History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov	NDS 109,517 (2008)	22-Jan-2008				

$Q(\beta^{-})=2628 5$; S(n)=7801 8; S(p)=8542 6; $Q(\alpha)=-4232 6$ 2012Wa38

Note: Current evaluation has used the following Q record 2627 6 7788 11 8519 13-4227 22 2003Au03.

Nuclear structure calculations (levels, moments, shell model): 2002Ma44, 2000Yo08 (IBF model), 1998Su03, 1997An10, 1988Lo12, 1982Di07, 1978Ba40, 1971Wi25.

Additional information 1.

¹³⁵I Levels

See 1998Su03 for proposed configurations based on quasiparticle-phonon model for g.s., 604, 871, 1133, 1421 and 1993.

D

Cross Reference (XREF) Flags

Δ	¹³⁵ Те <i>В</i> ⁻	decay	(19.0 s)
n	$I \in D$	uccay	(17.0.8)

- B ¹³⁶Te β⁻n decay (17.63 s)
- C ²⁴⁸Cm SF decay
 - 136 Xe(d, ³He)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0#	7/2+	6.58 h <i>3</i>	ABCD	$%\beta^-=100$ μ=(+)2.940 2 (1998Wh04) J ^π : spin from atomic beam (1960Ja12); parity from L(d, ³ He)=4. μ: NMR on oriented nuclei, measured γ(θ,H,temp) (1998Wh04). The positive sign is from systematics of odd-A I nuclides where the magnetic moment of the 7/2 ⁺ g.s. has been measured as positive. See also compilation by 2005St24. T _{1/2} : unweighted average of 6.55 h 3 (1982Wa21) and 6.61 h <i>I</i> (1974LaZV). Others: 6.585 h 2 (quoted by 1971Ha13 from their 'to be published' paper, but which never appeared), 6.7 h 2 (1953Pa25), 6.7 h <i>I</i> (1950Gl09), 6.6 h 3 (1940Do07), 1955Wa35, 1950Ka06, 1945Wu05.
603.68 <i>3</i>	$(5/2)^+$		A D	J^{π} : L(d, ³ He)=2; log ft =6.5 from (7/2 ⁻). Single-quasiparticle state (1998Su03).
870.52 4	$(5/2)^+$		A D	J^{π} : L(d, ³ He)=2; log <i>ft</i> =6.6 from (7/2 ⁻). Configuration=2 ⁺ coupled to $g_{7/2}$ (1998Su03).
1009.94 20			Α	
1133.4 [#] 3	$(11/2^+)^{\ddagger}$		A C	Configuration= 2^+ coupled to $g_{7/2}$ (1998Su03).
1183.87 [#] 17	$(9/2^+)^{\ddagger}$		Α	
1421.5 [#] 4	$(15/2^+)^{\ddagger}$		С	Configuration= 4^+ coupled to $g_{7/2}$ (1998Su03).
1516.80 25			Α	
1709.8 <i>3</i>			Α	
1857.0 5			Α	
1993.9 4	$(17/2^+)^{\ddagger}$		С	Configuration= $\pi g_{7/2}^2 \otimes \pi d_{5/2}$ or $g_{7/2} \otimes 6^+$ (1998Su03).
2027.2 4			Α	
2069.15 19			A	
2157.0 5			A	
2312.0 4			л С	
2421 5 5			c	
2873.5 4			č	
3046.5 7	$(7/2^+, 9/2^+)$		A	J^{π} : γ' s to (11/2 ⁺) and (5/2) ⁺ .
3357.0 7			Α	· · · · · · · · · · · · · · · · · · ·

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁵I Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
3655.3 [@] 4	$(19/2^{-})^{\ddagger}$	с	
3689.7 [@] 4	$(23/2^{-})^{\ddagger}$	С	
3765.8 [@] 4	$(21/2^{-})^{\ddagger}$	С	
4241.9 ^{&} 4	$(19/2^+)^{\ddagger}$	С	
4313.6 6	$(7/2^+, 9/2^+)$	Α	J^{π} : γ 's to $(11/2^+)$ and $(5/2)^+$.
4380.5 <mark>&</mark> 4	$(21/2^+)^{\ddagger}$	С	
4463.9 5	$(7/2^{-}, 9/2^{-})$	Α	J^{π} : log ft=5.5 from (7/2 ⁻); γ to (11/2 ⁺).
4772.7 5	$(5/2^-, 7/2^-, 9/2^-)$	Α	J^{π} : log ft=5.2 from (7/2 ⁻).
4776.4 ^{&} 4	$(23/2^+)^{\ddagger}$	С	
4779.2 7		С	
5329.1 <mark>&</mark> 5	$(25/2^+)^{\ddagger}$	С	
5577.6 <mark>&</mark> 5	$(27/2^+)^{\ddagger}$	С	
5616.2 ^{<i>a</i>} 7	$(23/2^{-})^{\ddagger}$	С	
5849.2 ^a 7	$(25/2^{-})^{\ddagger}$	С	

[†] From least-squares fit to $E\gamma'$ s. The 947.5 γ from 5329.1 level was not used in the fitting procedure due to its poor fit.

⁺ From least-squares fit to $E\gamma$'s. The 947.5 γ from 5329.1 level was not use [±] Shell model, theoretical prediction. [#] Band(A): $\pi g_{7/2}^2 \pi h_{11/2}$ multiplet. [@] Band(B): $\pi g_{7/2}^2 \pi h_{11/2}$ multiplet. [&] Band(C): $\pi g_{7/2}^3 v f_{7/2} v h_{11/2}^{-1}$ multiplet. VMI analysis: parameter Δ =84 keV. ^a Band(D): $\pi g_{7/2}^3 v f_{7/2} v d_{3/2}^{-1}$ multiplet.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^π
603.68	$(5/2)^+$	603.70 <i>3</i>	100	0.0	7/2+
870.52	$(5/2)^+$	266.87 <i>3</i>	100.0 15	603.68	$(5/2)^+$
		870.3 1	74.6 15	0.0	$7/2^{+}$
1009.94		139.5 4	100 8	870.52	$(5/2)^+$
		407.4 5	35 8	603.68	$(5/2)^+$
		1009.8 <i>3</i>	70 5	0.0	$7/2^{+}$
1133.4	$(11/2^+)$	1133.7 <i>3</i>	100	0.0	$7/2^{+}$
1183.87	$(9/2^+)$	174.8 <i>5</i>	6.3 17	1009.94	
		312.6 4	16.7 <i>21</i>	870.52	$(5/2)^+$
		1183.9 2	100 4	0.0	7/2+
1421.5	$(15/2^+)$	288.1 2	100	1133.4	$(11/2^+)$
1516.80		647.3 4	86 11	870.52	$(5/2)^+$
		912.4 <i>4</i>	100 8	603.68	$(5/2)^+$
		1516.3 5	96 15	0.0	$7/2^{+}$
1709.8		1107.0 7	89 14	603.68	$(5/2)^+$
		1709.6 <i>3</i>	100 5	0.0	$7/2^{+}$
1857.0		1253.3 14	100 23	603.68	$(5/2)^+$
		1856.3 <i>18</i>	72 17	0.0	$7/2^{+}$
1993.9	$(17/2^+)$	572.3 2	100	1421.5	$(15/2^+)$
2027.2		1423.3 7	13.9 14	603.68	$(5/2)^+$
		2027.2 4	100 8	0.0	7/2+
2069.15		1198.6 2	100 5	870.52	$(5/2)^+$
		1465.6 5	57.9 <i>19</i>	603.68	$(5/2)^+$
2157.0		1554.5 <i>15</i>	15 4	603.68	$(5/2)^+$
		2156.8 6	100 10	0.0	$7/2^{+}$

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

$\gamma(^{135}I)$ (continued)

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\dagger}	E_f	J_f^π
2312.6		455.6 3	63 7	1857.0	
		1442.4 <i>4</i>	100 <i>3</i>	870.52	$(5/2)^+$
		2311.2 9	18 11	0.0	$7/2^{+}$
2350.2		928.7 2	100	1421.5	$(15/2^+)$
2421.5		1000.0 5	100 20	1421.5	$(15/2^+)$
		1288.0 5	80 20	1133.4	$(11/2^+)$
2873.5		523.1 5	12 12	2350.2	
		1452.0 2	100 20	1421.5	$(15/2^+)$
3046.5	$(7/2^+, 9/2^+)$	1336.6 9	83 14	1709.8	
		1913.1 9	65 <i>13</i>	1133.4	$(11/2^+)$
		2176.0 19	100 14	870.52	$(5/2)^+$
3357.0		2487.1 9	100 15	870.52	$(5/2)^+$
		2752.6 9	26 8	603.68	$(5/2)^+$
3655.3	$(19/2^{-})$	1661.4 2	100	1993.9	$(17/2^+)$
3689.7	$(23/2^{-})$	1695.8 2	100	1993.9	$(17/2^+)$
3765.8	$(21/2^{-})$	1771.9 5	50 12	1993.9	$(17/2^+)$
		2344.2 2	100 25	1421.5	$(15/2^+)$
4241.9	$(19/2^+)$	2247.8 2	100 20	1993.9	$(17/2^+)$
		2821.2 5	63	1421.5	$(15/2^+)$
4313.6	$(7/2^+, 9/2^+)$	3181.6 8	20.6 20	1133.4	$(11/2^+)$
		3441.7 8	100 9	870.52	$(5/2)^+$
		3709.5 15	30 6	603.68	$(5/2)^+$
4380.5	$(21/2^+)$	138.5 2	68 15	4241.9	$(19/2^+)$
		690.7 2	34 7	3689.7	$(23/2^{-})$
		725.1 2	100 20	3655.3	$(19/2^{-})$
		2386.8 5	12 2	1993.9	$(17/2^+)$
4463.9	$(7/2^{-}, 9/2^{-})$	3279.9 7	28.3 13	1183.87	$(9/2^+)$
		3330.8 7	25.2 13	1133.4	$(11/2^+)$
		4463.4 9	100 4	0.0	$7/2^{+}$
4772.7	$(5/2^-, 7/2^-, 9/2^-)$	2615.5 8	27 4	2157.0	
		3902.6 9	89 8	870.52	$(5/2)^+$
		4168.8 12	100 16	603.68	$(5/2)^+$
		4772.3 8	24 5	0.0	7/2+
4776.4	$(23/2^+)$	395.9 2	100 20	4380.5	$(21/2^+)$
		1010.5 5	62	3765.8	$(21/2^{-})$
4779.2		1089.5 5	100	3689.7	$(23/2^{-})$
5329.1	$(25/2^+)$	552.5 2	100 20	4776.4	$(23/2^+)$
		947.5 ^{‡#} 2	70 15	4380.5	$(21/2^+)$
		1639.5 2	40 10	3689.7	$(23/2^{-})$
5577.6	$(27/2^+)$	248.4 2	60 20	5329.1	$(25/2^+)$
		801.2 2	100 20	4776.4	$(23/2^+)$
5616.2	$(23/2^{-})$	1926.5 5	100	3689.7	$(23/2^{-})$
5849.2	$(25/2^{-})$	2159.5 5	100	3689.7	$(23/2^{-})$
					/

[†] From either¹³⁵Te β^- decay or ²⁴⁸Cm SF decay. Most levels are populated independently, low spins in β^- decay and high spins in SF decay. Weighted averages are taken when a level is populated in both datasets.

^{\ddagger} This γ was not used in the fitting procedure since it is poorly fitted.

[#] Level-energy difference=948.6.

Level Scheme

Intensities: Relative photon branching from each level

 $^{135}_{53}\mathrm{I}_{82}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{135}_{53}\mathrm{I}_{82}$