¹³⁴Ba(n, γ) E=2 keV:arc 1993Ch21

Type Full Evaluation				Author	Citation	Literature Cutoff Date 22-Jan-2008	
		n Balraj Sing	h, Alexander	A. Rodionov And	NDS 109, 517 (2008)		
				135	Ba Levels		
E(level)	$J^{\pi \dagger}$	E(level)	J^{π}	E(level)	$J^{\pi \dagger}$		
0.0 [‡]	3/2+	910.24 [‡] 3	1/2+	1878.7 [‡] 8	(1/2,3/2)		
221.06 [‡] 9	$1/2^{+}$	980.21 [‡] <i>17</i>	3/2+,5/2+	1971.8 [‡] 8	(3/2,5/2)		
268.2	$11/2^{-}$	1213.61 <i>13</i>	(3/2)	1997.6 [‡] <i>13</i>	$(1/2)^{-}$		
480.51 [‡] 5	5/2+	1225.8 [‡] <i>3</i>	(3/2)	2078.8 [‡] 7	$(1/2^-, 3/2^-)$		
587.89 [‡] 5	3/2+	1584.69 [‡] 11	(3/2)-	2117.9 [‡] 16	(1/2,3/2)		
713.6 4	$(7/2^{-})$	1669.8 5	$(3/2^{-})$	2150.9 [‡] 8	(1/2,3/2)		
854.92 [‡] 9	3/2+	1794.5 [‡] 9	(1/2,3/2)	$(S(n)+2^{#})$	1/2,3/2-		
874.44 6	7/2+	1830.2 [‡] <i>13</i>	(1/2,3/2)				

[†] From 'Adopted Levels', except $J^{\pi}=1/2,3/2^-$ for s-, p-wave capture states. [‡] Fed by primary γ from $1/2,3/2^-$ resonances. [#] S(n)=6971.96 *10* (2003Au03).

$\gamma(^{135}\text{Ba})$

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger@}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
220.90 15	10.1 2	221.06	$1/2^{+}$	0.0	3/2+
(268.2)		268.2	$11/2^{-}$	0.0	3/2+
366.58 18	1.63 6	587.89	3/2+	221.06	$1/2^{+}$
374.20 13	1.37 6	854.92	$3/2^{+}$	480.51	5/2+
445.4 <i>4</i>	3.0 1	713.6	$(7/2^{-})$	268.2	$11/2^{-}$
480.48 5	10.3 2	480.51	5/2+	0.0	3/2+
587.91 5	6.44 7	587.89	3/2+	0.0	3/2+
633.86 9	1.83 8	854.92	3/2+	221.06	$1/2^{+}$
x720.74 10	0.7 3				
855.19 15	1.4 3	854.92	3/2+	0.0	3/2+
874.44 6	1.53 8	874.44	7/2+	0.0	3/2+
910.24 <i>3</i>	2.60 8	910.24	$1/2^{+}$	0.0	3/2+
956.23 11	1.2 2	1669.8	$(3/2^{-})$	713.6	$(7/2^{-})$
980.21 17	1.9 <i>3</i>	980.21	$3/2^+, 5/2^+$	0.0	3/2+
1213.63 <i>13</i>	2.2 3	1213.61	(3/2)	0.0	3/2+
1225.8 <i>3</i>	1.8 3	1225.8	(3/2)	0.0	3/2+
1363.62 6	2.7 2	1584.69	$(3/2)^{-}$	221.06	$1/2^{+}$
1582 <i>I</i>	0.4 [#] 4	1584.69	$(3/2)^{-}$	0.0	3/2+
^x 1874.4 <i>3</i>	1.9 <i>3</i>				
4822.5 7	1.0 2	(S(n)+2)	$1/2, 3/2^{-}$	2150.9	(1/2, 3/2)
4855.5 15	1.2 5	(S(n)+2)	1/2,3/2-	2117.9	(1/2, 3/2)
4894.6 6	≤0.7 [#]	(S(n)+2)	$1/2, 3/2^{-}$	2078.8	$(1/2^{-}, 3/2^{-})$
4975.8 12	0.74 11	(S(n)+2)	$1/2, 3/2^{-}$	1997.6	$(1/2)^{-}$
5001.6 7	0.27 16	(S(n)+2)	$1/2, 3/2^{-}$	1971.8	(3/2, 5/2)
5094.7 7	0.23 20	(S(n)+2)	$1/2, 3/2^{-}$	1878.7	(1/2, 3/2)
5143.2 12	0.10 10	(S(n)+2)	$1/2, 3/2^{-}$	1830.2	(1/2, 3/2)
5178.9 8	0.39 17	(S(n)+2)	$1/2, 3/2^{-}$	1794.5	(1/2, 3/2)
5388.8 <i>5</i>	1.94 <i>13</i>	(S(n)+2)	1/2,3/2-	1584.69	$(3/2)^{-}$
5747.1 9	0.29 9	(S(n)+2)	1/2,3/2-	1225.8	(3/2)

Continued on next page (footnotes at end of table)

¹³⁴Ba(n,γ) E=2 keV:arc 1993Ch21 (continued)

$\gamma(^{135}Ba)$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
5762.2 12	≤0.4 [#]	(S(n)+2)	1/2,3/2-	1213.61	(3/2)
5993.0 8	0.61 15	(S(n)+2)	$1/2, 3/2^{-}$	980.21	$3/2^+, 5/2^+$
6063.1 5	1.22 19	(S(n)+2)	$1/2, 3/2^{-}$	910.24	$1/2^{+}$
6119.7 <i>17</i>	1.13 14	(S(n)+2)	$1/2, 3/2^{-}$	854.92	3/2+
6385.5 9	1.57 16	(S(n)+2)	1/2,3/2-	587.89	3/2+
6491.8 8	0.46 6	(S(n)+2)	1/2,3/2-	480.51	5/2+
6752.1 10	1.0 3	(S(n)+2)	$1/2, 3/2^{-}$	221.06	$1/2^{+}$
6973.5 6	0.51 8	(S(n)+2)	1/2,3/2-	0.0	3/2+

[†] Weighted averages (1993Ch21) of the measurements at thermal, 102 eV, 2.0 and 24.3 keV, after correction of primary γ -ray energies from the filtered-beam experiments by 2.0 and 24.3 keV.

[±] Primary γ rays: $I\gamma(S(n)/E\gamma)^3$ per 100 n-captures. Secondary γ rays: $I\gamma$ per 100 n-captures.

[#] Line contaminated.

[@] Intensity per 100 neutron captures.

 $x \gamma$ ray not placed in level scheme.

¹³⁵₅₆Ba₇₉