Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 103,1 (2004)	31-Jul-2004

 $Q(\beta^{-})=-1233.1 \ 9$; $S(n)=8552 \ 3$; $S(p)=9527 \ 5$; $Q(\alpha)=-3196.3 \ 9 \ 2012Wa38$ Note: Current evaluation has used the following Q record $-1233.3 \ 8 \ 8552 \ 3 \ 9527 \ 5 \ -3198.0 \ 21 \ 2003Au03$. $Q(2\beta^{-})=825.4 \ 9 \ (2003Au03).$

Double Beta Decay: With a $Q(2\beta^{-})=825.4$ 9, it is possible that ¹³⁴Xe decays to ¹³⁴Ba through $2\beta^{-}$. The table below lists

experimental T_{1/2} upper limits for different decays modes. Results from 1989Ba22, an earlier version of 1990Ba22, are not listed.

¹³⁴Xe Levels

Cross Reference (XREF) Flags

		A B C D	$^{134}I \beta$ $^{134}I \beta$ ^{134}Xe ^{134}Xe ^{134}Cs	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$T_{1/2}(2\beta^{-},0\nu) (2002Be11) \\ 2002Be74 \\ 1990Ba22 \\ T_{1/2}(2\beta^{-},0\nu) (2002Be11) \\ T_{1/2}(2\beta^{-},2\nu) (2\beta^{-},2\nu) (2\beta^{-}$	(0^+) : >5.8×10 : >7.8×10 : >7.8×10 : >2.6×10 : >2.6×10 : >1.1×10	to 0^+): 0^{22} y (90%) 0^{22} y (68%) to 2^+): 0^{22} y (90%) to 0^+): y (90%) to 0^+): y (\approx	5 confide 5 confide 5 confide 6 confide 100% con	ence) ence) ence) ence) nfidence)
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
0.0	0+	>5.8×10 ²² y	ABCDEFG	SH $\%2\beta^- \ge 0$ T _{1/2} : from 2002Be11, considered to be the most precised of all T _{1/2} measurements, see table above for details.
847.041 23	2+	2.08 ps 14	ABCDEFG	H μ =+0.708 <i>14</i> ; B(E2)↑=0.312 <i>21</i> J ^π : E2 γ to 0 ⁺ g.s. T _{1/2} : from Coul. ex. (2002Ja02). MOMM1.BE2 From Coul. ex. (2002Ja02).
1613.77 <i>3</i> 1636.2 <i>10</i>	$(2)^+$ (0^+)		A	H J^{π} : M1+E2 γ to 2 ⁺ , γ to 0 ⁺ g.s.
1731.17 3	4+	2.22 ps 14	ABC E G	H μ =+3.2 6 μ : From Coul. ex. (2002Ja02). J ^{π} : E3 γ from 7 ⁻ , E2 γ to 2 ⁺ . T ₁ μ ; from Coul. ex. (2002Ja02).
1919.60 <i>3</i> 1946.8 <i>7</i>	3+		A	H J^{π} : M1+E2 γ to 2 ⁺ , γ to 4 ⁺ but not γ to 0 ⁺ .
1965.5 5	7-	290 ms 17	BC	H %IT=100 J ^{π} : Systematics of N=80 nuclei, log <i>ft</i> =7.1 from (8 ⁻). T _{1/2} : from ¹³⁴ Xe IT decay (290 ms).
2082.0 <i>6</i> 2116.4 <i>10</i> 2136.60 21	(4^+) (2,3,4)		٨	H H H U In 1060Wi16, the level scheme was built with the 405 keV or and the
2150.00 21			n .	217-keV γ depopulating the same level. In 2001Ge07, however, the γ -rays in coincidence with the 405 γ are not in coincidence with the 217 γ . As a consequence, the adopted level scheme is built assuming they originate from 2 different levels, very close in energy.
2136.61 4	6+		A G	See comment for the level below. J^{π} : E2 γ to 4 ⁺ and systematics of N=80 Nuclei.

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

¹³⁴Xe Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XRE	F	Comments
2207.9 <i>10</i> 2262.7 <i>7</i> 2272.01 <i>4</i> 2294.2 <i>10</i>	(2 ⁺) 5 ⁺		A	H H H H	J^{π} : γ 's to 2 ⁺ and 0 ⁺ . J^{π} : M1(+E2) γ to 6 ⁺ and M1+E2 γ to 4 ⁺ .
2302.25 6 2352.97 <i>3</i> 2389.1 7	$(3,4^+)^{\ddagger}$ (4) ⁺ (1)		A A	H H H	J ^{π} : M1+E2 γ to 4 ⁺ , γ to 2 ⁺ .
2408.50 <i>4</i> 2417.4	(5^+) (1,2,3,4)		A	H H	J^{π} : (M1+E2) γ to 4 ⁺ , γ to 3 ⁺ .
2547.55 <i>4</i> 2560.6 <i>10</i> 2580.4 <i>10</i>	4 ⁺ ,5 ⁺ (2 ⁺)		A	H H H	J^{π} : M1,E2 γ to 3 ⁺ and γ to 6 ⁺ .
2588.46 3	$(4)^+$		Α	Н	J ^{π} : M1+E2 γ to 4 ⁺ , γ 's to 2 ⁺ .
2653.90 5	3 ⁽⁺⁾		Α	Н	J^{π} : γ 's to 2 ⁺ and 4 ⁺ .
2772.90 7 2867.38 3 2997.2 10 3025.2 15	$(3,4^+)^{\ddagger}$ $(4)^+$ (8^+) (10^+)	5 µs 1	A A	H H G G	J ^{π} : M1+E2 γ 's to 3 ⁺ and 4 ⁺ , γ 's to (5) ⁺ and 6 ⁺ . J ^{π} : γ to 6 ⁺ and systematics of N=80 Nuclei. J ^{π} : E2 γ to (8 ⁺) and systematics of N=80 Nuclei. T _{1/2} : from 2001Ge07.
3083.78 6	$(3,4^+)^{\ddagger}$		Α		
3255.74 <i>17</i> 3300.0 <i>3</i>	(3,4 ⁺) [‡]		A A		
3314.5 <i>3</i> 3360.47 <i>7</i>	$(3,4^+)^{\ddagger}$ $(3,4^+)^{\ddagger}$		A A		
3375.39 <i>5</i> 3477.0 <i>3</i>	(4,5)		A A		J^{π} : log <i>ft</i> =6.4 from (4) ⁺ , γ to 6 ⁺ .
3492.29 10	$(3,4^+)^+$		A		

[†] From least-squares fit to $E\gamma$, assuming $\Delta E\gamma = 1$ keV when unknown. [‡] log *ft*=6.3-7.8 in β^- decay from (4)⁺ parent, γ to 2⁺.

$\gamma(^{134}\text{Xe})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	\mathbf{J}_f^{π}	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
847.041	2+	847.025 25	100	0.0	0^{+}	E2		0.00237	$B(E2)(W.u.)=15.3 II \alpha(K)=0.00202 6; \alpha(I)=0.00026 I$
1613.77	(2)+	766.68 <i>4</i> 1613 80 <i>4</i>	96 <i>3</i> 100 5	847.041	2^+ 0 ⁺	M1+E2	-2.4 2	0.00315 3	$\alpha(K)=0.00202 \ 0, \ \alpha(L)=0.000207$ $\alpha(K)=0.00268 \ 2; \ \alpha(L)=0.00035$
1636.2	(0^{+})	789.22	100 5	847.041	2^+				
1731.17	4+	884.090 25	100	847.041	2+	E2		0.00215	B(E2)(W.u.)=11.6 8 α (K)=0.00183 6; α (L)=0.00024 1
1919.60	3+	188.47 4	5.1 4	1731.17	4+	M1,E2		0.17 3	$\alpha(K)=0.138 \ 17; \ \alpha(L)=0.025 \ 9; \ \alpha(M)=0.0051 \ 20; \ \alpha(N+)=0.0013 \ 5$
1946.8		1072.55 <i>3</i> 1099.77 1946.85	100 4	847.041 847.041 0.0	2^+ 2^+ 0^+	M1+E2	+0.16 2	0.00185	$\alpha(K)=0.00159; \alpha(L)=0.00020$
1965.5	7-	234.3 5	100	1731.17	4+	E3		0.429	B(E3)(W.u.)=0.071 5 α (K)=0.284 9; α (L)=0.114 4; α (M)=0.0245 8; α (N+)=0.00601 18 Additional information 1.
2082.0	(4 ⁺)	162.35 350.96 468 24		1919.60 1731.17 1613.77	3^+ 4^+ $(2)^+$				
2116.4	(2,3,4)	1269.39		847.041	2^{+}				
2136.60	< ±	217.0 2	100	1919.60	3+			0.0171	
2136.61	6-	405.451 20	100	1731.17	4-	E2		0.0164	$\alpha(K)=0.0138$ 5; $\alpha(L)=0.00213$ 7; $\alpha(M)=0.00043$ 1; $\alpha(N+)=0.00011$
2207.9 2262.7	(2+)	1360.9 1415.34 2262.9		847.041 847.041 0.0	2^+ 2^+ 0^+				
2272.01	5+	135.399 22	56 4	2136.61	6+	M1(+E2)		0.49 14	α (K)=0.38 8; α (L)=0.09 5; α (M)=0.018 10; α (N+)=0.0043 23
									See comment on 2136 keV level. This γ ray was seen in coincidence with both 405 keV γ and 217 keV γ , as a result, it could be a doublet of 2 γ -rays very close in energy.
		540.825 25	100.0 25	1731.17	4+	M1+E2	-1.92 10	0.00774 4	$\alpha(K)=0.00654 4; \alpha(L)=0.00090$
2294.2	$(2, 4^{+})$	1447.19	12 4	847.041	2+ 4+				
2302.25	(3,4)	570.75 <i>15</i> 1455.24 5	15 4	847.041	4 · 2+				
2352.97	$(4)^{+}$	433.35 3	39.1 <i>14</i>	1919.60	$\frac{2}{3^{+}}$	M1(+E2)	+0.08 6	0.0160	$\alpha(K)=0.0138; \alpha(L)=0.00176; \alpha(M)=0.00035$
		739.18.8	6.5.5	1613.77	$(2)^+$	[E2]	-0.70 3	0.00007-5	$\alpha(\mathbf{K}) = 0.00318 \ 3; \ \alpha(\mathbf{L}) = 0.00007 \ \alpha(\mathbf{K}) = 0.00278 \ 9; \ \alpha(\mathbf{L}) = 0.00037 \ 1$
2389.1	(1)	1542.17 2389.0	0.00	847.041 0.0	2 ⁺ 0 ⁺	[~=]		0.00027	
2408.50	(5 ⁺)	488.88 4	18.3 8	1919.60	3+	[E2]		0.0096	$\alpha(K)=0.00808$ 25; $\alpha(L)=0.00118$ 4; $\alpha(M)=0.00024$ 1

ω

Adopted Levels, Gammas (continued)

$\gamma(^{134}$ Xe) (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	$E_f = J_f^{\pi}$	Mult. [†]	δ^{\dagger}	α^{\ddagger}	Comments
2408.50	(5^+)	677.34 3	100 4	1731.17 4+	(M1+E2)	-0.32 2	0.00529 2	α(K)=0.00454 <i>l</i> ; α(L)=0.00057
2417.4 2547.55	(1,2,3,4) $4^+,5^+$	1370.34 139.03 <i>3</i>	34.1 <i>18</i>	2408.50 (5 ⁺) (M1,E2)		0.45 13	$\alpha(K)=0.35\ 7;\ \alpha(L)=0.08\ 4;\ \alpha(M)=0.016\ 9;$ $\alpha(N+)=0.0039\ 21$
		411.00 8	25.9 18	2136.61 6+			0.00 77 .0	
		627.96 3	100 6	$1919.60 3^+$	M1,E2		0.0057 8	$\alpha(K)=0.0049$ 7; $\alpha(L)=0.00063$ 7
2560.6	(2^{+})	010.30 / 152 124	28 3	1/51.17 4 2408 50 (5 ⁺)			
2580.4	(2)	1733.33		847.041 2+)			
2588.46	(4)+	235.471 26	31.9 <i>23</i>	2352.97 (4)	M1+(E2)		0.085 8	$\alpha(K)=0.071 4; \alpha(L)=0.012 3; \alpha(M)=0.0024 7; \alpha(N+)=0.00058 15$
		857.29 <i>3</i>	100 <i>3</i>	1731.17 4+	M1+E2	-0.64 10	0.00288 6	$\alpha(K) = 0.00247 5; \alpha(L) = 0.00031 1$
		974.67 4	71 3	1613.77 (2)	[E2]		0.00173	$\alpha(K)=0.00148$ 5; $\alpha(L)=0.00019$ 1
		1741.49 5	38.3 23	847.041 2+	[E2]			
2653.90	3 ⁽⁺⁾	922.6 <i>3</i>	2.6 6	1731.17 4+	[M1,E2]		0.0023 4	$\alpha(K)=0.0020 \ 3; \ \alpha(L)=0.00025 \ 4$
		1040.25 10	37 3	1613.77 (2)	(M1+E2)	-0.09 3	0.00199	$\alpha(K)=0.00171; \alpha(L)=0.00021$
0770.00	$(2, 4^{\pm})$	1806.84 4	100 4	847.041 2*	(M1+E2)	-0.10 3		
2772.90	(3,41)	1159.10 8	100 9	1613.// (2)				
2867 38	$(4)^+$	278 80 15	1 29 18	$2588.46 (4)^{+1}$	- [M1 F2]		0.0515.17	$\alpha(K) = 0.0433.4; \alpha(L) = 0.0066.11; \alpha(M) = 0.00135.24;$
2007.30	(4)	210.00 15	1.29 10	2500.40 (4)	[IVII,L2]		0.0515 17	$\alpha(N)=0.00354, \alpha(E)=0.000517, \alpha(N)=0.0015524, \alpha(N+)=0.000346$
		319.81 0	4.13	2547.55 4',			0.0127.13	$\alpha(K) = 0.0108$ 12; $\alpha(L) = 0.00148$ 5; $\alpha(M) = 0.00020$ 1
		438.92 0	20.2.8	$2408.30 (3^{\circ})$	$ [M1, \mathbb{E}2] $		0.0127 13 0.0005 11	$\alpha(\mathbf{K}) = 0.0108 \ I2; \ \alpha(\mathbf{L}) = 0.00148 \ J; \ \alpha(\mathbf{M}) = 0.00050 \ I$ $\alpha(\mathbf{K}) = 0.0080 \ I1; \ \alpha(\mathbf{L}) = 0.00108 \ Z$
		595 362 20	100 4	2332.97 (4) 2272.01 5 ⁺	M1+F2	-0.32.20	0.0093 11 0.0072 2	$\alpha(K) = 0.0060 \ 11, \ \alpha(L) = 0.00108 \ 7$ $\alpha(K) = 0.0062 \ 2; \ \alpha(L) = 0.00078 \ 2$
		730.74 4	16.5.7	$2136.61 6^+$	1011 112	0.52 20	0.0072 2	$u(\mathbf{R}) = 0.0002 2, u(\mathbf{E}) = 0.00070 2$
		947.86 4	36.1 12	$1919.60 3^+$	M1+E2	-0.4 1	0.00238 4	$\alpha(K)=0.00204 4; \alpha(L)=0.00025$
		1136.16 4	82 6	1731.17 4+	M1+E2	+0.48 2	0.00156 1	$\alpha(K)=0.00134 \ I; \ \alpha(L)=0.00016$
		2020.6 3	1.7 3	847.041 2+	[E2]			
2997.2	(8 ⁺)	860.6	100	2136.61 6+				
3025.2	(10^{+})	28 1		2997.2 (8+) E2			$B(E2)(W.u.)=1.6\times10^2 5$
3083.78	$(3,4^{+})$	1164.0 <i>3</i>	18 4	1919.60 3+				
		1352.62 8	54 <i>4</i>	1731.17 4+				
		1470.00 7	100 5	1613.77 (2)	-			
2255 74	$(2, 4^{\pm})$	2236.7 5	7.1 19	847.041 2				
3255.74	(3,41)	1336.0 2	100 20	1919.60 3				
3300.0		2409.0 3	33 / 100	$047.041 2^{+}$ 847.041 2 ⁺				
3314 5	(3.4^{+})	1395 1	57 15	1919 60 3+				
5511.5	(3,1)	2467.4 3	100 15	847.041 2+				
3360.47	$(3,4^{+})$	706.65 10	100 7	2653.90 3(+)				

From ENSDF

Adopted Levels, Gammas (continued)

$\gamma(^{134}$ Xe) (continued)

E_i (level)	\mathbf{J}_i^{π}	Eγ	Iγ	E_f	\mathbf{J}_f^{π}	E_i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	${ m J}_f^\pi$
3360.47	(3,4+)	1629.24 8	23 5	1731.17	4+	3375.39	(4,5)	1644.25 7	49 5	1731.17	4+
3375.39	(4,5)	2513.3 <i>3</i> 966.90 <i>5</i> 1103.18 <i>12</i> 1239.0 <i>3</i>	8.0 <i>10</i> 49 5 100 8 26 8	847.041 2408.50 2272.01 2136.61	2 ⁺ (5 ⁺) 5 ⁺ 6 ⁺	3477.0 3492.29	(3,4+)	162.48 [#] 7 2629.9 <i>3</i> 1190.03 <i>8</i> 2646 <i>2</i>	100 <i>10</i> 23.3 24 100 9 ≈5.4	3314.5 847.041 2302.25 847.041	(3,4 ⁺) 2 ⁺ (3,4 ⁺) 2 ⁺

[†] From 134 I β^- Decay (52.5 min), unless otherwise noted.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[#] Placement of transition in the level scheme is uncertain.

Legend

 $^{134}_{54} \mathrm{Xe}_{80}$