¹³⁵La ε decay (19.5 h) 1971Ba18,1983Dz04

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Alexander A. Rodionov And Yuri L. Khazov	NDS 109, 517 (2008)	22-Jan-2008

Parent: ¹³⁵La: E=0.0; $J^{\pi}=5/2^+$; $T_{1/2}=19.5$ h 2; $Q(\varepsilon)=1200 \ 10$; $\%\varepsilon+\%\beta^+$ decay=100.0

The decay scheme is mainly as given by 1971Ba18.

2006Fe06: Measured E γ , I γ , $\gamma\gamma$ using YRAST ball with nine Compton- suppressed 'Clover' Ge detectors. Comparisons with interacting boson- fermion and shell-model calculations.

Others: 1971Be72 (also 1971Be77), 1965Mo05, 1965Gr06, 1958Mi88, 1953Wa30, 1948Ch03, 1943We02.

Total decay energy of 1198 keV 11 calculated (by RADLIST code) from level scheme agrees with the expected value of 1200 keV 10.

¹³⁵Ba Levels

E(level)	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0 220.955 14 268.218 20 480.525 14 587.817 15 855.000 14 874.524 18 909.63? 11 979.963 18 1007.99? 10	3/2 ⁺ 1/2 ⁺ 11/2 ⁻ 5/2 ⁺ 3/2 ⁺ 3/2 ⁺ 7/2 ⁺ 1/2 ⁺ 3/2 ⁺ ,5/2 ⁺	28.7 h 2 ≤10 ps	T _{1/2} : from $\gamma\gamma$ (t) (1971Be72).

[†] From 'Adopted Levels'.

 ε, β^+ radiations

 $\varepsilon/\beta^+=1.42\times10^4$ 5 from I(K x ray) (1983Dz04) and I(γ^{\pm}) (1971Ba18).

E(decay)	E(level)	$I\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	Comments
(192 10)	1007.99?		0.00038 11	9.35 14	εK = 0.800 4; εL = 0.155 3; εM += 0.0451 10
(220 10)	979.963		0.0065 11	8.25 9	$\varepsilon K = 0.809 \ 3; \ \varepsilon L = 0.1482 \ 21; \ \varepsilon M + = 0.0430 \ 7$
(290 10)	909.63?		< 0.00023	>10.0	εK = 0.8218 14; εL = 0.1385 11; εM += 0.0397 4
(325 10)	874.524		0.17 3	7.22 9	ε K= 0.8258 <i>11</i> ; ε L= 0.1355 8; ε M+= 0.0387 3
(345 10)	855.000		0.058 10	7.75 8	ε K= 0.8277 10; ε L= 0.1341 7; ε M+= 0.03825 23
(612 10)	587.817		0.146 23	7.88 7	ε K= 0.8402; ε L= 0.12463 20; ε M+= 0.03513 7
(719 10)	480.525		1.52 24	7.01 7	ε K= 0.8425; ε L= 0.12293 <i>14</i> ; ε M+= 0.03457 5
(1200 10)	0.0	0.007	98.1 <i>3</i>	5.66 1	av E β =90 5; ε K= 0.8474; ε L= 0.1192; ε M+= 0.03334
					$I(\varepsilon + \beta^+)$: from I(K x ray) and $I(\gamma^{\pm})$ intensities and intensity balance

in level scheme.

through γ^{\pm} .

 $I\beta^+$: $\varepsilon/\beta^+=1.42\times10^4$. β^+ feeding to g.s. is observed by 1971Ba18

[†] Absolute intensity per 100 decays.

 $\gamma(^{135}\text{Ba})$

I γ normalization: based on I(ε + β ⁺)=98.1% 3 to g.s..

 $\alpha(\exp)=\operatorname{Ice}/\operatorname{Iy}$ normalized to $\alpha(K)(220.94)=0.0951$ (M1+E2, $\delta=0.38$ 8). Ice: average of values of 1965Mo05 and 1983Dz04, normalized to ce(K)(220.9 γ)=100. Thus Ice's should be multiplied by 0.0951 to convert these to γ -ray intensity scale.

I(K α_2 x ray)=1412 7, I(K α_1 x ray)=2754 8, I(K β_1 x ray)=734.3 22, I(K β_2 x ray)=205.8 22 (1983Dz04); I(K x ray)=5010 150 (1971Ba18); I(γ^{\pm})=0.93 3 (1971Ba18) on the same scale as γ -ray intensities.

E_{γ}^{\ddagger}	$I_{\gamma}^{\dagger b}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{c}	Comments
107.32 9	0.068 3	587.817	3/2+	480.525	5/2+	E2(+M1)	>1.5	1.39 11	α (K)=0.93 5; α (L)=0.36 5; α (M)=0.079 11; α (N+)=0.019 3 α (N)=0.0164 23; α (O)=0.0022 3; α (P)=4.56×10 ⁻⁵ 7 Additional information 5.
124.89 [@] 7	0.010 3	979.963	3/2+,5/2+	855.000	3/2+	M1,E2		0.70 18	$\alpha(K)=0.53 \ 8; \ \alpha(L)=0.14 \ 8; \ \alpha(M)=0.029 \ 17; \ \alpha(N+)=0.007 \ 4 \ \alpha(N)=0.006 \ 4; \ \alpha(O)=0.0009 \ 5; \ \alpha(P)=2.95\times10^{-5} \ 5 \ Additional information \ 12. \ \alpha(K)=p=0.5 \ 2.$
220.94 2 *236.68 [@] 10	3.56 <i>4</i> 0.004 <i>2</i>	220.955	1/2+	0.0	3/2+	M1+E2	0.38 8	0.1110 <i>17</i>	$\begin{aligned} &\alpha(\mathbf{K})=0.0941 \ I4; \ \alpha(\mathbf{L})=0.0134 \ 5; \ \alpha(\mathbf{M})=0.00279 \ I0; \\ &\alpha(\mathbf{N}+)=0.000694 \ 23 \\ &\alpha(\mathbf{N})=0.000598 \ 21; \ \alpha(\mathbf{O})=9.0\times10^{-5} \ 3; \ \alpha(\mathbf{P})=6.03\times10^{-6} \ I0 \\ &\text{Additional information 2.} \\ &\delta: \ \text{from K/L=7.0 2.} \ \alpha(\mathbf{L})\exp=0.0136 \ 6. \\ &\mathbf{I}_{v}: \le 0.001 \ (1971Ba18). \end{aligned}$
$x^{242.12}$ <i>11</i>	0.004 2	190 525	5/2+	220.055	1/2+	(E 2)		0.0721	, ~(W)=0.0570.0; ~(L)=0.01120.16; ~(W)=0.00220.4;
239.38 4	0.29 2	480.323	5/2	220.935	1/2	(E2)		0.0721	
267.17 9 268.218 20	0.020 <i>3</i> <i>a</i>	855.000 268.218	$3/2^+$ 11/2 ⁻	587.817 0.0	$3/2^+$ $3/2^+$	M4		5.31	$\alpha(K)=3.79$ 6; $\alpha(L)=1.182$ 17; $\alpha(M)=0.267$ 4; $\alpha(N+)=0.0658$
			,		,				10 $\alpha(N)=0.0572 \ 8; \ \alpha(O)=0.00820 \ 12; \ \alpha(P)=0.000405 \ 6$ E_{γ} ,Mult.: from ¹³⁵ Ba IT decay.
287 ^{&d}		874.524	7/2+	587.817	3/2+				probably a very weak γ ray In the work of 2006Fe06.
322 [°]		909.63?	$1/2^{+}$	587.817	$3/2^{+}$				
366.84 2	2.10 2	587.817	3/2+	220.955	1/2+	M1(+E2)	<0.5	0.0283 6	$\alpha(K)=0.0243 \ 6; \ \alpha(L)=0.00323 \ 5; \ \alpha(M)=0.000665 \ 10; \ \alpha(N+)=0.0001669 \ 24 \ \alpha(N)=0.0001434 \ 21; \ \alpha(O)=2.19\times10^{-5} \ 3; \ \alpha(P)=1.57\times10^{-6} \ 5 \ Additional information \ 6. \ \alpha(K)exp=0.026 \ 2, \ K/L+M+=5.4 \ 8.$
374.46 2	1.21 4	855.000	3/2+	480.525	5/2+	M1+E2	-0.43 3	0.0266	$\alpha(K)=0.0227 4; \alpha(L)=0.00306 5; \alpha(M)=0.000631 9;$

				¹³⁵ La ε decay (19.5 h)		1971Ba18,198.	ued)		
γ ⁽¹³⁵ Ba) (continued)									
${\rm E}_{\gamma}$ ‡	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α^{c}	Comments
									$\alpha(N+)=0.0001581 \ 23$ $\alpha(N)=0.0001359 \ 19; \ \alpha(O)=2.07\times10^{-5} \ 3;$ $\alpha(P)=1.461\times10^{-6} \ 22$ $\delta: \text{ from } \gamma\gamma(\theta) \ (1971Be72).$ Additional information 8. $\alpha(K)\exp=0.023 \ 2, \ K/L+M+=5.0 \ 9.$
392.08 ^(@) 9 394.04 4	0.012 <i>3</i> 0.28 <i>2</i>	979.963 874.524	3/2 ⁺ ,5/2 ⁺ 7/2 ⁺	587.817 480.525	3/2 ⁺ 5/2 ⁺	[M1,E2]		0.0217 23	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0184\ 23;\ \alpha(\mathbf{L}) = 0.00265\ 5;\ \alpha(\mathbf{M}) = 0.000550\ 8;\\ &\alpha(\mathbf{N}+) = 0.0001368\ 25\\ &\alpha(\mathbf{N}) = 0.0001179\ 19;\ \alpha(\mathbf{O}) = 1.77 \times 10^{-5}\ 6;\\ &\alpha(\mathbf{P}) = 1.15 \times 10^{-6}\ 20 \end{aligned}$
420.12 [@] 10 480.51 2	0.017 <i>5</i> 100	1007.99? 480.525	5/2+	587.817 0.0	3/2 ⁺ 3/2 ⁺	M1+E2	+1.6 +5-4	0.0120 5	$\begin{aligned} &\alpha(\mathrm{K}) = 0.0102 \ 5; \ \alpha(\mathrm{L}) = 0.00146 \ 4; \ \alpha(\mathrm{M}) = 0.000304 \ 7; \\ &\alpha(\mathrm{N}+) = 7.54 \times 10^{-5} \ 18 \\ &\alpha(\mathrm{N}) = 6.51 \times 10^{-5} \ 15; \ \alpha(\mathrm{O}) = 9.7 \times 10^{-6} \ 3; \ \alpha(\mathrm{P}) = 6.3 \times 10^{-7} \\ &4 \end{aligned}$
499.36 [@] 6 587.83 2	0.012 <i>4</i> 7.29 <i>5</i>	979.963 587.817	3/2+,5/2+ 3/2+	480.525 0.0	5/2+ 3/2+	M1+E2	1.0 4	0.0076 <i>6</i>	Additional information 4. α (K)exp=0.0094 5, K/L+M+=5.5 1. δ : from K/L+M+ and $\gamma\gamma(\theta)$ (1971Be72). I _{γ} : \leq 0.0009 (1971Ba18). α (K)=0.0065 6; α (L)=0.00088 5; α (M)=0.000181 10; α (N+)=4.52×10 ⁻⁵ 25 α (N)=3.89×10 ⁻⁵ 21; α (O)=5.9×10 ⁻⁶ 4; α (P)=4.1×10 ⁻⁷ 4
634.05 2	1.36 4	855.000	3/2+	220.955	1/2+	M1(+E2)	<1.3	0.0067 7	Additional information 7. α (K)exp=0.0066 4, K/L+M+=5.4 5. α (K)=0.0057 6; α (L)=0.00075 6; α (M)=0.000155 11; α (N+)=3.9×10 ⁻⁵ 3 α (N)=3.34×10 ⁻⁵ 25; α (O)=5.1×10 ⁻⁶ 5; α (P)=3.7×10 ⁻⁷
x653.83 [@] 8 689 ^{&} 758.94 9 787.9 5 855.00 2	0.005 2 0.046 <i>10</i> 0.007 2 1.24 <i>4</i>	909.63? 979.963 1007.99? 855.000	1/2 ⁺ 3/2 ⁺ ,5/2 ⁺ 3/2 ⁺	220.955 220.955 220.955 0.0	1/2+ 1/2+ 1/2+ 3/2+	M1(+E2)	<0.5	0.00349 12	Additional information 9. $\alpha(K)\exp=0.0059 \ 7.$ Additional information 1. $\alpha(K)=0.00301 \ 10; \ \alpha(L)=0.000382 \ 12; \ \alpha(M)=7.85\times10^{-5} \ 23; \ \alpha(N+)=1.97\times10^{-5} \ 6 \ \alpha(N)=1.69\times10^{-5} \ 5; \ \alpha(O)=2.60\times10^{-6} \ 8; \ \alpha(P)=1.93\times10^{-7} \ 7 \ Additional information 10. \ \alpha(K)\exp=0.0042 \ 12.$

ω

¹³⁵La ε decay (19.5 h) 1971Ba18,1983Dz04 (continued)

γ (¹³⁵Ba) (continued)

E_{γ} ‡	$I_{\gamma}^{\dagger b}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult. [#]	α ^C	Comments
874.51 2	10.8 2	874.524	7/2+	0.0 3/2+	E2	0.00244	$\alpha(K)=0.00209 \ 3; \ \alpha(L)=0.000279 \ 4; \ \alpha(M)=5.74\times10^{-5} \ 8; \ \alpha(N+)=1.434\times10^{-5} \ 20 \ \alpha(N)=1.234\times10^{-5} \ 18; \ \alpha(O)=1.87\times10^{-6} \ 3; \ \alpha(P)=1.289\times10^{-7} \ 18 \ Additional information \ 11. \ \alpha(K)exp=0.0018 \ 2.$
909.63 [@] 11 979.98 2 1008.4 5 ^x 1130.89 [@] 11 ^x 1173.89 [@] 9	0.015 <i>4</i> 0.34 <i>2</i> 0.0011 <i>6</i> 0.024 <i>6</i> 0.050 <i>9</i>	909.63? 979.963 1007.99?	1/2 ⁺ 3/2 ⁺ ,5/2 ⁺	$\begin{array}{ccc} 0.0 & 3/2^+ \\ 0.0 & 3/2^+ \\ 0.0 & 3/2^+ \end{array}$			I _γ : <0.001 (1971Ba18).

 † Average of values of 1971Ba18 and 1983Dz04.

[‡] From 1971Ba18, except as noted; a calibration uncertainty of 15 eV is added in quadrature.

[#] From ce data.

[@] From 1983Dz04.

[&] From 2006Fe06.

4

^{*a*} Isomeric transition. I γ =0.00003 2 was given by 1971Ba18. They assume the population of 268.2 level presumably arises from the decay of higher energy levels.

^b For absolute intensity per 100 decays, multiply by 0.0152 24.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{135}_{56}\mathrm{Ba}_{79}$ -4

¹³⁵La ε decay (19.5 h) 1971Ba18,1983Dz04

