¹³⁵Ce ε decay (17.7 h) 1975He21,1981Ab08,1974Na11

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov	NDS 109, 517 (2008)	22-Jan-2008
Parent: ¹³⁵ Ce: E=0.0; J^{π}	=1/2 ⁽⁺⁾ ; T _{1/2} =17.7 h 3; Q(ε)=2026 5; % ε +% β ⁺ decay=100.0		
1975He21: measured $E\gamma$,	$I\gamma, \gamma\gamma$, ce.		
1981Ab08 : measured $E\gamma$	Iγ, ce.		
1974Na11: measured $E\gamma$,	I γ , $\gamma\gamma(\theta)$, ce, ce γ coin, ce $\gamma(t)$.		
Others:			
γ: 1973Mo22, 1969Gr32	, 1968Ab03 (also 1969AbZX), 1967Re08, 1967Go16, 1965Ba	46, 1964Ta10.	
γγ: 1968Ab03, 1964Ta10	l.		
β ⁺ : 1948Ch03, 1951St03			
ce: 1973Mo22, 1968Ab0	3, 1966Ab05, 1965Ba46, 1964Ta10, 1963Dz02, 1958Dz10, 19	958Da13.	
(ce)(ce) coin: 1965Dz08.			
(ce) γ (t): 1973Mo22, 1972	2Af03, 1972Be77, 1972Ak01, 1970Na10.		
(ce)(ce)(t): 1972Be77.			
γγγ coin: 1981Sa09.			
$\gamma\gamma(\theta)$: 1981BuZW, 1972Z	Zh03.		
$T_{1/2}(^{135}Ce \text{ isotope}): 1948$	Ch03, 1951St03, 1958Dz10, 1958An39, 1959Gr23, 1960La07 Y 1976Ge10	7, 1963Dz02, 1964Ta10, 1	1965Ba46,

Total decay energy of 2044 keV 34 calculated (by RADLIST code) from level scheme agrees with the expected value of 2026 keV 5.

¹³⁵La Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	5/2+		
119.534 <i>14</i>	7/2+	4.0 ns 1	$T_{1/2}$: average of 4.12 ns <i>10</i> (1974Na11) and 3.9 ns <i>1</i> (1972Be77). Other: 4.8 ns 8 (1972Af03).
206.504 11	5/2+	0.52 ns 3	$T_{1/2}$: average of 0.55 ns 5 (1974Na11) and 0.48 ns 3 (1972Be77). Other: 0.68 ns 14 (1972Af03).
265.546 11	$3/2^{+}$	<0.08 ns	T _{1/2} : from 1974Na11. Other: 1972Be77.
300.053 11	$1/2^+$	<0.08 ns	$T_{1/2}^{1/2}$: from 1974Na11. Other: 1972Be77.
583.9? 5	9/2+		
604.564 13	3/2+,5/2+		
665.557 17	5/2+		
712.35 9	$(3/2^{-}, 5/2^{-})$		
783.601 11	3/2+		
786.8? 6	$11/2^{-}$		
828.372 13	3/2+		
872.313 13	$(1/2)^+$		
984.359 <i>14</i>	3/2+		
993.43 6	$1/2^+, 3/2^+, 5/2^+$		
1038.52 2	3/2+,5/2+		
1171.418 11	3/2+		
1439.485 18	3/2+		
1449.636 17	$1/2^+, 3/2^+$		
1479.66 <i>3</i>	$1/2^+, 3/2^+$		
1568.9? 2			
1599.25 <i>3</i>	$1/2^+, 3/2^+$		
1766.98 2	3/2+		
1797.15 7	$1/2^+, 3/2$		
1850.74 15	1/2,3/2		

[†] From Adopted Levels.

¹³⁵Ce ε decay (17.7 h) 1975He21,1981Ab08,1974Na11 (continued)

ε, β^+ radiations

Total $I\beta^+=0.38\%$ 5 (1981Sa09).

E(decay)	E(level)	$I\beta^+$	I $arepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments
(175 5)	1850.74		0.041 4	7.2 1	0.041 4	εK=0.789 3; εL=0.1630 19; εM+=0.0483 7
(229 5)	1797.15		0.038 <i>3</i>	7.5 1	0.038 3	εK=0.8073 13; εL=0.1491 10; εM+=0.0436 4
(259 5)	1766.98		0.60 3	6.44 <i>3</i>	0.60 3	εK=0.8137 10; εL=0.1443 7; εM+=0.04197 24
(427 5)	1599.25		0.26 3	7.29 6	0.26 3	εK=0.8310; εL=0.13136 22; εM+=0.03763 8
(457 [#] 5)	1568.9?		0.033 13	8.3 2	0.033 13	εK=0.8326; εL=0.13013 19; εM+=0.03722 7
(546 5)	1479.66		0.29 3	7.47 5	0.29 3	εK=0.8363; εL=0.12739 13; εM+=0.03631 5
(576 5)	1449.636		2.04 7	6.65 2	2.04 7	εK=0.8373; εL=0.1267; εM+=0.03607 4
(587 5)	1439.485		0.80 4	7.10 3	0.80 4	εK=0.8375; εL=0.1265; εM+=0.03600 4
(855 5)	1171.418		8.5 <i>3</i>	6.41 2	8.5 <i>3</i>	εK=0.8427; εL=0.1226; εM+=0.03471
(987 [#] 5)	1038.52		0.09 3	8.6 2	0.09 3	εK=0.8442; εL=0.1215; εM+=0.03434
(1033 [#] 5)	993.43		0.011 6	9.3 2	0.011 6	εK=0.8446; εL=0.1212; εM+=0.03424
(1042 5)	984.359		2.78 8	7.08 2	2.78 8	εK=0.8447; εL=0.1211; εM+=0.03422
(1154 5)	872.313		33.7 9	6.09 2	33.7 9	εK=0.8455; εL=0.1205; εM+=0.03400
(1198 5)	828.372		5.2 2	6.93 2	5.2 2	εK=0.8458; εL=0.1202; εM+=0.03393
(1242 5)	783.601	0.0052 6	30.1 9	6.21 2	30.1 9	av $E\beta$ =110.0 23; ε K=0.8460; ε L=0.1200; ε M+=0.03386
(1360 [#] 5)	665.557		< 0.4	>8.2	< 0.4	εK=0.8458; εL=0.1194; εM+=0.03367
(1421 [#] 5)	604.564		0.26 16	8.4 <i>3</i>	0.26 16	εK=0.8451; εL=0.1191; εM+=0.03356
1727 3	300.053	0.36 6	14.4 9	6.80 <i>3</i>	14.7 9	av Eβ=323.2 22; εK=0.8313; εL=0.1161; εM+=0.03270
						E(decay): E β =705 3 (1976GaZI), 694 13 (1981Sa09). $I\beta^+: 0.36\% + 7.5$ (1981Sa09) from $\gamma(\gamma^{\pm})$ triple con.
(1760 [#] 5)	265.546	<0.027	<2.7	>7.6	<2.7	av E β =338.2 22; ϵ K=0.8283; ϵ L=0.1156; ϵ M+=0.03255 I β ⁺ : 0.019 +8-19 (1981Sa09) from $\gamma(\gamma^{\pm})$ triple coin.

[†] From γ-ray intensity balance.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

¹³⁵Ce ε decay (17.7 h) 1975He21,1981Ab08,1974Na11 (continued)

$\gamma(^{135}\text{La})$

I γ normalization: from $\Sigma(I(\gamma+ce) \text{ of } \gamma' \text{ s to g.s.})=100$. No direct ε feeding to g.s. ($\Delta J=2, \Delta \pi=no$) is expected.

Ice: weighted average of 1981Ab08, 1975He21 and 1974Na11. These intensities are normalized to $ce(K)(265.56\gamma)=100$, thus should be multiplied by 0.0625 ($\alpha(K)(265.56\gamma)$) to scale these to γ -ray intensities.

 $\alpha(\exp)=\operatorname{Ice}/\operatorname{Iy}$ normalized to $\alpha(K)(265.56)=0.0618$ (BrIcc code).

For penetration parameters, see 1975Mo12 (also 1973Mo22).

Relative to $I\gamma(265.56\gamma)=^{100}$, $I(K\alpha_2 \text{ x ray})=58.4 \ 23$, $I(K\alpha_1 \text{ x ray})=106 \ 3$, $I(K\beta_1 \text{ x ray})=30.9 \ 15$, $I(K\beta_2 \text{ x ray})=7.5 \ 3 \ (1981\text{Ab08})$. $I(518.05\gamma)/I(\gamma^{\pm})=17.7 \ 18 \ (1981\text{Sa09})$.

E_{γ}^{\dagger}	I_{γ} ‡ f	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. ^d	δ	α ^g	Comments
34.508 17	3.9& <i>3</i>	300.053	1/2+	265.546	3/2+	M1(+E2)	0.013 ^e 13	3.55 8	α (L)=2.81 6; α (M)=0.585 14; α (N+)=0.151 4 α (N)=0.129 3; α (O)=0.0208 5; α (P)=0.001593 23 E _{γ} : from 1974Na11. E γ =34.52 3 (1975He21). Additional information 9. α (L)exp=3.0 3; L1/L2=11.5 8, L1/L3=39 12, L2/L3=3.4 11 (1974Na11).
43.9 ^{<i>a</i>}	0.09 1	872.313	(1/2)+	828.372	3/2+	M1+E2	0.13 3	12.2 4	$\begin{aligned} &\alpha(\mathbf{K}) = 9.91 \ 14; \ \alpha(\mathbf{L}) = 1.83 \ 23; \ \alpha(\mathbf{M}) = 0.39 \ 6; \\ &\alpha(\mathbf{N}+) = 0.098 \ 13 \\ &\alpha(\mathbf{N}) = 0.084 \ 11; \ \alpha(\mathbf{O}) = 0.0131 \ 15; \ \alpha(\mathbf{P}) = 0.000779 \ 12 \\ &\operatorname{ce}(\mathbf{K}) = 14.0 \ 18, \ \operatorname{ce}(\mathbf{L}1) = 1.8 \ 4, \ \operatorname{ce}(\mathbf{L}2) = 0.42 \ 11 \\ &(1981 \operatorname{Ab08}). \\ &\operatorname{L_{v}}; \ from \ \operatorname{ce}(\mathbf{K}) \ and \ \delta(\mathbf{E}2/\mathbf{M}1). \end{aligned}$
59.038 20	0.20 1	265.546	3/2+	206.504	5/2+	M1+E2	0.19 4	5.25 16	$\begin{aligned} &\alpha(K)=4.24\ 6;\ \alpha(L)=0.80\ 10;\ \alpha(M)=0.169\ 22;\\ &\alpha(N+)=0.043\ 6\\ &\alpha(N)=0.037\ 5;\ \alpha(O)=0.0057\ 7;\ \alpha(P)=0.000327\ 5\\ &Additional information\ 6.\\ &E_{\gamma}:\ from\ 1974Na11.\ E\gamma=59.03\ 5\ (1975He21).\\ &\alpha(K)exp=3.8\ 6,\ \alpha(L1)exp=0.55\ 10,\ \alpha(L2)exp=0.13\ 3.\\ &\delta:\ from\ subshell\ ratios\ (1981Ab08).\ \delta<0.05\ from\\ &L1/L2>11\ (1974Na11).\\ &I_{\gamma}:\ from\ 1981Ab08.\ I_{\gamma}=0.055\ 9\ (1975He21). \end{aligned}$
60.9 ^a	0.027 ^{&} 6	665.557	5/2+	604.564	3/2+,5/2+	E2(+M1)	>0.6 ^e	93	α (K)=4.3 3; α (L)=4.0 20; α (M)=0.9 5; α (N+)=0.21 11 α (N)=0.19 10; α (O)=0.026 13; α (P)=0.000260 25 ce(K)=1.6 3, ce(L1)=0.18 4, ce(L2)>0.3 (1981Ab08). I _y : from ce(K) and δ (E2/M1).
86.97 <i>3</i>	1.00 ^{&} 3	206.504	5/2+	119.534	7/2+	M1+E2	0.53 ^e 3	1.98 5	$\alpha(K)=1.476\ 23;\ \alpha(L)=0.395\ 20;\ \alpha(M)=0.086\ 5;\ \alpha(N+)=0.0212\ 11$ $\alpha(N)=0.0184\ 9;\ \alpha(O)=0.00274\ 13;\ \alpha(P)=0.0001049\ 15$ δ : from simultaneous fitting of $\alpha(K)exp,\ \alpha(L3)exp$ and $K/L2\ (1975Mo12)\ with\ \alpha(K)exp=1.26\ 9,\ \alpha(L2)exp=0.112\ 9,\ \alpha(L3)exp=0.118\ 10.$

 ω

				¹³⁵ Ce ε	e decay (17.7 l	h) 1975	He21,1981A	b08,1974N a	a11 (continued)
						γ (¹³⁵ L	a) (continue	ed)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π	Mult. ^d	δ	α^{g}	Comments
					<u> </u>				Additional information 4. E_{γ} : 86.87 5 (1974Na11). Penetration parameter λ (M1)=14.5 55 (1975Mo12). Other: 1973Mo22.
88.71 2	1.39 ^{&} 4	872.313	(1/2)+	783.601	3/2+	M1+E2	0.07 ^e 3	1.531 23	α (K)=1.303 <i>19</i> ; α (L)=0.181 <i>5</i> ; α (M)=0.0377 <i>11</i> ; α (N+)=0.0097 <i>3</i> α (N)=0.00827 <i>24</i> ; α (O)=0.00134 <i>4</i> ; α (P)=0.0001014 <i>15</i> Additional information 33. α (K)exp=1.42 <i>9</i> , α (L1)exp=0.166 <i>17</i> , α (L2)exp=0.018 <i>3</i> , α (L3)exp=0.0045 <i>18</i> .
93.5 ^a	0.004 2	300.053	$1/2^+$	206.504	5/2+				I_{γ} : from ce(K)=0.11 4, and mult=[E2].
112.0^{a}	0.020 7	984.359	3/2+	8/2.313	$(1/2)^+$	F 1		0 1571	I_{γ} : from ce(K)=0.21 7 and mult=[M1].
115.1" 2	0.052 7	828.372	3/2	/12.35	(3/2 ,5/2)	EI		0.1571	$\alpha(K)=0.1342\ 20;\ \alpha(L)=0.0182\ 3;\ \alpha(M)=0.00377\ 6; \alpha(N+)=0.000953\ 15 \alpha(N)=0.000816\ 13;\ \alpha(O)=0.0001284\ 19;\ \alpha(P)=8.36\times10^{-6}\ 13$ Additional information 27. $\alpha(K)=0.13\ 5$
118.03 2	0.90 ^{&} 5	783.601	3/2+	665.557	5/2+	M1+E2	0.27 ^e 5	0.704 15	$\begin{aligned} \alpha(\mathbf{K}) &= 0.587 \ 10; \ \alpha(\mathbf{L}) = 0.093 \ 6; \ \alpha(\mathbf{M}) = 0.0195 \ 13; \\ \alpha(\mathbf{N}+) = 0.0050 \ 3 \\ \alpha(\mathbf{N}) = 0.0042 \ 3; \ \alpha(\mathbf{O}) = 0.00067 \ 4; \ \alpha(\mathbf{P}) = 4.47 \times 10^{-5} \ 7 \\ \text{Additional information 19.} \\ \alpha(\mathbf{K}) &= 0.58 \ 5, \ \alpha(\mathbf{L}1) \\ \exp = 0.087 \ 10, \ \alpha(\mathbf{L}2) \\ \exp = 0.015 \ 3, \\ \alpha(\mathbf{L}3) \\ \exp \approx 0.008; \ \mathbf{L}1/\mathbf{L}2 = 10.5 \ 40 \ (1974 \\ \text{Nall}1). \end{aligned}$
119.52 2	3.1 ^{&} 2	119.534	7/2+	0.0	5/2+	M1+E2	0.22 ^e 1	0.670	$\alpha(K)=0.563 \ 8; \ \alpha(L)=0.0845 \ 15; \ \alpha(M)=0.0177 \ 3; \ \alpha(N+)=0.00454 \ 8 \ \alpha(N)=0.00388 \ 7; \ \alpha(O)=0.000619 \ 11; \ \alpha(P)=4.32\times10^{-5} \ 6 \ Additional information \ 3. \ \alpha(K)exp=0.59 \ 5, \ \alpha(L)exp=0.073 \ 7, \ \alpha(L2)exp=0.0099 \ 9, \ \alpha(L3)exp=0.0062 \ 7 \ \alpha(L3)exp=0.0062 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 10 \ 1$
^x 123.8 ^{bh} 3 132.88 3	0.013 7 0.27 <i>3</i>	1171.418	3/2+	1038.52	3/2+,5/2+	M1		0.484	$\alpha(\text{LS}) \exp -0.0002$ 7. $\alpha(\text{K}) = 0.413$ 6; $\alpha(\text{L}) = 0.0558$ 8; $\alpha(\text{M}) = 0.01159$ 17; $\alpha(\text{N}+) = 0.00299$ 5
145.97 <i>4</i>	≈0.02	265.546	3/2+	119.534	7/2+	(E2)		0.525	α (N)=0.00255 4; α (O)=0.000414 6; α (P)=3.22×10 ⁻⁵ 5 Additional information 50. Mult., δ : from α (K)exp=0.38 5. L1/L2>12 and L1/L3>12 (1974Na11). α (K)=0.375 6; α (L)=0.1177 17; α (M)=0.0257 4;
1.0.21	-0.02	2001010	5,2	117.004		(22)		0.020	

				155	$\varepsilon e \varepsilon decay (17.7)$	n) 1975f	1e21,1981A	b08,1974Na	111 (continued)
						γ (¹³⁵ La	a) (continue	d)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	${\sf J}_f^\pi$	Mult. ^d	δ	α ^g	Comments
									E2.
156.0 [#]	≈0.02 [@]	984.359	3/2+	828.372	3/2+	M1,E2		0.36 6	$\alpha(K)=0.284\ 20;\ \alpha(L)=0.06\ 3;\ \alpha(M)=0.013\ 6;$
									$\alpha(N+)=0.0033\ 15$ $\alpha(N)=0.0020\ 13$; $\alpha(O)=0.00044\ 18$; $\alpha(P)=1.03\times10^{-5}\ 14$
									Additional information 38. $(0)=0.00044478, u(1)=1.95\times10^{-114}$
162.5.2	0.06.1	828 372	3/2+	665 557	5/2+	M1 E2		0.32.5	$\alpha(K) \exp \approx 0.4$ 2. $\alpha(K) = 0.251$ 16: $\alpha(L) = 0.054$ 22: $\alpha(M) = 0.011$ 5:
102.0 2	0.00 1	020.072	5/2	000.007	572			0.02 0	$\alpha(N+)=0.0029 \ 12$
									$\alpha(N)=0.0025 \ 11; \ \alpha(O)=0.00038 \ 14; \ \alpha(P)=1.71\times10^{-5} \ 13$
									$\alpha(K)\exp=0.29$ 8.
177.99 6	0.14 1	1171.418	3/2+	993.43	$1/2^+, 3/2^+, 5/2^+$	M1,E2		0.24 3	$\alpha(K)=0.191 \ 8; \ \alpha(L)=0.038 \ 14; \ \alpha(M)=0.008 \ 3; \ \alpha(N+)=0.0021 \ 8$
									$\alpha(N)=0.0018$ 7; $\alpha(O)=0.00027$ 9; $\alpha(P)=1.32\times10^{-5}$ 12
									Additional information 51. $\alpha(K) \exp[0.19, 3] \cdot K/L = 4/L$
179.05 4	0.07 1	783.601	$3/2^{+}$	604.564	3/2+,5/2+	M1,E2		0.235 25	$\alpha(K)=0.188 \ 8; \ \alpha(L)=0.037 \ 14; \ \alpha(M)=0.008 \ 3;$
									$\alpha(N+)=0.00207$ $\alpha(N)=0.00177; \alpha(O)=0.000269; \alpha(P)=1.30\times10^{-5}11$
									Additional information 20.
187.21 9	0.05 1	1171.418	$3/2^{+}$	984.359	3/2+	M1,E2		0.205 18	α (K)exp=0.19 4. α (K)=0.164 5; α (L)=0.032 11; α (M)=0.0068 24;
			,		,	,			a(N+)=0.0017 6
									$\alpha(N)=0.0015 \ 5; \ \alpha(O)=0.00023 \ 7; \ \alpha(P)=1.14\times10^{-5} \ 11$ Additional information 52.
									$\alpha(K) \exp = 0.145$.
200.76 4	0.114 10	984.359	3/2+	783.601	3/2+	(M1,E2)		0.165 11	$\alpha(K)=0.1336\ 23;\ \alpha(L)=0.025\ 8;\ \alpha(M)=0.0053\ 17;$
									$\alpha(N+)=0.0013 4$
									Additional information 39. $a(r) = 9.5 \times 10^{-10}$
202.9.2	0.08.2	786 82	11/2-	583 92	0/2+	F1		0.0336	Mult.: $\alpha(K) \exp = 0.23$ 6 exceeds $\alpha(K)(M1)$ and $\alpha(K)(E2)$.
202.9 2	0.08 2	700.01	11/2	565.91	9/2	LI		0.0550	$\alpha(N)=0.025835, \alpha(L)=0.0057850, \alpha(M)=0.00078172, \alpha(N+)=0.0001993$
									$\alpha(N)=0.0001702\ 25;\ \alpha(O)=2.72\times10^{-5}\ 4;\ \alpha(P)=1.91\times10^{-6}\ 3$
									δ : α (K)exp=0.054 20 gives δ (M2/E1)=0.2 1. $\gamma(\theta)$ in
206.50 2	18.6.5	206.504	$5/2^{+}$	0.0	5/2+	M1+E2	+0.30 4	0.1446	(HI,xn γ) indicates $\Delta J=1$, dipole. $\alpha(K)=0.1226 \ 18; \ \alpha(L)=0.0174 \ 4; \ \alpha(M)=0.00363 \ 8;$
200.00 2	1010 0	200.001	0,2	5.0	-,-			0.1.10	$\alpha(N+)=0.000933$ 19
									α (N)=0.000796 <i>17</i> ; α (O)=0.0001280 <i>25</i> ; α (P)=9.36×10 ⁻⁶ <i>14</i>

S

 $^{135}_{57} La_{78}$ -5

			-	¹³⁵ Ce ε deca	ny (17.7 h)	1975He21,1	981Ab08,1	974Na11 (con	ntinued)
					<u>.</u>	$\gamma(^{135}\text{La})$ (con	tinued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	J_i^π	E_f	\mathbf{J}_f^{π}	Mult. ^d	δ	α^{g}	Comments
210.2#	≈0.03 [@]	1038.52	3/2+,5/2+	828.372	3/2+				α(K)exp=0.124 9; L1/L2=9.7 10, L1/L3=16.9 25, L2/L3=1.74 30 (1974Na11); K/L=6.9 10, K/M=32 7 (1975He21). δ: from $γγ(θ)$ (1972Zh03,1981BuZW) and subshell ratios.
223.8 [#] 265.56 2	≈0.05 [@] 100 3	828.372 265.546	3/2+ 3/2+	604.564 0.0	3/2 ⁺ ,5/2 ⁺ 5/2 ⁺	M1+E2	+0.32 3	0.0726	α(K)=0.0618 9; α(L)=0.00854 13; α(M)=0.00178 3; α(N+)=0.000458 7 α(N)=0.000390 6; α(O)=6.30×10-5 10; α(P)=4.72×10-6 7 Additional information 8. L1/L2=11.1 6, L1/L3=22.4 20, L2/L3=2.0 3 (1974Na11); K/L=7.9 9, K/M=25 3 (1975He21). δ: from γγ(θ) (1972Zh03,1981BuZW) and subshell
267.76 3	1.49 9	872.313	(1/2)+	604.564	3/2+,5/2+	E2(+M1)	>1.3	0.0683 12	ratios. $\alpha(K)=0.0553 \ 16; \ \alpha(L)=0.0102 \ 5; \ \alpha(M)=0.00218 \ 12; \ \alpha(N+)=0.00055 \ 3$ $\alpha(N)=0.000471 \ 24; \ \alpha(O)=7.2\times10^{-5} \ 3; \ \alpha(P)=3.76\times10^{-6} \ 23$ Additional information 34. $\alpha(K)\exp=0.049 \ 8.$
^x 278.2 281 ^{#h} 299.11 3	≈0.01 [@] 3.0 3	993.43 1171.418	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	712.35 872.313	(3/2 ⁻ ,5/2 ⁻) (1/2) ⁺	M1,E2		0.050 3	ce(K)=0.14 4 (1981Ab08). α (K)=0.042 4; α (L)=0.0066 6; α (M)=0.00139 14;
300.07 2	56.3 8	300.053	1/2+	0.0	5/2+	E2		0.0469	$\alpha(N+)=0.00035 \ 3$ $\alpha(N)=0.00030 \ 3; \ \alpha(O)=4.8\times10^{-5} \ 3; \ \alpha(P)=3.0\times10^{-6} \ 5$ Additional information 53. $\alpha(K)\exp=0.044 \ 9.$ $\alpha(K)=0.0379 \ 6; \ \alpha(L)=0.00710 \ 10; \ \alpha(M)=0.001512$ $22; \ \alpha(N+)=0.000379 \ 6$ $\alpha(N)=0.000327 \ 5; \ \alpha(O)=5.00\times10^{-5} \ 7; \ \alpha(P)=2.53\times10^{-6} \ 4$ Additional information 10. $\alpha(K)\exp=0.039 \ l_{1} \ 1 \ l_{2}=2.56 \ l_{2} \ L_{1} \ l_{2}=3.23 \ l_{2}$
304.58 4	0.15 <i>l</i>	604.564	3/2+,5/2+	300.053	1/2+	M1,E2		0.048 4	$\alpha(\text{K}) \approx p = 0.039 \ 1; \ \text{L1/L2} = 2.30 \ 12; \ \text{L1/L3} = 3.23 \ 12; \ \text{L2/L3} = 1.26 \ 5 \ (1974\text{Na}11); \ \text{K/L} = 5.1 \ 7, \ \text{K/M} = 20 \ 3 \ (1975\text{He}21).$ Mult.: from subshell ratios, $\delta(\text{E2/M1}) > 5.$ $\alpha(\text{K}) = 0.040 \ 4; \ \alpha(\text{L}) = 0.0062 \ 5; \ \alpha(\text{M}) = 0.00131 \ 13; \ \alpha(\text{N}+) = 0.00033 \ 3 \ \alpha(\text{N}) = 0.000286 \ 24; \ \alpha(\text{O}) = 4.51 \times 10^{-5} \ 25;$

From ENSDF

				¹³⁵ Ce ε	decay (17.7 h) 1975He	21,1981	Ab08,1974Na	11 (continued)
						γ(¹³⁵ La)	(continu	ed)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. ^d	δ	α^{g}	Comments
x312.9 4	0.09 5	004.250	2/0+	((5.557	5/2+	(D,E2)			$\alpha(P)=2.9\times10^{-6} 5$ Additional information 11. $\alpha(K)\exp=0.046 \ 17.$ Additional information 1. $\alpha(K)\exp=0.020 \ 12.$
^{318.82 8} 326.2 [#] 339.1 <i>ah</i> 343.01 <i>4</i>	0.083 9 ≈0.03 [@] 0.06 2 0.25 2	984.359 1038.52 604.564 1171.418	3/2 ⁺ 3/2 ⁺ ,5/2 ⁺ 3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	665.557 712.35 265.546 828.372	5/2 ⁺ (3/2 ⁻ ,5/2 ⁻) 3/2 ⁺ 3/2 ⁺	M1(+E2)	<1.8	0.0348 25	I _y : from ce(K)=0.032 <i>10</i> and mult=[M1]. α (K)=0.029 <i>3</i> ; α (L)=0.00430 <i>11</i> ; α (M)=0.00090 <i>3</i> ; α (N+)=0.000230 <i>6</i> α (N)=0.000197 <i>6</i> ; α (O)=3.14×10 ⁻⁵ <i>5</i> ; α (P)=2.2×10 ⁻⁶ <i>3</i> Additional information 54. α (K)exp=0.030 <i>3</i> . ce(K)=0.028 <i>10</i> (1981Ab08).
365.3 ^{ah} 379.79 <i>3</i>	0.07 <i>3</i> 3.7 <i>1</i>	665.557 984.359	5/2 ⁺ 3/2 ⁺	300.053 604.564	1/2 ⁺ 3/2 ⁺ ,5/2 ⁺	M1(+E2)	<0.7	0.0277 11	I _γ : from ce(K)=0.021 7 and mult=[E2]. α (K)=0.0236 11; α (L)=0.00321 5; α (M)=0.000668 10; α (N+)=0.000172 3 α (N)=0.0001466 21; α (O)=2.37×10 ⁻⁵ 4; α (P)=1.79×10 ⁻⁶ 11
387.81 <i>3</i>	1.45 3	1171.418	3/2+	783.601	3/2+	M1(+E2)	<0.3	0.0269 5	Additional information 40. $\alpha(K)\exp=0.025 2, \alpha(L)\exp=0.0034 6.$ $\alpha(K)=0.0231 4; \alpha(L)=0.00305 5; \alpha(M)=0.000633 9;$ $\alpha(N+)=0.0001634 23$ $\alpha(N)=0.0001390 20; \alpha(O)=2.26\times10^{-5} 4; \alpha(P)=1.77\times10^{-6} 4$ Additional information 55
398.05 5	1.19 4	604.564	3/2+,5/2+	206.504	5/2+	M1(+E2)	<1.5	0.0235 20	$\begin{aligned} &\alpha(\text{K}) \exp[=0.025 \ 2, \ \alpha(\text{L}) \exp[=0.003 \ 1. \\ &\alpha(\text{K}) = 0.0199 \ 20; \ \alpha(\text{L}) = 0.00280 \ 7; \ \alpha(\text{M}) = 0.000585 \ 11; \\ &\alpha(\text{N}+) = 0.000150 \ 4 \\ &\alpha(\text{N}) = 0.000128 \ 3; \ \alpha(\text{O}) = 2.06 \times 10^{-5} \ 8; \ \alpha(\text{P}) = 1.49 \times 10^{-6} \ 19 \\ &\text{Additional information 12.} \end{aligned}$
400.02 8	0.76 <i>3</i>	665.557	5/2+	265.546	3/2+	E2(+M1)	>1	0.0209 15	$\begin{aligned} &\alpha(\text{K}) \exp[=0.020 \ 2. \\ &\alpha(\text{K}) = 0.0175 \ 14; \ \alpha(\text{L}) = 0.00270 \ 6; \ \alpha(\text{M}) = 0.000568 \ 10; \\ &\alpha(\text{N}+) = 0.000144 \ 3 \\ &\alpha(\text{N}) = 0.0001237 \ 24; \ \alpha(\text{O}) = 1.95 \times 10^{-5} \ 6; \ \alpha(\text{P}) = 1.25 \times 10^{-6} \ 14 \\ &\text{Additional information 15.} \end{aligned}$
401.0 [#]	≈0.02 [@]	1439.485	3/2+	1038.52	3/2+,5/2+	M1,E2		0.022 3	α (K)exp=0.017 2. α (K)=0.019 3; α (L)=0.00272 9; α (M)=0.000569 14; α (N+)=0.000146 5 α (N)=0.000124 4; α (O)=1.99×10 ⁻⁵ 11; α (P)=1.4×10 ⁻⁶ 3 Additional information 63. α (K)exp≈0.06 3.
$434.0^{\#}$	≈0.02 [@]	1038.52	3/2+,5/2+	604.564	3/2+,5/2+				$r_{\rm c}(K) = 0.021 + 10.(1081 \text{ A bos})$
459.08 <i>4</i>	0.28 3	665.557	5/2+	206.504	5/2+	M1,E2		0.0154 24	$\alpha(K)=0.021 \ 10 \ (1981A008).$ $\alpha(K)=0.0131 \ 22; \ \alpha(L)=0.00185 \ 14; \ \alpha(M)=0.000386 \ 25;$

 \neg

From ENSDF

				¹³⁵ Ce ε	e decay (17.7 h	n) 1975H e	21,1981Ab	08,1974Na11	(continued)
						γ ⁽¹³⁵ La)	(continued)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult. ^d	δ	α^{g}	Comments
									$\alpha(N+)=9.9\times10^{-5} 8$ $\alpha(N)=8.4\times10^{-5} 6; \ \alpha(O)=1.35\times10^{-5} 12; \ \alpha(P)=9.7\times10^{-7} 20$ Additional information 16. $\alpha(K)\exp=0.012 3.$
459.1 " 465.2 2	≈0.03 [®] 0.22 5	1171.418 1449.636	3/2 ⁺ 1/2 ⁺ ,3/2 ⁺	712.35 984.359	(3/2 ⁻ ,5/2 ⁻) 3/2 ⁺	E2(+M1)	>1.5	0.0133 8	$\alpha(K)=0.0112 \ 7; \ \alpha(L)=0.00169 \ 5; \ \alpha(M)=0.000355 \ 9; \\ \alpha(N+)=9.0\times10^{-5} \ 3 \\ \alpha(N)=7.74\times10^{-5} \ 21; \ \alpha(O)=1.22\times10^{-5} \ 4; \ \alpha(P)=8.0\times10^{-7} \\ 6 \\ \alpha(D)=0.000355 \ 4; \ \alpha(D)=0.0003555 \ 4; \ \alpha(D)=0.000355555 \ 4; \ \alpha(D)=0.$
483.58 <i>3</i>	4.45 12	783.601	3/2+	300.053	1/2+	M1(+E2)	<0.4	0.0153 4	Additional information 69. $\alpha(K)\exp=0.009 \ 3.$ $\alpha(K)=0.0131 \ 4; \ \alpha(L)=0.00172 \ 3; \ \alpha(M)=0.000356 \ 7;$ $\alpha(N+)=9.20\times10^{-5} \ 17$ $\alpha(N)=7.82\times10^{-5} \ 14; \ \alpha(O)=1.274\times10^{-5} \ 24;$ $\alpha(P)=1.00\times10^{-6} \ 3$ Additional information 21
485.02 6	0.50 5	604.564	3/2+,5/2+	119.534	7/2+	M1,E2		0.0133 22	$\alpha(K) \exp = 0.015 \ 2.$ $\alpha(K) = 0.0113 \ 20; \ \alpha(L) = 0.00159 \ 14; \ \alpha(M) = 0.00033 \ 3;$ $\alpha(N+) = 8.5 \times 10^{-5} \ 8$ $\alpha(N) = 7.2 \times 10^{-5} \ 6; \ \alpha(O) = 1.16 \times 10^{-5} \ 12; \ \alpha(P) = 8.4 \times 10^{-7} \ 18$ Additional information 13. $\alpha(K) \exp = 0.011 \ 2$
495.3 <i>4</i> 505.92 <i>8</i>	0.05 <i>2</i> 0.126 <i>10</i>	1479.66 1171.418	1/2+,3/2+ 3/2+	984.359 665.557	3/2+ 5/2+	(M1)		0.01389	$\alpha(K) = 0.01193 \ 17; \ \alpha(L) = 0.001549 \ 22; \ \alpha(M) = 0.000321 5; \ \alpha(N+) = 8.29 \times 10^{-5} \ 12 \alpha(N) = 7.05 \times 10^{-5} \ 10; \ \alpha(O) = 1.151 \times 10^{-5} \ 17; \alpha(P) = 9.13 \times 10^{-7} \ 13 Additional information 56.$
518.05 2	32.6 12	783.601	3/2+	265.546	3/2+	M1+E2	+0.46 3	0.01244 <i>19</i>	Mult.: $\alpha(K)\exp=0.021\ 6 \ exceeds\ \alpha(K)(M1).$ $\alpha(K)=0.01066\ 17;\ \alpha(L)=0.001413\ 21;\ \alpha(M)=0.000293$ $5;\ \alpha(N+)=7.56\times10^{-5}\ 11$ $\alpha(N)=6.44\times10^{-5}\ 10;\ \alpha(O)=1.046\times10^{-5}\ 16;$ $\alpha(P)=8.08\times10^{-7}\ 13$ Additional information 22. $\alpha(K)\exp=0.0117\ 7,\ \alpha(L)\exp=0.00150\ 14,$ $\alpha(M)\exp=0.00029\ 4$
528.35 <i>3</i>	0.30 2	828.372	3/2+	300.053	1/2+	M1		0.01247	δ: from γγ(θ) (1981BuZW) and α(K)exp. α(K)=0.01072 15; α(L)=0.001389 20; α(M)=0.000287 4; α(N+)=7.44×10-5 11 α(N)=6.32×10-5 9; α(O)=1.032×10-5 15;

 ∞

				¹³⁵ Ce ε deca	y (17.7 h) 1975	5He21,1981A	Ab08,1974Na11	1 (continued)
					$\gamma(^{135})$	La) (continue	ed)	
${\rm E_{\gamma}}^{\dagger}$	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_{f}	J_f^{π} Mult. ^d	δ	α^{g}	Comments
546.00 <i>3</i>	1.56 6	665.557	5/2+	119.534 7/2 ⁺	- M1(+E2)	< 0.35	0.01131 25	$\begin{aligned} &\alpha(P) = 8.20 \times 10^{-7} \ 12 \\ &\text{Additional information 29.} \\ &\alpha(K) = 0.003 \ 2. \\ &\alpha(K) = 0.00971 \ 22; \ \alpha(L) = 0.001265 \ 23; \ \alpha(M) = 0.000262 \ 5; \\ &\alpha(N+) = 6.77 \times 10^{-5} \ 13 \\ &\alpha(N) = 5.76 \times 10^{-5} \ 11; \ \alpha(O) = 9.39 \times 10^{-6} \ 18; \\ &\alpha(P) = 7.41 \times 10^{-7} \ 18 \\ &\text{Additional information 17.} \end{aligned}$
560 7 [#]	$\approx 0.02^{@}$	1599 25	1/2+ 3/2+	1038 52 3/2*	+ 5/2+			α (K)exp=0.0108 <i>11</i> .
562.79 4	0.35 3	828.372	3/2+	265.546 3/2+	M1,E2		0.0091 16	α (K)=0.0077 <i>15</i> ; α (L)=0.00106 <i>13</i> ; α (M)=0.000221 <i>25</i> ; α (N+)=5.7×10 ⁻⁵ <i>7</i> α (N)=4.8×10 ⁻⁵ <i>6</i> ; α (O)=7.8×10 ⁻⁶ <i>11</i> ; α (P)=5.8×10 ⁻⁷ <i>13</i> Additional information 30
566.87 2	1.45 6	1171.418	3/2+	604.564 3/2+	⁺ ,5/2 ⁺ M1(+E2)) <1	0.0097 8	$\begin{aligned} &\alpha(K) \exp[=0.008 \ 2. \\ &\alpha(K) = 0.0083 \ 8; \ \alpha(L) = 0.00110 \ 7; \ \alpha(M) = 0.000229 \ 13; \\ &\alpha(N+) = 5.9 \times 10^{-5} \ 4 \\ &\alpha(N) = 5.0 \times 10^{-5} \ 3; \ \alpha(O) = 8.2 \times 10^{-6} \ 6; \ \alpha(P) = 6.3 \times 10^{-7} \ 7 \end{aligned}$
^x 571.0 2	0.23 5				M1,E2		0.0088 16	Additional information 57. $\alpha(K) \exp = 0.0086 \ 9.$ $\alpha(K) = 0.0075 \ 14; \ \alpha(L) = 0.00102 \ 13; \ \alpha(M) = 0.000213 \ 25;$ $\alpha(N+) = 5.5 \times 10^{-5} \ 7$ $\alpha(N) = 4.7 \times 10^{-5} \ 6; \ \alpha(O) = 7.5 \times 10^{-6} \ 10; \ \alpha(P) = 5.6 \times 10^{-7} \ 12$ Additional information 2.
572.26 2	24.8 8	872.313	(1/2)+	300.053 1/2+	н М1		0.01024	$\begin{aligned} &\alpha(\mathbf{K})\exp=0.010 \ 4. \\ &\alpha(\mathbf{K})=0.00880 \ 13; \ \alpha(\mathbf{L})=0.001137 \ 16; \ \alpha(\mathbf{M})=0.000235 \ 4; \\ &\alpha(\mathbf{N}+)=6.09\times10^{-5} \ 9 \\ &\alpha(\mathbf{N})=5.18\times10^{-5} \ 8; \ \alpha(\mathbf{O})=8.45\times10^{-6} \ 12; \ \alpha(\mathbf{P})=6.72\times10^{-7} \end{aligned}$
577.09 2	12.3 4	783.601	3/2+	206.504 5/2*	M1+E2	-0.30 <i>I</i>	0.00978	Additional information 35. Mult.: α (K)exp=0.0091 8 gives δ (E2/M1)<0.6 (assuming no E0), ΔJ^{π} requires M1. (572γ)(300γ)(θ): A ₂ =+0.005 17 (1974Na11). α (K)=0.00840 12; α (L)=0.001094 16; α (M)=0.000227 4; α (N+)=5.86×10 ⁻⁵ 9 α (N)=4.98×10 ⁻⁵ 7; α (O)=8.12×10 ⁻⁶ 12; α (P)=6.39×10 ⁻⁷ 9
577.3 ^{ah}	0.12 5	1449.636	1/2+,3/2+	872.313 (1/2) ⁺ M1,E2		0.0085 15	Additional information 23. α (K)exp=0.0088 6. δ : from $\gamma\gamma(\theta)$ (1972Zh03,1981BuZW) and α (K)exp. α (K)=0.0073 14; α (L)=0.00099 12; α (M)=0.000207 24; α (N+)=5.3×10 ⁻⁵ 7

				¹³⁵ Ce ε	decay	(17.7 h)	1975He21,1	981Ab08,1974	4Na11 (continued)
						γ	(¹³⁵ La) (cor	ntinued)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^d	δ	α^{g}	Comments
									$\alpha(N)=4.5\times10^{-5} 6$; $\alpha(O)=7.3\times10^{-6} 10$; $\alpha(P)=5.4\times10^{-7} 12$ I _{γ} : from I(ce(K)). Additional information 70. $\alpha(K)=0.009 4$.
583.9 <i>5</i> *590.0 8	0.11 <i>3</i> 0.09 <i>5</i>	583.9?	9/2+	0.0	5/2+				
604.56 <i>3</i>	6.7 3	604.564	3/2+,5/2+	0.0	5/2+	M1,E2		0.0076 14	α (K)=0.0065 <i>13</i> ; α (L)=0.00088 <i>12</i> ; α (M)=0.000183 <i>23</i> ; α (N+)=4.7×10 ⁻⁵ <i>7</i> α (N)=4.0×10 ⁻⁵ <i>5</i> ; α (O)=6.5×10 ⁻⁶ <i>9</i> ; α (P)=4.8×10 ⁻⁷ <i>11</i> Additional information 14. α (K)exp=0.008 <i>3</i> .
606.76 2	45.0 13	872.313	(1/2)+	265.546	3/2+	M1+E2	-0.37 2	0.00854 13	
611.2 2 621.85 2	0.05 2 0.94 6	1439.485 828.372	3/2 ⁺ 3/2 ⁺	828.372 206.504	3/2 ⁺ 5/2 ⁺	M1(+E2)	<1.2	0.0076 8	$\alpha(K)=0.0065\ 7;\ \alpha(L)=0.00086\ 7;\ \alpha(M)=0.000179\ 13;\ \alpha(N+)=4.6\times10^{-5}\ 4$ $\alpha(N)=3.9\times10^{-5}\ 3;\ \alpha(O)=6.4\times10^{-6}\ 6;\ \alpha(P)=4.9\times10^{-7}\ 6$ Additional information 31. $\alpha(K)=0.0066\ 7$
651.2 2	0.021 4	1479.66	1/2+,3/2+	828.372	3/2+				$u(\mathbf{K}) \exp[-0.0000 7]$.
655.9 [#] 663.8 2	≈0.01 [@] 0.21 5	1439.485 783.601	3/2+ 3/2+	783.601 119.534	3/2 ⁺ 7/2 ⁺	(E2)		0.00492	$\alpha(K)=0.00417\ 6;\ \alpha(L)=0.000595\ 9;\ \alpha(M)=0.0001243\ 18;\ \alpha(N+)=3.18\times10^{-5}\ 5$ $\alpha(N)=2.71\times10^{-5}\ 4;\ \alpha(O)=4.33\times10^{-6}\ 6;\ \alpha(P)=3.01\times10^{-7}\ 5$ Additional information 24. Mult: $\alpha(K)$ exp<0.004 gives E2. E1: adopted ΔJ^{π} requires E2.
665.6 [#]	0.5 [@] 1	665.557	5/2+	0.0	5/2+	M1,E2		0.0060 11	$\alpha(K)=0.0051 \ 10; \ \alpha(L)=0.00069 \ 10; \ \alpha(M)=0.000143 \ 20; \\ \alpha(N+)=3.7\times10^{-5} \ 6 \\ \alpha(N)=3.1\times10^{-5} \ 5; \ \alpha(O)=5.1\times10^{-6} \ 8; \ \alpha(P)=3.8\times10^{-7} \ 9 \\ \text{Additional information 18.} $
665.79 6	7.2 5	872.313	(1/2)+	206.504	5/2+	E2		0.00489	$\alpha(K)\exp=0.007.5.$ $\alpha(K)=0.00414.6; \alpha(L)=0.000591.9; \alpha(M)=0.0001233.18;$ $\alpha(N+)=3.15\times10^{-5}.5$ $\alpha(N)=2.69\times10^{-5}.4; \alpha(O)=4.30\times10^{-6}.6; \alpha(P)=2.99\times10^{-7}.5$ Additional information 37. $\alpha(K)\exp=0.0043.6. \text{ K/L}=7.1.10, \text{ K/M}=49.20 (1975\text{He}21).$ Mult.: from $\gamma\gamma(\theta)$ and $\alpha(K)\exp$.
666.0 [#]	≈0.1 [@]	1449.636	1/2+,3/2+	783.601	3/2+				

 $^{135}_{57} La_{78}$ -10

¹³⁵₅₇La₇₈-10

			13	³⁵ Ce ε decay	(17.7 h) 1 9	975He21,198	1Ab08,197	4Na11 (cont	inued)
					$\underline{\gamma}(^1$	³⁵ La) (contir	nued)		
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	J_i^π	E_f	J_f^π	Mult. ^d	δ	α^{g}	Comments
684.33 <i>3</i>	0.91 4	984.359	3/2+	300.053	1/2+	M1(+E2)	<1	0.0061 6	$\alpha(K)=0.0052 \ 5; \ \alpha(L)=0.00069 \ 5; \ \alpha(M)=0.000142$ 10; \(\alpha(N+)=3.7\times10^{-5} \ 3 \(\alpha(N)=3.12\times10^{-5} \ 21; \(\alpha(O)=5.1\times10^{-6} \ 4; \(\alpha(P)=4.0\times10^{-7} \ 4 \) Additional information 41. \(\alpha(K)\exp=0.0055 \ 7. \)
693.4 [#] 696.6 2 712 35 9	$\approx 0.02^{@}$ 0.08 3 0.072 12	993.43 1568.9? 712.35	$1/2^+, 3/2^+, 5/2^+$ $(3/2^-, 5/2^-)$	+ 300.053 872.313	$\frac{1/2^{+}}{(1/2)^{+}}$ 5/2 ⁺				
718.82 3	0.97 4	984.359	(3/2 ⁺ ,3/2 ⁺) 3/2 ⁺	265.546	3/2+ 3/2+	M1+E2	+0.18 5	0.00582	α(K)=0.00501 8; α(L)=0.000644 10; α(M)=0.0001331 20; α(N+)=3.44×10-5 6 α(N)=2.93×10-5 5; α(O)=4.78×10-6 8; α(P)=3.81×10-7 6 Additional information 42. α(K)exp=0.0048 5. δ: from γγ(θ) (1981BuZW) and α(K)exp.
727.0 [#] 727.1 [#]	$\approx 0.03^{@}$	1599.25 1439.485	$1/2^+, 3/2^+$ $3/2^+$	872.313	$(1/2)^+$ $(3/2^- 5/2^-)$				
727.9 [#]	~0.02 ≈0.15 [@]	993.43	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁺	* 265.546	3/2+	(M1,E2)		0.0048 9	α(K)=0.0041 8; α(L)=0.00055 9; α(M)=0.000114 <i>I7</i> ; α(N+)=2.9×10 ⁻⁵ 5 α(N)=2.5×10 ⁻⁵ 4; α(O)=4.0×10 ⁻⁶ 7; α(P)=3.1×10 ⁻⁷ 7 Additional information 45. Mult.: α(K)exp<0.003 gives D,E2; but adopted Δπ requires M1,E2.
728.5 [#] 738.46 6	≈0.05 [@] 0.095 9	1766.98 1038.52	3/2+ 3/2+,5/2+	1038.52 300.053	3/2 ⁺ ,5/2 ⁺ 1/2 ⁺	(M1,E2)		0.0047 9	$\alpha(K)=0.0040 \ 8; \ \alpha(L)=0.00053 \ 8; \ \alpha(M)=0.000110 \ 16; \ \alpha(N+)=2.8\times10^{-5} \ 5 \ \alpha(N)=2.4\times10^{-5} \ 4; \ \alpha(O)=3.9\times10^{-6} \ 7; \ \alpha(P)=3.0\times10^{-7} \ 7 \ Additional information \ 47. \ Mult.: \ \alpha(K)exp=0.007 \ 3 \ exceeds \ \alpha(K)(M1) \ and \ \alpha(K)(E2).$
^750.8 2 771.4 2 773.0 [#]	0.018 5 0.10 3 0.31 [@] 3	1599.25 1038.52	1/2 ⁺ ,3/2 ⁺ 3/2 ⁺ ,5/2 ⁺	828.372 265.546	3/2+ 3/2+	(M1,E2)		0.0042 8	$\alpha(K)=0.0036\ 7;\ \alpha(L)=0.00047\ 8;\ \alpha(M)=9.8\times10^{-5}$ $15;\ \alpha(N+)=2.5\times10^{-5}\ 4$ $\alpha(N)=2.2\times10^{-5}\ 4;\ \alpha(O)=3.5\times10^{-6}\ 6;$ $\alpha(P)=2.7\times10^{-7}\ 6$ Additional information 48. $\alpha(K)\exp\approx0.005.$

From ENSDF

¹³⁵₅₇La₇₈-11

				¹³⁵ Ce ε	decay (17.7	7 h) 1975	He21,1981Ab08	,1974Na11 (co	ontinued)
						γ (¹³⁵ L	a) (continued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^π	Mult. ^d	δ	α^{g}	Comments
773.9#	0.52 [@] 5	1439.485	3/2+	665.557	5/2+	(M1,E2)		0.0042 8	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0036\ 7;\ \alpha(\mathrm{L}) = 0.00047\ 8;\ \alpha(\mathrm{M}) = 9.8 \times 10^{-5}\ 15;\\ &\alpha(\mathrm{N}+) = 2.5 \times 10^{-5}\ 4\\ &\alpha(\mathrm{N}) = 2.1 \times 10^{-5}\ 4;\ \alpha(\mathrm{O}) = 3.5 \times 10^{-6}\ 6;\ \alpha(\mathrm{P}) = 2.7 \times 10^{-7}\\ & 6\\ &\mathrm{Additional\ information\ 64.} \end{aligned}$
777.89 3	0.87 5	984.359	3/2+	206.504	5/2+	M1+E2	0.9 +13-6	0.0042 6	$\alpha(K)\exp\approx0.005.$ $\alpha(K)=0.0036 5; \alpha(L)=0.00047 6; \alpha(M)=9.8\times10^{-5} 11;$ $\alpha(N+)=2.5\times10^{-5} 3$ $\alpha(N)=2.15\times10^{-5} 25; \alpha(O)=3.5\times10^{-6} 5;$ $\alpha(P)=2.7\times10^{-7} 5$ Additional information 43. $\alpha(K)\exp=0.0036 5.$
782.6 [#] 783.59 2	≈0.05 [@] 25.4 8	1766.98 783.601	3/2+ 3/2+	984.359 0.0	3/2 ⁺ 5/2 ⁺	M1(+E2)	<0.25	0.00474 8	α (K)=0.00408 7; α (L)=0.000523 9; α (M)=0.0001080 18; α (N+)=2.80×10 ⁻⁵ 5 α (N)=2.38×10 ⁻⁵ 4; α (O)=3.88×10 ⁻⁶ 7; α (P)=3.10×10 ⁻⁷ 6 Additional information 25. α (K)exp=0.0044 3; K/L=7.7 10, K/M=42 21 (1975He21).
815.56 6 828.38 2	0.077 <i>13</i> 12.3 <i>4</i>	1599.25 828.372	1/2 ⁺ ,3/2 ⁺ 3/2 ⁺	783.601 0.0	3/2 ⁺ 5/2 ⁺	M1(+E2)	<0.4	0.00410 11	$\alpha(K)=0.00353 \ 10; \ \alpha(L)=0.000452 \ 11;$ $\alpha(M)=9.35\times10^{-5} \ 22; \ \alpha(N+)=2.42\times10^{-5} \ 6$ $\alpha(N)=2.06\times10^{-5} \ 5; \ \alpha(O)=3.36\times10^{-6} \ 8;$ $\alpha(P)=2.68\times10^{-7} \ 8$ Additional information 32. $\alpha(K)\exp=0.0037 \ 2. \ K/L=7.0 \ 10, \ K/M=28 \ 14$ (1975He21)
832.1 <i>2</i> 834.90 <i>4</i>	0.09 <i>3</i> 0.26 <i>4</i>	1038.52 1439.485	3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	206.504 604.564	5/2+ 3/2+,5/2+				(197311621).
845.06 3	0.31 3	1449.636	1/2+,3/2+	604.564	3/2+,5/2+	E2(+M1)	>0.8	0.0031 4	$\alpha(K)=0.0027 \ 4; \ \alpha(L)=0.00036 \ 4; \ \alpha(M)=7.4\times10^{-5} \ 8; \\ \alpha(N+)=1.91\times10^{-5} \ 20 \\ \alpha(N)=1.63\times10^{-5} \ 17; \ \alpha(O)=2.6\times10^{-6} \ 3; \\ \alpha(P)=2.0\times10^{-7} \ 3 \\ \text{Additional information } 71. \\ \alpha(K)\exp=0.0026 \ 5. \\ \end{cases}$
871.35 2	7.9 3	1171.418	3/2+	300.053	1/2+	M1(+E2)	<1.3	0.0034 4	$\alpha(K)=0.0029 \ 4; \ \alpha(L)=0.00037 \ 4; \ \alpha(M)=7.7\times10^{-5} \ 7; \\ \alpha(N+)=2.00\times10^{-5} \ 19 \\ \alpha(N)=1.70\times10^{-5} \ 16; \ \alpha(O)=2.8\times10^{-6} \ 3; \\ \alpha(P)=2.2\times10^{-7} \ 3 \\ \text{Additional information 58.} \\ \alpha(K)\exp=0.0029 \ 3. \\ \end{cases}$

				¹³⁵ Ce ε deca	ny (17.7 h)	1975He21	,1981Ab08,	1974Na11 (con	ntinued)
						γ ⁽¹³⁵ La) (co	ontinued)		
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^{π}	E_f	${\sf J}_f^\pi$	Mult. ^d	δ	α^{g}	Comments
875.1 [#] 894.63 <i>5</i> 905.87 <i>2</i>	≈0.14 [@] 0.096 9 3.85 13	1479.66 1766.98 1171.418	1/2 ⁺ ,3/2 ⁺ 3/2 ⁺ 3/2 ⁺	604.564 872.313 265.546	3/2 ⁺ ,5/2 ⁺ (1/2) ⁺ 3/2 ⁺	M1(+E2)	-0.04 2	0.00339	$\alpha(K)=0.00292 \ 4; \ \alpha(L)=0.000372 \ 6; \\ \alpha(M)=7.69\times10^{-5} \ 11; \ \alpha(N+)=1.99\times10^{-5} \ 3 \\ \alpha(N)=1.692\times10^{-5} \ 24; \ \alpha(O)=2.77\times10^{-6} \ 4; \\ \alpha(N)=0.0000 \ 10^{-7} \ 10^{$
^x 924.8 ^c 933.76 6	0.08 2	1599.25	1/2+,3/2+	665.557	5/2+				$\alpha(P)=2.22\times10^{-7} 4$ Additional information 59. $\alpha(K)\exp=0.0034 5$, $\alpha(L)\exp=0.00036 8$. δ : from $\gamma\gamma(\theta)$ (1981BuZW) and $\alpha(\exp)$. ce(K)=0.014 4 (1981Ab08).
938.5 2 964.89 <i>3</i>	0.037 <i>9</i> 0.79 <i>4</i>	1766.98 1171.418	3/2 ⁺ 3/2 ⁺	828.372 206.504	3/2 ⁺ 5/2 ⁺	E2(+M1)	>2	0.00215 10	$\alpha(K)=0.00184 \ 8; \ \alpha(L)=0.000244 \ 10; \\ \alpha(M)=5.06\times10^{-5} \ 19; \ \alpha(N+)=1.30\times10^{-5} \ 5 \\ \alpha(N)=1.11\times10^{-5} \ 5; \ \alpha(O)=1.80\times10^{-6} \ 7; \\ \alpha(P)=1.36\times10^{-7} \ 7 \\ \text{Additional information } 60.$
^x 969.0 ^c 983.4 [#] 984.30 <i>3</i>	≈0.02 [@] 0.20 2	1766.98 984.359	3/2 ⁺ 3/2 ⁺	783.601 0.0	3/2 ⁺ 5/2 ⁺	E2(+M1)	>2.5	0.00203 7	$\alpha(K) \exp = 0.0018 \ 3.$ $ce(K) \approx 0.011 \ (1981Ab08).$ $\alpha(K) = 0.00174 \ 6; \ \alpha(L) = 0.000231 \ 7;$ $\alpha(M) = 4.78 \times 10^{-5} \ 14; \ \alpha(N+) = 1.23 \times 10^{-5} \ 4$ $\alpha(N) = 1.05 \times 10^{-5} \ 3; \ \alpha(O) = 1.70 \times 10^{-6} \ 5;$ $\alpha(P) = 1.28 \times 10^{-7} \ 5$
993.4 [#] 994.7 [#] 1038.48.4	$\approx 0.03^{@}$ $\approx 0.02^{@}$ 0.12.2	993.43 1599.25 1038.52	1/2 ⁺ ,3/2 ⁺ ,5/2 ⁻ 1/2 ⁺ ,3/2 ⁺ 3/2 ⁺ 5/2 ⁺	+ 0.0 604.564 0.0	5/2 ⁺ 3/2 ⁺ ,5/2 ⁺ 5/2 ⁺	M1		0.00247	Additional information 44. α (K)exp=0.0015 <i>3</i> . Additional information 46. α (K)=0.00213 <i>3</i> : α (L)=0.000270 <i>4</i> :
	0		<i></i>		0,2			0.002.17	$\alpha(M) = 5.57 \times 10^{-5} \ 8; \ \alpha(N+) = 1.443 \times 10^{-5}$ 21 $\alpha(N) = 1.226 \times 10^{-5} \ 18; \ \alpha(O) = 2.01 \times 10^{-6} \ 3;$ $\alpha(P) = 1.611 \times 10^{-7} \ 23$ Additional information 49. $\alpha(K) \exp = 0.0027 \ 5.$
1051.90 3	0.16 2	1171.418	3/2+	119.534	7/2+	E2		1.72×10 ⁻³	$\alpha(K)=0.001471 \ 21; \ \alpha(L)=0.000194 \ 3; \alpha(M)=4.01\times10^{-5} \ 6; \ \alpha(N+)=1.033\times10^{-5} 15 \alpha(N)=8.80\times10^{-6} \ 13; \ \alpha(O)=1.425\times10^{-6} \ 20; \alpha(P)=1.077\times10^{-7} \ 15 Additional information \ 61. \alpha(K)exp=0.0014 \ 2.$

 $^{135}_{57} La_{78}$ -13

				¹³⁵ Ce ε	decay	(17.7 h)	1975He2	1,1981Ab08,1	974Na11 (continued)
						<u> </u>	(¹³⁵ La) (continued)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult. ^d	δ	α^{g}	Comments
1066.9 <i>3</i> 1101.45 8	0.016 <i>4</i> 0.055 <i>10</i>	1850.74 1766.98	1/2,3/2 3/2 ⁺	783.601 665.557	3/2 ⁺ 5/2 ⁺	M1,E2		0.0019 3	$\alpha(K)=0.0016 \ 3; \ \alpha(L)=0.00021 \ 3; \ \alpha(M)=4.2\times10^{-5} \ 7; \ \alpha(N+)=1.13\times10^{-5} \ 17$
1139.43 <i>3</i>	0.21 2	1439.485	3/2+	300.053	1/2+	M1(+E2)	<1	0.00186 <i>14</i>	$\alpha(N)=9.3\times10^{-6} \ 14; \ \alpha(O)=1.52\times10^{-6} \ 24; \ \alpha(P)=1.19\times10^{-7} \ 22; \\ \alpha(IPF)=3.93\times10^{-7} \ 9 \\ \text{Additional information 76.} \\ \alpha(K)=0.00160 \ 12; \ \alpha(L)=0.000204 \ 14; \ \alpha(M)=4.2\times10^{-5} \ 3; \\ \alpha(N+)=1.23\times10^{-5} \ 8 \\ \alpha(N)=9.3\times10^{-6} \ 7; \ \alpha(O)=1.51\times10^{-6} \ 11; \ \alpha(P)=1.20\times10^{-7} \ 10; \\ \alpha(IPF)=1.417\times10^{-6} \ 23 \\ \text{Additional information 65.} \\ \alpha(IPF)=1.417\times10^{-6} \ 23 \\ \alpha(IPF)=1.417\times10$
1149.58 2	1.60 6	1449.636	1/2+,3/2+	300.053	1/2+	M1(+E2)	<0.9	0.00184 13	Additional information 65. $\alpha(K)\exp=0.0018 \ 3.$ $\alpha(K)=0.00158 \ 11; \ \alpha(L)=0.000201 \ 13; \ \alpha(M)=4.2\times10^{-5} \ 3;$ $\alpha(N+)=1.26\times10^{-5} \ 7$
1171.42 3	0.47 2	1171.418	3/2+	0.0	5/2+	M1,E2		0.0016 <i>3</i>	$\alpha(N)=9.1\times10^{-6} 6; \alpha(O)=1.49\times10^{-6} 10; \alpha(P)=1.19\times10^{-7} 9; \alpha(IPF)=1.90\times10^{-6} 3$ Additional information 72. $\alpha(K)=0.00140 22; \alpha(L)=0.00018 3; \alpha(M)=3.7\times10^{-5} 6; \alpha(N+)=1.29\times10^{-5} 14 \alpha(N)=8.1\times10^{-6} 12; \alpha(O)=1.32\times10^{-6} 20; \alpha(P)=1.04\times10^{-7} 18; \alpha(IPF)=3.36\times10^{-6} 7$
1173.92 <i>3</i>	0.44 <i>3</i>	1439.485	3/2+	265.546	3/2+	M1(+E2)	<1	0.00174 <i>13</i>	Additional information 62. $\alpha(K)\exp=0.0015 \ 3.$ $\alpha(K)=0.00150 \ 12; \ \alpha(L)=0.000190 \ 13; \ \alpha(M)=3.9\times10^{-5} \ 3; \ \alpha(N+)=1.37\times10^{-5} \ 7 \ \alpha(N)=8.6\times10^{-6} \ 6; \ \alpha(O)=1.41\times10^{-6} \ 10; \ \alpha(P)=1.13\times10^{-7} \ 9;$
1179.49 6	0.086 15	1479.66	1/2+,3/2+	300.053	1/2+				$\alpha(\text{IPF})=3.54\times10^{-6} \ 6$ Additional information 66. $\alpha(\text{K})\text{exp}=0.0017 \ 3.$
1184.09 3	2.6 1	1449.636	1/2+,3/2+	265.546	3/2+	M1+E2		0.00159 25	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00136\ 22;\ \alpha(\mathrm{L}) = 0.000174\ 25;\ \alpha(\mathrm{M}) = 3.6 \times 10^{-5}\ 6;\\ &\alpha(\mathrm{N}+) = 1.38 \times 10^{-5}\ 13\\ &\alpha(\mathrm{N}) = 7.9 \times 10^{-6}\ 12;\ \alpha(\mathrm{O}) = 1.29 \times 10^{-6}\ 19;\ \alpha(\mathrm{P}) = 1.02 \times 10^{-7}\ 18;\\ &\alpha(\mathrm{IPF}) = 4.47 \times 10^{-6}\ 9\\ &\mathrm{Additional\ information\ 73.}\\ &\alpha(\mathrm{K}) \exp = 0.00173\ 10,\ \alpha(\mathrm{L}) \exp = 0.00018\ 2,\ \alpha(\mathrm{M}) \exp = 0.00038\ 9.\\ &\delta:\ -0.12\ 3\ \mathrm{if\ J} = 1/2\ \mathrm{or\ } + 0.49\ 5\ \mathrm{if\ J} = 3/2\ \mathrm{from\ }\gamma\gamma(\theta)\ (1981\mathrm{BuZW}). \end{aligned}$
1214.13 3	0.24 3	1479.66	1/2+,3/2+	265.546	3/2+	M1(+E2)	<1	0.00162 12	α (K)=0.00139 <i>10</i> ; α (L)=0.000176 <i>12</i> ; α (M)=3.64×10 ⁻⁵ <i>25</i> ; α (N+)=1.72×10 ⁻⁵ <i>7</i>

From ENSDF

¹³⁵₅₇La₇₈-14

				¹³⁵ Ce ε dec	cay (17	7.7 h) 19 7	75He21,	1981Ab08,197	4Na11 (continued)
						$\gamma(^{132}$	⁵ La) (co	ntinued)	
E_{γ}^{\dagger}	I_{γ} ‡ f	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. ^d	δ	α^{g}	Comments
1232.98 <i>3</i>	0.23 2	1439.485	3/2+	206.504	5/2+	M1(+E2)	<1.5	0.00153 16	$\begin{aligned} \alpha(N) = 8.0 \times 10^{-6} \ 6; \ \alpha(O) = 1.31 \times 10^{-6} \ 9; \ \alpha(P) = 1.04 \times 10^{-7} \ 9; \\ \alpha(IPF) = 7.78 \times 10^{-6} \ 12 \\ \text{Additional information 74.} \\ \alpha(K) \exp = 0.0018 \ 5. \\ \alpha(K) = 0.00131 \ 14; \ \alpha(L) = 0.000166 \ 16; \ \alpha(M) = 3.4 \times 10^{-5} \ 4; \\ \alpha(N+) = 1.92 \times 10^{-5} \ 8 \\ \alpha(N) = 7.5 \times 10^{-6} \ 7; \ \alpha(O) = 1.23 \times 10^{-6} \ 12; \ \alpha(P) = 9.8 \times 10^{-8} \ 11; \\ \alpha(IPF) = 1.031 \times 10^{-5} \ 17 \\ \text{Additional information 67.} \\ \alpha(K) = 0.0015 \ 2 \end{aligned}$
1243.1 [#]	≈0.01 [@]	1449.636	1/2+,3/2+	206.504	5/2+				$u(\mathbf{K}) \exp[-0.0015 \ S].$
^x 1258.4 6 1273.5 2 1299.18 3	0.09 5 0.045 15 0.17 2	1479.66 1599.25	1/2 ⁺ ,3/2 ⁺ 1/2 ⁺ ,3/2 ⁺	206.504 300.053	5/2+ 1/2+	M1,E2		0.00132 19	α (K)=0.00112 <i>17</i> ; α (L)=0.000142 <i>20</i> ; α (M)=2.9×10 ⁻⁵ <i>4</i> ; α (N+)=2.87×10 ⁻⁵ <i>10</i> α (N)=6.4×10 ⁻⁶ <i>9</i> ; α (O)=1.05×10 ⁻⁶ <i>15</i> ; α (P)=8.3×10 ⁻⁸ <i>14</i> ; α (IPF)=2.11×10 ⁻⁵ <i>4</i> Additional information 75.
1334.7 <i>5</i> 1361.0 <i>9</i> ×1376.7 <i>4</i>	0.09 5 0.09 5 0.016 5	1599.25 1479.66	1/2 ⁺ ,3/2 ⁺ 1/2 ⁺ ,3/2 ⁺	265.546 119.534	3/2+ 7/2+				α (K)exp=0.0010 3.
1392.8 <i>4</i> 1439.57 8	0.022 5 0.14 <i>I</i>	1599.25 1439.485	1/2 ⁺ ,3/2 ⁺ 3/2 ⁺	206.504 : 0.0 :	5/2 ⁺ 5/2 ⁺	E2(+M1)	>1	0.00103 7	$\alpha(K)=0.00084\ 6;\ \alpha(L)=0.000106\ 8;\ \alpha(M)=2.20\times10^{-5}\ 15;\ \alpha(N+)=6.36\times10^{-5}\ 10$ $\alpha(N)=4.8\times10^{-6}\ 4;\ \alpha(O)=7.9\times10^{-7}\ 6;\ \alpha(P)=6.2\times10^{-8}\ 5;\ \alpha(IPF)=5.80\times10^{-5}\ 9$ Additional information 68.
1449.6 2	0.019 4	1449.636	1/2+,3/2+	0.0	5/2+				$\alpha(K)\exp=0.0007/2.$
1466.90 3	0.51 3	1766.98	3/2+	300.053	1/2+	E2(+M1)	>1	0.00100 7	$\alpha(K)=0.00081 \ 6; \ \alpha(L)=0.000102 \ 7; \ \alpha(M)=2.11\times10^{-3} \ 14; \\ \alpha(N+)=7.22\times10^{-5} \ 11 \\ \alpha(N)=4.6\times10^{-6} \ 3; \ \alpha(O)=7.6\times10^{-7} \ 6; \ \alpha(P)=6.0\times10^{-8} \ 5; \\ \alpha(IPF)=6.68\times10^{-5} \ 10 \\ Additional information \ 77. \\ \alpha(K)\exp=0.00078 \ 10. \\ \end{cases}$
1479.6 2	0.014 5	1479.66	$1/2^+, 3/2^+$ $1/2^+, 3/2^+$	0.0	$5/2^+$				
1501.38 8	0.14 2	1766.98	3/2 ⁺	265.546	3/2 ⁺	M1,E2		0.00103 12	$\begin{aligned} &\alpha(\mathrm{K}) = 0.00082 \ 11; \ \alpha(\mathrm{L}) = 0.000104 \ 13; \ \alpha(\mathrm{M}) = 2.1 \times 10^{-5} \ 3; \\ &\alpha(\mathrm{N}+) = 8.41 \times 10^{-5} \ 15 \\ &\alpha(\mathrm{N}) = 4.7 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 7.7 \times 10^{-7} \ 10; \ \alpha(\mathrm{P}) = 6.1 \times 10^{-8} \ 9; \\ &\alpha(\mathrm{IPF}) = 7.86 \times 10^{-5} \ 12 \end{aligned}$

From ENSDF

				¹³⁵ Ce ε decay (17.7 h)		1975He21,1981Ab08,1974Na11 (continued)					
							$\gamma(^{135}\text{La})$ (cont	¹³⁵ La) (continued)			
E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}$ ‡ f	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult. ^d	α ^g	Comments			
								Additional information 78. $\alpha(K) \exp = 0.0010.2$			
1531.58 7 ×1541 0 7	0.050 5	1797.15	1/2+,3/2	265.546	$3/2^{+}$						
1550.7.3	0.0137 0.0244	1850.74	1/2.3/2	300.053	$1/2^{+}$						
1560.49 5	0.18 2	1766.98	3/2+	206.504	5/2+	(E2)	8.75×10 ⁻⁴	$\alpha(K)=0.000668 \ I0; \ \alpha(L)=8.46\times10^{-5} \ I2; \ \alpha(M)=1.746\times10^{-5} \ 25; \ \alpha(N+)=0.0001042 \ I5$ $\alpha(N)=3.84\times10^{-6} \ 6; \ \alpha(O)=6.25\times10^{-7} \ 9; \ \alpha(P)=4.91\times10^{-8} \ 7; \ \alpha(IPF)=9.97\times10^{-5} \ I4$ Additional information 79. $\alpha(K)\exp=0.0005 \ I$ gives E2 but somewhat uncertain due to discrepant mult for 1767 α from $\alpha(K)\exp$.			
1585.3 2	0.056 5	1850.74	1/2,3/2	265.546	$3/2^{+}$						
1599.3 8	0.019 3	1599.25	1/2+,3/2+	0.0	5/2+						
1767.00 4	0.29 3	1766.98	$3/2^{+}$	0.0	$5/2^{+}$			Additional information 80.			
1797.4 <i>3</i>	0.035 4	1797.15	1/2+,3/2	0.0	5/2+	D,E2		Mult.: $\alpha(K)\exp=0.00032$ 8 gives E1 but adopted ΔJ^{α} requires M1 or E2. Additional information 81. $\alpha(K)\exp=0.0004$ 2.			
1850 <i>I</i>	0.0011 3	1850.74	1/2,3/2	0.0	$5/2^{+}$						
 [†] From 19 [‡] Weighter [#] Observer [@] From co ^{&} Iγ,Ice: a ^a Observer ^b Not obsec ^c From ce ^d From α(^e From su ^f For abscing ^g Total the assigned ^h Placeme ^x γ ray no 	 ¹ 10.0011 <i>s</i> 1850.14 1/2,3/2 0.0 5/2⁻¹ [†] From 1975He21, except as noted. [‡] Weighted average of 1981Ab08, 1975He21 and 1974Na11. [#] Observed in γγ coincidence spectra (1975He21), Eγ from level scheme. [@] From coincidence data (1975He21). ^{&} Iy,Ice: average of 1981Ab08 and 1975Mo12. ^a Observed by 1981Ab08 in ce spectra only. Eγ from level scheme. ^b Not observed by 1981Ab08. ^c From c data of 1981Ab08. ^c From a det of 1981Ab08. ^e From subshell ratios. ^f For absolute intensity per 100 decays, multiply by 0.418 7. ^g Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. ^h Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme. 										

¹³⁵Ce ε decay (17.7 h) 1975He21,1981Ab08,1974Na11

¹³⁵Ce ε decay (17.7 h) 1975He21,1981Ab08,1974Na11

¹³⁵₅₇La₇₈

Legend Decay Scheme (continued) $\begin{array}{l} I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ I_{\gamma} > 10\% \times I_{\gamma}^{max} \\ \gamma \ \text{Decay} \ (\text{Uncertain}) \end{array}$ Intensities: $I_{(\gamma+ce)}$ per 100 parent decays Coincidence • $1/2^{(+)}$ 0.0 17.7 h 3 Coincidence (Uncertain) o Q_ε=2026 5 $\%\varepsilon + \%\beta^+ = 100$ ¹³⁵₅₈Ce₇₇ I β^+ <u>I</u>£ Log ft3/2+,5/2+ 1038.52 0.09 8.6 ŝ. 1/2+,3/2+,5/2+ 993.43 0.011 9.3 3/2+ 984.359 2.78 7.08 $(1/2)^+$ 872.313 33.7 6.09 ಭೆ 3/2+ 828.372 5.2 6.93 3/2+ 783.601 0.0052 30.1 6.21 ī. (3/2-,5/2-) 712.35 5/2+ 665.557 < 0.4 >8.2 3/2+,5/2+ 604.564 0.26 8.4 $1/2^{+}$ 300.053 <0.08 ns 0.36 6.80 14.4 3/2+ 265.546 <0.08 ns < 0.027 < 2.7 >7.6 5/2+ 206.504 0.52 ns 3 5/2+ 0.0

¹³⁵Ce ε decay (17.7 h) 1975He21,1981Ab08,1974Na11

¹³⁵Ce ε decay (17.7 h) 1975He21,1981Ab08,1974Na11

 $^{135}_{57}$ La₇₈