10^{-7}$ 7 $\alpha(K)=0.00562$ 8: $\alpha(L)=0.000858$ 13: $\alpha(M)=0.000184$ 3:
		021.0 7	0.15 5	2105.1	(21/2)	(12)		0.00071	$\alpha(N+)=4.72\times10^{-5}$ 7
									$\alpha(N)=4.08\times10^{-5}$ 6; $\alpha(O)=6.02\times10^{-6}$ 9; $\alpha(P)=3.35\times10^{-7}$ 5
		766 5 1	0 10 2	2557 0	$(22/2^{+})$	M1		0.00620	B(E2)(W.u.)=17.8 P(M1)(W.u.)=0.0044.40
		700.5 4	0.10 2	2337.0	(23/2)	1011		0.00039	$\alpha(K)=0.00547 \ 8; \ \alpha(L)=0.000720 \ 11; \ \alpha(M)=0.0001520 \ 22;$
									α (N+)=3.96×10 ⁻⁵ 6
		0.40	0.10.0	2275.0	(22/2-)				$\alpha(N)=3.41\times10^{-5}$ 5; $\alpha(O)=5.20\times10^{-6}$ 8; $\alpha(P)=3.46\times10^{-7}$ 5
3340.6	$(25/2^{+})$	949 1 807 <mark>4</mark> 1	0.12 2	2375.8	$(23/2^{-})$ (23/2)	(D)			If E1, B(E1)(W.u.)= 3.3×10^{-5} 13.
5510.0	(23/2)	964.6 4	100 29	2375.8	$(23/2^{-})$	(D)			
3346.2?	(20)(2-)	235.6 ^{<i>a</i>} 3	100	3110.6	$(27/2^{-})$		0.00 (0.1106.17	
3358.6	(29/2)	247.74 25	100 5	3110.6	(27/2)	(M1+E2)	-0.08 4	0.1136 17	$\alpha(\mathbf{K})=0.0968\ 14;\ \alpha(\mathbf{L})=0.01328\ 20;\ \alpha(\mathbf{M})=0.00281\ 4;\ \alpha(\mathbf{N}+)=0.000732\ 11$
									α (N)=0.000630 <i>10</i> ; α (O)=9.58×10 ⁻⁵ <i>14</i> ; α (P)=6.23×10 ⁻⁶ 9
		110.0.5		20.40	(25/2-)			0.0104	$B(M1)(W.u.)=(1.78 \ 16); B(E2)(W.u.)=(1.2\times10^2 \ 12)$
		418.0 5	51	2940.6	(25/2)	[E2]		0.0194	$\alpha(\mathbf{K})=0.01583\ 23;\ \alpha(\mathbf{L})=0.00278\ 4;\ \alpha(\mathbf{M})=0.000601\ 9;$ $\alpha(\mathbf{N}+)=0.0001529\ 23$
									$\alpha(N)=0.0001329\ 20;\ \alpha(O)=1.92\times10^{-5}\ 3;\ \alpha(P)=9.11\times10^{-7}\ 13$
									B(E2)(W.u.)=67 15
3471.1	$(29/2^{+})$	369.12 25		3102.1	$(27/2^+)$	D+O	-0.16 6		I_{γ} : Irom 200/MuZ I. Other: 21 4.
	<pre></pre>	669		2801.0	$(25/2^+)$	×.			
3607.6	$(27/2^{-})$ $(31/2^{-})$	667 201 34 20	100 7	2940.6 3358.6	$(25/2^{-})$ $(29/2^{-})$	(M1 + E2)	_0 12 4	0.0736	$\alpha(\mathbf{K}) = 0.0627.0$; $\alpha(\mathbf{I}) = 0.00858.13$; $\alpha(\mathbf{M}) = 0.00182.3$;
5047.7	(31/2)	291.34 20	100 1	3336.0	(29/2)	(WII+E2)	-0.12 4	0.0750	$\alpha(N) = 0.0027$ 7, $\alpha(L) = 0.000000$ 15, $\alpha(N) = 0.00102$ 5; $\alpha(N+) = 0.000473$ 7
									α (N)=0.000407 6; α (O)=6.19×10 ⁻⁵ 9; α (P)=4.02×10 ⁻⁶ 6
		520 5 2	14.2	2110 6	(27/2-)	[E2]		0.00062	$B(M1)(W.u.)=1.39\ 17;\ B(E2)(W.u.)=1.5\times10^2\ 10$
		537.5 5	14 3	3110.0	(27/2)	[E2]		0.00902	$\alpha(N) = 0.0000012, \alpha(L) = 0.00127510; \alpha(N) = 0.0002744;$ $\alpha(N+) = 7.01 \times 10^{-5}10$
									$\alpha(N)=6.07\times10^{-5}$ 9; $\alpha(O)=8.90\times10^{-6}$ 13; $\alpha(P)=4.72\times10^{-7}$ 7
2700 ((20/2=)	170		2607.6	(07/0-)			0.211.10	B(E2)(W.u.)=67 17
3/80.6	$(29/2^{-1})$	1/3		3607.6	(21/2)	(M1+E2)		0.311 10	$\alpha(K)=0.243 \ I3; \ \alpha(L)=0.054 \ I3; \ \alpha(M)=0.012 \ 3; \ \alpha(N+)=0.0030$

 ∞

From ENSDF

 $^{135}_{60}\mathrm{Nd}_{75}$ -8

I.

						Adopted Lev	vels, Gamma	s (continued)	
						$\gamma(^{13}$	⁵ Nd) (contin	ued)	
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
3780.6	(29/2 ⁻)	670		3110.6	$(27/2^{-})$	D+Q			<i>10</i> $\alpha(N)=0.0026 \ 9; \ \alpha(O)=0.00036 \ 11; \ \alpha(P)=1.4\times10^{-5} \ 3$
3861.1	(31/2 ⁺)	840 389.93 25 759.0 <i>3</i>	67 <i>15</i> 100 <i>4</i>	2940.6 3471.1 3102.1	(25/2) $(29/2^+)$ $(27/2^+)$	D+Q (Q)	+0.11 3		
3869.8	(29/2+)	529.0 ^{&} 4	0.10 ^{&} 2	3340.6	(25/2 ⁺)	(E2)		0.01013	$\begin{aligned} &\alpha(\text{K}) = 0.00841 \ 12; \ \alpha(\text{L}) = 0.001350 \ 20; \ \alpha(\text{M}) = 0.000290 \ 5; \\ &\alpha(\text{N}+) = 7.43 \times 10^{-5} \ 11 \\ &\alpha(\text{N}) = 6.43 \times 10^{-5} \ 10; \ \alpha(\text{O}) = 9.42 \times 10^{-6} \ 14; \ \alpha(\text{P}) = 4.96 \times 10^{-7} \\ &\gamma \end{aligned}$
		545.40 25	0.77 8	3324.5	(25/2+)	E2		0.00935	$ \begin{array}{l} \overset{\prime}{\text{B(E2)(W.u.)=38}} 18 \\ \alpha(\text{K)=0.00778} 11; \ \alpha(\text{L})=0.001235 \ 18; \ \alpha(\text{M})=0.000265 \ 4; \\ \alpha(\text{N}+)=6.79\times10^{-5} \ 10 \\ \alpha(\text{N})=5.89\times10^{-5} \ 9; \ \alpha(\text{O})=8.63\times10^{-6} \ 13; \ \alpha(\text{P})=4.59\times10^{-7} \ 7 \end{array} $
4006.7	(31/2 ⁻)	226.0	100 6	3780.6	(29/2 ⁻)	(M1(+E2))	<0.14	0.146	B(E2)(W.u.)= 2.5×10^2 11 α (K)= 0.112 13; α (L)= 0.021 4; α (M)= 0.0045 10; α (N+)= 0.00115 22
		399.0	5.6 11	3607.6	(27/2 ⁻)	[E2]		0.0221	$\begin{aligned} &\alpha(N)=0.00100\ 20;\ \alpha(O)=0.000143\ 21;\ \alpha(P)=6.6\times10^{-6}\ 15\\ &B(M1)(W.u.)=1.50\ 14\\ &\delta:\ from\ RUL(E2)<300.\\ &\alpha(K)=0.0180\ 3;\ \alpha(L)=0.00323\ 5;\ \alpha(M)=0.000700\ 10;\\ &\alpha(N+)=0.0001778\ 25\\ &\alpha(N)=0.0001546\ 22;\ \alpha(O)=2.22\times10^{-5}\ 4;\ \alpha(P)=1.032\times10^{-6} \end{aligned}$
		648.0	3.3 <i>3</i>	3358.6	(29/2 ⁻)	(M1+E2)		0.0078 18	15 B(E2)(W.u.)=60 13 α (K)=0.0066 16; α (L)=0.00093 17; α (M)=0.00020 4; α (N+)=5.1×10 ⁻⁵ 9
		896.0	2.2 3	3110.6	(27/2 ⁻)	(E2)		0.00284	$\begin{aligned} &\alpha(N) = 4.4 \times 10^{-5} \ 8; \ \alpha(O) = 6.6 \times 10^{-6} \ 13; \ \alpha(P) = 4.1 \times 10^{-7} \ 11 \\ &\text{For pure M1, B(M1)(W.u.) = 0.00212 \ 24, for pure E2, \\ &B(E2)(W.u.) = 3.1 \ 3. \\ &\alpha(K) = 0.00241 \ 4; \ \alpha(L) = 0.000338 \ 5; \ \alpha(M) = 7.18 \times 10^{-5} \ 10; \\ &\alpha(N+) = 1.86 \times 10^{-5} \ 3 \\ &\alpha(N) = 1.602 \times 10^{-5} \ 23; \ \alpha(O) = 2.40 \times 10^{-6} \ 4; \end{aligned}$
4008.1	(33/2 ⁻)	358.22 25	100 5	3649.9	(31/2 ⁻)	(M1(+E2))	-0.02 13	0.0429 7	$\begin{aligned} &\alpha(P)=1.459\times 10^{-7}\ 21\\ B(E2)(W.u.)=0.41\ 7\\ &\alpha(K)=0.0367\ 6;\ \alpha(L)=0.00495\ 7;\ \alpha(M)=0.001048\ 15;\\ &\alpha(N+)=0.000273\ 4\\ &\alpha(N)=0.000235\ 4;\ \alpha(O)=3.58\times 10^{-5}\ 6;\ \alpha(P)=2.35\times 10^{-6}\ 4\\ B(M1)(W.u.)=1.21\ 10 \end{aligned}$
		649.2 <i>3</i>	25 <i>3</i>	3358.6	$(29/2^{-})$	[E2]		0.00601	α (K)=0.00505 7; α (L)=0.000761 11; α (M)=0.0001626 23;

9

 $^{135}_{60}\mathrm{Nd}_{75}$ -9

						Adopted L	evels, Gamn	nas (continu	led)
						<u>γ(</u>	¹³⁵ Nd) (cont	tinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	\mathbf{E}_{f}	J_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
4288.9	(33/2 ⁻)	282.1	100 5	4006.7 (2	31/2-)	[M1]		0.0804	$\alpha(N+)=4.18\times10^{-5} 6$ $\alpha(N)=3.61\times10^{-5} 5; \ \alpha(O)=5.35\times10^{-6} 8; \ \alpha(P)=3.01\times10^{-7} 5$ B(E2)(W.u.)=76 11 $\alpha(K)=0.0686 10; \ \alpha(L)=0.00934 13; \ \alpha(M)=0.00198 3; \ \alpha(N+)=0.000515 8$ $\alpha(N+)=0.000515 8$
		508.0	11.0 <i>18</i>	3780.6 (2	29/2-)	[E2]		0.01128	$\begin{array}{l} \alpha(N)=0.000445\ 7,\ \alpha(O)=0.74\times10^{-1}\ 10,\ \alpha(P)=4.41\times10^{-7}\ P \\ B(M1)(W.u.)=1.22\ 12 \\ \alpha(K)=0.00935\ 13;\ \alpha(L)=0.001521\ 22;\ \alpha(M)=0.000327\ 5; \\ \alpha(N+)=8.37\times10^{-5}\ 12 \end{array}$
		639.0	7.3 10	3649.9 (3	31/2-)	[M1]		0.00995	$\alpha(N)=7.25\times10^{-5} \ 11; \ \alpha(O)=1.059\times10^{-5} \ 15; \ \alpha(P)=5.49\times10^{-7} \ 8$ B(E2)(W.u.)=55 10 $\alpha(K)=0.00852 \ 12; \ \alpha(L)=0.001128 \ 16; \ \alpha(M)=0.000238 \ 4;$
		930.0	8.0 10	3358.6 (2	29/2-)	[E2]		0.00262	$\begin{aligned} &\alpha(N+)=6.21\times10^{-5} \ 9\\ &\alpha(N)=5.34\times10^{-5} \ 8; \ \alpha(O)=8.14\times10^{-6} \ 12; \ \alpha(P)=5.40\times10^{-7} \ 8\\ &B(M1)(W.u.)=0.0076 \ 13\\ &\alpha(K)=0.00223 \ 4; \ \alpha(L)=0.000310 \ 5; \ \alpha(M)=6.58\times10^{-5} \ 10; \\ &\alpha(N+)=1.701\times10^{-5} \ 24\\ &\alpha(N)=1.467\times10^{-5} \ 21; \ \alpha(O)=2.20\times10^{-6} \ 3; \ \alpha(P)=1.347\times10^{-7} \ 19\\ &B(E2)(W.u.)=2.0 \ 3 \end{aligned}$
4347.1 4414.5	(33/2 ⁺) (35/2 ⁻)	486 876 406.5 <i>5</i>	100 <i>19</i>	3861.1 (2 3471.1 (2 4008.1 (2	31/2 ⁺) 29/2 ⁺) 33/2 ⁻)	(M1+E2)	-0.25 15	0.0304 9	$\alpha(K)=0.0259 \ 9; \ \alpha(L)=0.00353 \ 7; \ \alpha(M)=0.000748 \ 14; \ \alpha(N+)=0.000194 \ 4$
		764.9 5	43 4	3649.9 (2	31/2-)	[E2]		0.00406	$\alpha(N)=0.000167 \ 3; \ \alpha(O)=2.54\times10^{-5} \ 6; \ \alpha(P)=1.65\times10^{-6} \ 6 \\ B(M1)(W.u.)=1.1 \ 3; \ B(E2)(W.u.)=3.E+2 \ 3 \\ \alpha(K)=0.00343 \ 5; \ \alpha(L)=0.000497 \ 7; \ \alpha(M)=0.0001058 \ 15; \\ \alpha(N+)=2.73\times10^{-5} \ 4 \\ \alpha(N)=2.36\times10^{-5} \ 4; \ \alpha(O)=3.51\times10^{-6} \ 5; \ \alpha(P)=2.06\times10^{-7} \ 3 \\ B(F2)(W.u.)=80 \ 15 $
4417.1 4471.7	(33/2+)	408.5 5 767.4 <i>3</i> 601.90 <i>25</i>	100 <i>31</i> 76 <i>4</i> 1.05 <i>10</i>	4008.1 (3 3649.9 (3 3869.8 (2	33/2 ⁻) 31/2 ⁻) 29/2 ⁺)	E2		0.00726	$\alpha(K)=0.00607 \ 9; \ \alpha(L)=0.000935 \ 14; \ \alpha(M)=0.000200 \ 3;$
4598.6	(35/2 ⁻)	309.0	100 6	4288.9 (2	33/2-)	[M1]		0.0632	$\alpha(N+)=5.14\times10^{-5} 8$ $\alpha(N)=4.45\times10^{-5} 7; \ \alpha(O)=6.56\times10^{-6} 10; \ \alpha(P)=3.61\times10^{-7} 5$ $B(E2)(W.u.)=3.9\times10^{2} +8-24$ $\alpha(K)=0.0539 8; \ \alpha(L)=0.00732 \ 11; \ \alpha(M)=0.001550 \ 22; \ \alpha(N+)=0.000404 \ 6$ $\alpha(N)=0.000347 \ 5; \ \alpha(O)=5.29\times10^{-5} \ 8; \ \alpha(P)=3.46\times10^{-6} \ 5$
		590.0	2.1 4	4008.1 (3	33/2-)	[M1]		0.01211	B(M1)(W.u.)=1.18 <i>14</i> α (K)=0.01037 <i>15</i> ; α (L)=0.001377 <i>20</i> ; α (M)=0.000291 <i>4</i> ;

From ENSDF

						Adopted	Levels, Gan	nmas (contir	nued)
							$\gamma(^{135}\text{Nd})$ (co	ntinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
4598.6	(35/2 ⁻)	591.0	25 4	4006.7	(31/2 ⁻)	[E2]		0.00760	$\begin{array}{c} \alpha(\mathrm{N}+)=7.57\times10^{-5} \ 11\\ \alpha(\mathrm{N})=6.52\times10^{-5} \ 10; \ \alpha(\mathrm{O})=9.94\times10^{-6} \ 14; \ \alpha(\mathrm{P})=6.58\times10^{-7} \ 10\\ \mathrm{B}(\mathrm{M}1)(\mathrm{W.u.})=0.0036 \ 8\\ \alpha(\mathrm{K})=0.00635 \ 9; \ \alpha(\mathrm{L})=0.000984 \ 14; \ \alpha(\mathrm{M})=0.000211 \ 3;\\ \alpha(\mathrm{N}+)=5.41\times10^{-5} \ 8\\ \alpha(\mathrm{N}+)=5.41\times10^{-5$
		949.0	9.2 14	3649.9	(31/2 ⁻)	[E2]		0.00251	$\begin{aligned} \alpha(N) &= 4.68 \times 10^{-5} \ 7; \ \alpha(O) &= 6.89 \times 10^{-6} \ 10; \ \alpha(P) &= 3.77 \times 10^{-7} \ 6 \\ B(E2)(W.u.) &= 75 \ 14 \\ \alpha(K) &= 0.00213 \ 3; \ \alpha(L) &= 0.000296 \ 5; \ \alpha(M) &= 6.27 \times 10^{-5} \ 9; \\ \alpha(N+) &= 1.623 \times 10^{-5} \ 23 \\ \alpha(N) &= 1.400 \times 10^{-5} \ 20; \ \alpha(O) &= 2.10 \times 10^{-6} \ 3; \ \alpha(P) &= 1.290 \times 10^{-7} \ 18 \\ B(E2)(W.u.) &= 2.6 \ 5 \end{aligned}$
4772.1	$(35/2^+)$	425		4347.1	$(33/2^+)$				
4852.6	(37/2 ⁻)	438.6 5	100 8	4414.5	$(31/2^{-})$ $(35/2^{-})$	(M1+E2)	-0.26 15	0.0250 8	α (K)=0.0213 7; α (L)=0.00289 6; α (M)=0.000612 12; α (N+)=0.000159 4
		844.2 <i>4</i>	67 <i>5</i>	4008.1	(33/2-)	[E2]		0.00325	α (N)=0.000137 3; α (O)=2.08×10 ⁻⁵ 5; α (P)=1.35×10 ⁻⁶ 6 B(M1)(W.u.)=0.91 <i>14</i> α (K)=0.00275 4; α (L)=0.000390 6; α (M)=8.29×10 ⁻⁵ <i>12</i> ;
4970.7	(37/2 ⁻)	371.2	100 6	4598.6	(35/2-)	[M1]		0.0392	$\alpha(N+)=2.14\times10^{-5} 3$ $\alpha(N)=1.85\times10^{-5} 3; \ \alpha(O)=2.76\times10^{-6} 4; \ \alpha(P)=1.659\times10^{-7} 24$ B(E2)(W.u.)=80 11 $\alpha(K)=0.0334 5; \ \alpha(L)=0.00451 7; \ \alpha(M)=0.000955 14;$
									α (N+)=0.000249 4 α (N)=0.000214 3; α (O)=3.26×10 ⁻⁵ 5; α (P)=2.14×10 ⁻⁶ 3 B(M1)(W.u.)=0.83 9
		556.0	5.2 9	4414.5	(35/2 ⁻)	[M1]		0.01403	$\alpha(K)=0.01201 \ 17; \ \alpha(L)=0.001598 \ 23; \ \alpha(M)=0.000338 \ 5; \ \alpha(N+)=8.79\times10^{-5} \ 13 \ \alpha(N)=7.56\times10^{-5} \ 11; \ \alpha(O)=1.154\times10^{-5} \ 17; \ \alpha(P)=7.63\times10^{-7} \ 11 \ P(M)(M,r) = 0.0120 \ 25$
		682.0	33 6	4288.9	(33/2 ⁻)	[E2]		0.00533	B(M1)(w.u.)=0.0129 23 $\alpha(K)=0.00448 7; \alpha(L)=0.000667 10; \alpha(M)=0.0001425 20; \alpha(N+)=3.67\times10^{-5} 6$ $\alpha(N)=3.17\times10^{-5} 5; \alpha(O)=4.70\times10^{-6} 7; \alpha(P)=2.68\times10^{-7} 4$
		963.0	13.0 20	4008.1	(33/2 ⁻)	[E2]		0.00243	$\begin{aligned} & \alpha(\mathbf{K}) = 0.00207 \ 3; \ \alpha(\mathbf{L}) = 0.000286 \ 4; \ \alpha(\mathbf{M}) = 6.06 \times 10^{-5} \ 9; \\ & \alpha(\mathbf{N}+) = 1.569 \times 10^{-5} \ 22 \\ & \alpha(\mathbf{N}) = 1.353 \times 10^{-5} \ 19; \ \alpha(\mathbf{O}) = 2.03 \times 10^{-6} \ 3; \ \alpha(\mathbf{P}) = 1.251 \times 10^{-7} \ 18 \end{aligned}$
5147.6	(37/2+)	675.90 25	0.80 8	4471.7	(33/2+)	E2		0.00545	B(E2)(W.u.)=4.2 8 α (K)=0.00458 7; α (L)=0.000683 10; α (M)=0.0001459 21; α (N+)=3.75×10 ⁻⁵ 6

11

н

						Adopt	ed Levels, (Gammas (continued)
							γ ⁽¹³⁵ Nd)	(continued)
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	α [@]	Comments
								α (K)=0.00458 7; α (L)=0.000683 10; α (M)=0.0001459 21; α (N+)=3.75×10 ⁻⁵ 6 α (N)=3.25×10 ⁻⁵ 5; α (O)=4.81×10 ⁻⁶ 7; α (P)=2.74×10 ⁻⁷ 4 B(E2)(W,u)=4.6×10 ² +14-31
5286.1?	$(37/2^+)$	514 ^a 939 ^a		4772.1 4347.1	$(35/2^+)$ $(33/2^+)$			
5315.5	(39/2 ⁻)	462.4	100 8	4852.6	(37/2 ⁻)	[M1]	0.0223	α (K)=0.0191 <i>3</i> ; α (L)=0.00255 <i>4</i> ; α (M)=0.000540 <i>8</i> ; α (N+)=0.0001406 <i>20</i> α (N)=0.0001210 <i>17</i> ; α (O)=1.84×10 ⁻⁵ <i>3</i> ; α (P)=1.215×10 ⁻⁶ <i>17</i> B(M1)(W µ)=1.15 <i>17</i>
		901.0	25 4	4414.5	(35/2 ⁻)	[E2]	0.00281	$\alpha(\text{K})=0.00239 \ 4; \ \alpha(\text{L})=0.000334 \ 5; \ \alpha(\text{M})=7.09\times10^{-5} \ 10; \ \alpha(\text{N}+)=1.83\times10^{-5} \ 3 \\ \alpha(\text{N})=1.581\times10^{-5} \ 23; \ \alpha(\text{O})=2.37\times10^{-6} \ 4; \ \alpha(\text{P})=1.441\times10^{-7} \ 21 \\ \text{B(E2)(Wu)}=30 \ 6 $
5410.7	(39/2 ⁻)	440.0	100 10	4970.7	(37/2 ⁻)	[M1]	0.0253	$\alpha(\text{K})=0.0216\ 3;\ \alpha(\text{L})=0.00290\ 4;\ \alpha(\text{M})=0.000614\ 9;\ \alpha(\text{N}+)=0.0001598\ 23$ $\alpha(\text{N})=0.0001374\ 20;\ \alpha(\text{O})=2.09\times10^{-5}\ 3;\ \alpha(\text{P})=1.379\times10^{-6}\ 20$ R(M1)(Wn)=1.3.3
		812.0	14 5	4598.6	(35/2 ⁻)	[E2]	0.00354	$\alpha(\text{K})=0.00300 \ 5; \ \alpha(\text{L})=0.000429 \ 6; \ \alpha(\text{M})=9.12\times10^{-5} \ 13; \ \alpha(\text{N}+)=2.35\times10^{-5} \ 4 \\ \alpha(\text{N})=2.03\times10^{-5} \ 3; \ \alpha(\text{O})=3.04\times10^{-6} \ 5; \ \alpha(\text{P})=1.81\times10^{-7} \ 3 \\ \text{B(E2)(Wu)}=28 \ 10 $
5734.1 5787.5	(39/2 ⁺) (41/2 ⁻)	962 471.4	100 10	4772.1 5315.5	(35/2 ⁺) (39/2 ⁻)	[M1]	0.0212	$\alpha(K)=0.0182 \ 3; \ \alpha(L)=0.00243 \ 4; \ \alpha(M)=0.000514 \ 8; \ \alpha(N+)=0.0001338 \ 19 \ \alpha(N)=0.0001151 \ 17; \ \alpha(O)=1.755\times10^{-5} \ 25; \ \alpha(P)=1.157\times10^{-6} \ 17 \ P(M))(W_{11})=1.16 \ 20$
		935.0	43 6	4852.6	(37/2 ⁻)	[E2]	0.00259	$\alpha(\text{K})=0.00220 \ 3; \ \alpha(\text{L})=0.000306 \ 5; \ \alpha(\text{M})=6.50\times10^{-5} \ 9; \ \alpha(\text{N}+)=1.680\times10^{-5} \ 24$ $\alpha(\text{N})=1.449\times10^{-5} \ 21; \ \alpha(\text{O})=2.18\times10^{-6} \ 3; \ \alpha(\text{P})=1.332\times10^{-7} \ 19$ $\text{B(E2)(Wu)}=46 \ 9$
5895.9	(41/2 ⁺)	748.30 25	0.75 8	5147.6	(37/2 ⁺)	E2	0.00428	B(E2)(W.u.)>390 α (K)=0.00361 5; α (L)=0.000525 8; α (M)=0.0001119 16; α (N+)=2.88×10 ⁻⁵ 4 α (N)=2.49×10 ⁻⁵ 4; α (O)=3.71×10 ⁻⁶ 6; α (P)=2.17×10 ⁻⁷ 3
5922.7 6281.5	(41/2 ⁻) (43/2 ⁻)	512 493.9	100 10	5410.7 5787.5	(39/2 ⁻) (41/2 ⁻)	[M1]	0.0189	$\alpha(K) = 0.01615 \ 23; \ \alpha(L) = 0.00216 \ 3; \ \alpha(M) = 0.000456 \ 7; \ \alpha(N+) = 0.0001188 \ 17 \ \alpha(N) = 0.0001022 \ 15; \ \alpha(O) = 1.558 \times 10^{-5} \ 22; \ \alpha(P) = 1.027 \times 10^{-6} \ 15 \ B(M1)(W,u) = 1.09 \ 20$
		966.0	49 7	5315.5	(39/2 ⁻)	[E2]	0.00241	$\alpha(K)=0.00205 \ 3; \ \alpha(L)=0.000284 \ 4; \ \alpha(M)=6.02\times10^{-5} \ 9; \ \alpha(N+)=1.558\times10^{-5} \ 22 \ \alpha(N)=1.343\times10^{-5} \ 19; \ \alpha(O)=2.02\times10^{-6} \ 3; \ \alpha(P)=1.243\times10^{-7} \ 18 \ B(E2)(W,u)=48 \ 10$
6712.6	$(45/2^+)$	816.70 25	0.65 7	5895.9	$(41/2^+)$	E2	0.00350	$\alpha(K)=0.002965; \alpha(L)=0.0004236; \alpha(M)=8.99\times10^{-5}13; \alpha(N+)=2.32\times10^{-5}4$ $\alpha(N)=2.00\times10^{-5}3; \alpha(O)=2.99\times10^{-6}5; \alpha(P)=1.78\times10^{-7}3$
6799.5	$(45/2^{-})$	518		6281.5	$(43/2^{-})$			$u(1)-2.00 \land 10 5, u(0)-2.77 \land 10 5, u(1)-1.70 \land 10 5$

12

γ ⁽¹³⁵Nd) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	α [@]	Comments
6799.5	$(45/2^{-})$	1012		5787.5	$(41/2^{-})$			
7328.5?	$(47/2^{-})$	1047 ^a		6281.5	$(43/2^{-})$			
7594.0	(49/2 ⁺)	881.40 25	0.66 7	6712.6	(45/2 ⁺)	E2	0.00295	α (K)=0.00250 4; α (L)=0.000352 5; α (M)=7.47×10 ⁻⁵ 11; α (N+)=1.93×10 ⁻⁵ 3 α (N)=1.665×10 ⁻⁵ 24; α (O)=2.50×10 ⁻⁶ 4; α (P)=1.511×10 ⁻⁷ 22
8539.5	$(53/2^+)$	945.50 25	0.55 7	7594.0	$(49/2^+)$			
9549.7	$(57/2^+)$	1010.20 25	0.42 6	8539.5	$(53/2^+)$			
10626.5	$(61/2^+)$	1076.80 25	0.33 6	9549.7	$(57/2^+)$			
11771.5	$(65/2^+)$	1145.00 25	0.25 6	10626.5	$(61/2^+)$			
12986.3	$(69/2^+)$	1214.70 25	0.16 5	11771.5	$(65/2^+)$			
14273.7	$(73/2^+)$	1287.40 25	0.09 4	12986.3	$(69/2^+)$			
15635.7	$(77/2^+)$	1362 <i>1</i>	< 0.1	14273.7	$(73/2^+)$			
17072.9	$(81/2^+)$	1437.2 <i>4</i>		15635.7	$(77/2^+)$			
18592.4	$(85/2^+)$	1519.5 5		17072.9	$(81/2^+)$			
20197.4	$(89/2^+)$	1605.0 7		18592.4	$(85/2^+)$			
21889.4	$(93/2^+)$	1692.0 10		20197.4	$(89/2^+)$			

[†] From either ¹³⁵Pm ε decay (49 s and 45 s) or (HI,xn γ). Most levels are populated independently in the ε decay study and in (HI,xn γ). Exceptions are noted.

[‡] From γ(θ), γγ(θ) and ce data in (HI,xnγ), mult=Q indicates ΔJ=2, stretched transition and mult=dipole or D+Q indicates a ΔJ=1 transition. The multipolarities of 545, 676, 749, 817 and 883 keV transitions in the SD band are from conversion electron data of 1998Ae01. The mult=Q most likely corresponds to E2 transition.
[#] Relative photon branching from each level. For SD band transitions, values are relative intensities within the SD band, normalized to ≈1.0 for the most intense transition in the SD band.

^(e) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with intensity suitably divided.

13

^a Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) ----1693 (93/2+) 21889.4 1605.0 $(89/2^+)$ 20197.4 1519.5 $(85/2^+)$ 18592.4 1437.2 $(81/2^+)$ 17072.9 $(77/2^+)$ 15635.7 + 1287.40 0.00 | $(73/2^+)$ 14273.7 + 1514 Jo 018 (69/2+) 12986.3 + 1145.00 0.25 $(65/2^+)$ + 1076,80 0.33 11771.5 $(61/2^+)$ ^{ès}'o o^colot + 10626.5 $(57/2^+)$ 9549.7 ا عبر المحرف الم + 88,40 €] + 88,40 €] (53/2+) 8539.5 (49/2+) 7594.0 0.05 (47/2-) 7328.5 104> (45/2-) 6799.5 - ²101 1 (45/2+) _ 2 51.8 6712.6 $\frac{(13/2^{-})}{(43/2^{-})}$ 2 0.111 ps 14 6281.5 d. .ģ 5922.7 2 <0.15 ps 0.125 ps *14* 0.166 ps *28* 0.152 ps *14* $(41/2^+)$ 5895.9 $(41/2^{-})$ 5787.5 $(39/2^{-})$ 5410.7 (39/2-) 5315.5 9/2(-) 0.0 12.4 min 6

¹³⁵₆₀Nd₇₅

	Legend
Level Scheme (continued)	
Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided 	- ► γ Decay (Uncertain)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>5895.9</u> <0.15 ps <u>5787.5</u> 0.125 ps <i>14</i> 5734.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$(3712^{-}) \qquad \qquad$	<u>5147.6</u> 0.21 ps + <i>14</i> -6 4970.7 0.333 ps 2 <i>1</i>
$(31/2^{-}) \qquad \qquad$	<u>4852.6</u> 0.159 ps <i>14</i> 4772.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4598.6 0.444 ps 35 4471.7 0.44 ps +26-8 4417.1 0.194 ps 14 4347.1 0.194 ps 14 32 4288.9 0.60 ps 4
$(33/2^{-}) (31/2^{-}) (29/2^{+}) (31/2^{+}) (29/2^{-}$	4008.1 0.305 ps 14 4006.7 1.012 ps 14 3869.8 1.0 ps 4 3780.6 3780.6
(31/2 ⁻) (27/2 ⁻)	<u>3649.9</u> 0.52 ps 6 <u>3607.6</u>
(29/2 ⁺) (29/2 ⁻) (25/2 ⁺) (25/2 ⁺)	3471.1 3358.6 0.693 ps 35 ✓ 3340.6 ✓ 3324.5 1.7 ps 6
(27/2 ⁻)	3110.6
<u>9/2⁽⁻⁾</u>	0.0 12.4 min 6

 $^{135}_{60}\mathrm{Nd}_{75}$

¹³⁵₆₀Nd₇₅

 $^{135}_{60}\text{Nd}_{75}$

Level Scheme (continued)

Legend

•

 γ Decay (Uncertain)

Intensities: Relative photon branching from each level @ Multiply placed: intensity suitably divided

398. > 308. 324.6 100 ⁴65.0 100 Ş 671.7 663.7 $\frac{\overline{(3/2^+,5/2^+)}}{(3/2^+,5/2^+)}$ Ş, 602.9 ŵ ð 588.1 - 00 - 100 -565.0 (13/2⁻) 560.52 5.4 ps 4 (7/2,9/2,11/2) 493.17 (5/2⁺) 463.66 T. 306.2 175, 100 98, 17 1 ²82, 100 -5400 *6* $\frac{(5/2^+)}{(1/2,3/2,5/2)}_{(1/2^+)}$ 371.12 ક ¥ 347.1 328.1 å - 1-38.9 - 1-28.8 - 1-00 (3/2,5/2) 273.03 $\frac{(11/2^-)}{(3/2^+)}$ 198.74 39 ps 5 ¥ 193.7 $(1/2^+)$ 64.95 5.5 m ? 5 9/2(-) 0.0 12.4 min 6

¹³⁵₆₀Nd₇₅

 $^{135}_{60}\rm{Nd}_{75}$

	Band(E): SD band	
	(93/2 ⁺)	21889.4
	1692	
	(89/2 ⁺)	20197.4
	1605	
	(85/2+)	18592.4
	1520	
	(81/2+)	17072.9
	1437	
	(77/2 ⁺)	15635.7
	1362	
	(73/2 ⁺)	14273.7
	1287	
	(69/2 ⁺)	12986.3
	1215	
	(65/2+)	11771.5
	1145	
	(61/2+)	10626.5
	1077	
	(57/2+)	9549.7
	1010	
	(53/2+)	8539.5
	946	
	(49/2 ⁺)	7594.0
	(45/2 ⁺)	6712.6
Band(D): $\pi \mathbf{h}_{11/2}^2 v \mathbf{h}_{11/2}^{-1}$	(10/2)	0/12.0
$\frac{(41/2^{-})}{(20/2^{-})} = 5922.7$	(41/2 ⁺)	5895.9
$\begin{array}{c} (39/2^{-}) \\ \hline (37/2^{-}) \\ \hline \end{array} \begin{array}{c} 512 \\ \hline 4970.7 \\ \hline \end{array}$	(37/2 ⁺) 748	5147.6
$\begin{array}{c c}\hline (35/2^-) & 440 \\\hline (33/2^-) & 371 \\\hline & 371 \\\hline & 4288 9 \\\hline \end{array}$	(22/2+) 676	
$(31/2^{-})$ $(682 - 4006.7)$ (4006.7) $(30/2^{-})$	(33/2")	4471.7
$(29/2)$ $(27/2^{-})$ $(27/2^{$	$(29/2^+)$ $(29/2^+)$	3869.8
1/3	(25/2+) 545	3324.5