¹³⁵Xe β^- decay (9.14 h) 1974MeZV

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov	NDS 109, 517 (2008)	22-Jan-2008

Parent: ¹³⁵Xe: E=0.0; $J^{\pi}=3/2^+$; $T_{1/2}=9.14$ h 2; $Q(\beta^-)=1165$ 4; $\%\beta^-$ decay=100.0

¹³⁵Xe-Q(β^{-}): From 2003Au03, based on Q(β^{-})=1167 5 from $\beta\gamma$ data of 1999Fo01.

1974MeZV (priv comm to 1975He12): measured $E\gamma$, $I\gamma$.

1972Ac02: ce data.

1999Fo01: measured $\beta\gamma$ coin, deduced Q(β^-) value.

Others: 1964Cl01, 1965An05, 1966Ha28, 1966Ja16, 1968Al16, 1968Op02, 1973Sa27, 1974Ca26, 1975Ho18, 1996Yo12.

Pre-1960 references: 1940Do07, 1940Wu05, 1941Cl02, 1943Ri01, 1945Wu05, 1946Bl27, 1949Th04, 1950Ho04, 1950Gl09,

1950Ne07, 1952Be55, 1953Gr07, 1953Br11, 1955Th01.

Additional information 1.

Total decay energy of 1164 keV 28 calculated (by RADLIST code) from level scheme agrees with the expected value of 1165 keV 4.

¹³⁵Cs Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0 249.793 <i>12</i> 407 989 <i>13</i>	7/2 ⁺ 5/2 ⁺	0.28 ns 8	$T_{1/2}$: $\beta ce(t)$ (1953Gr07).
608.186 <i>14</i> 981.315 <i>22</i> 1062.420 <i>14</i>	5/2+		

[†] From 'Adopted Levels'.

 β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger}$	Log ft	Comments		
(103 4)	1062.420	0.123 6	5.71 6	av E β =26.9 11		
$(184 \ 4)$	981.315	0.075 5	6.71 5	av E β =50.0 12		
(557 4)	608.186	3.11 14	6.67 3	av $E\beta = 173.3 \ 15$		
				E(decay): 550 from 1955Th01. $I\beta^{-} \approx 3\%$.		
(757 4)	407.989	0.59 3	7.86 3	av $E\beta = 248.1 \ 16$		
910 10	249.793	96 4	5.94 2	av $E\beta = 310.2 \ 16$		
				E(decay): from 1952Be55. $I\beta^-=97\%$ (1955Th01). Other: $E\beta=909$, $I\beta=96\%$ (1996Yo12).		

 † Absolute intensity per 100 decays.

 $\gamma(^{135}Cs)$

I γ normalization: from $\Sigma(I\gamma$ to g.s.)=100, assuming no β feeding to g.s..

E_{γ}^{\ddagger}	I_{γ} ‡#	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ	α@	Comments
158.197 18	0.321 11	407.989	5.10+	249.793	5/2+				
200.19 10	0.013 5	608.186 240.702	5/2 '	407.989	7/2+	$M1(\pm E2)$	<1.0	0.0727.20	$\alpha(K) = 0.0622, 10, \alpha(L) = 0.0001, 11, 0.0001, 11, 0.000000, 0.0001, 0.0001, 0.0001, $
249.794 13	100	249.795	5/2	0.0	1/2:	MI(+E2)	<1.0	0.0737 20	$\alpha(\mathbf{K})=0.0623 \ 10; \ \alpha(\mathbf{L})=0.0091 \ 11;$

 $^{135}_{55}$ Cs₈₀-2

			13	35 Xe β^- de	cay (9.	14 h) 197	4MeZV	(continued)	
$\gamma(^{135}Cs)$ (continued)									
E_{γ}^{\ddagger}	Ι _γ ‡#	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	δ	α [@]	Comments
358.39 <i>3</i>	0.245 9	608.186	5/2+	249.793	5/2+	M1.E2		0.0265 17	$\begin{array}{c} \alpha(\mathrm{M}) = 0.00188 \ 23; \\ \alpha(\mathrm{N}+) = 0.00045 \ 5 \\ \alpha(\mathrm{N}) = 0.00039 \ 5; \ \alpha(\mathrm{O}) = 5.3 \times 10^{-5} \\ 5; \ \alpha(\mathrm{P}) = 2.34 \times 10^{-6} \ 9 \\ \mathrm{Mult}, \delta; \ \alpha(\mathrm{K}) \exp = 0.061 \ 4 \\ (1972 \mathrm{Ac} 02); \ \mathrm{K/L} + \mathrm{M} + = 5.6 \ 10 \\ (1953 \mathrm{Gr} 07). \\ \alpha(\mathrm{K}) = 0.0224 \ 18; \ \alpha(\mathrm{L}) = 0.00325 \end{array}$
272 12 10	0.017.2	001 215	.,_	609 196	5/2+	,			$\begin{array}{l} \alpha(\mathbf{N}) = 0.00067 \ 4; \\ \alpha(\mathbf{N}+) = 0.000160 \ 7 \\ \alpha(\mathbf{N}) = 0.000141 \ 7; \\ \alpha(\mathbf{O}) = 1.90 \times 10^{-5} \ 4; \\ \alpha(\mathbf{P}) = 8.3 \times 10^{-7} \ 11 \\ \alpha(\mathbf{K}) \exp \leq 0.042 \ (1972 \mathrm{Ac}02). \end{array}$
407.99 2 454.2 2 573.32 9	0.017 3 0.398 <i>13</i> 0.0040 8 0.0053 8	981.315 407.989 1062.420 981.315		0.0 608.186 407.989	5/2+ 7/2+ 5/2+				<i>α</i> (K)exp≤0.025.
608.185 <i>15</i>	3.22 10	608.186	5/2+	0.0	7/2+	M1(+E2)	<0.5	0.00730 22	$\alpha(K)=0.00629 \ 20; \ \alpha(L)=0.000803 19; \ \alpha(M)=0.000164 \ 4; \alpha(N+)=3.97\times10^{-5} \ 10 \alpha(N)=3.46\times10^{-5} \ 9; \alpha(O)=4.84\times10^{-6} \ 13; \alpha(P)=2.41\times10^{-7} \ 9 \alpha(K)exp=0.0084 \ 22 \ (1972Ac02).$
654.432 16	0.050 2	1062.420		407.989					······································
731.52 2	0.061 3	981.315		249.793	5/2+				
812.63 3	0.078 2	1062.420		249.793	$5/2^{+}$				
1002.41 2	0.0045 9	1002.420		0.0	1/2				

[†] From ce data (1972Ac02).

[‡] Uncertainties quoted in 1974MeZV are statistical only. As suggested in the earlier evaluation (1975He12), 15 eV uncertainty to $E\gamma$'s and 3% uncertainty to $I\gamma$'s have been added in the values given here. [#] For absolute intensity per 100 decays, multiply by 0.90 *3*.

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

135 Xe β^- decay (9.14 h) 1974MeZV

Decay Scheme

¹³⁵₅₅Cs₈₀