Adopted Levels, Gammas

	_			History						
	Туре			Author	Citation	Literature Cutoff Date				
Full Evaluation K. Abu Salee				m, Z. Wu, S. Chaudhury, D, Bernard, E. Browne	ENSDF	31-Jan-2011				
$Q(\beta^-)=8515$ Note: Curren $Q(\beta^-)=839\times$	4; $S(n)=31$ nt evaluation 10^1 4; $S(n)$	169 4; S(p n has use)=329×10	$(p)=10435 \ 3; (0)$ d the followin $(p)^{1} \ 5; \ S(p)=10$	$Q(\alpha) = -6.56 \times 10^3 \ 4 \ 2012$ Wa38 ng Q record. $61 \times 10^1 \ 5; \ Q(\alpha) = -670 \times 10^1 \ 6 \ 2009$ AuZZ,2003	Au03					
				¹³⁴ Sb Levels						
				Cross Reference (XREF) Flags						
				A 134 Sn β^- decay B 135 Sn β^- n decay C 248 Cm SF decay						
E(level) [†]	$E(\text{level})^{\dagger}$ J ^{π} T _{1/2} XREF Comments									
0.0	(0 ⁻)	0.78 s	6 AB	%β ⁻ =100						
	(1 -) ⁺			J ^{π} : Member of (π g _{7/2})(ν f _{7/2}) multiplet, feeds m log $ft \approx 5.2$, whereas (2 ⁺) states are fed with log T _{1/2} : weighted average of 0.85 s 10 (1972Ke21)	ainly 0^+ in g $f^{lu}t\approx 9$. and 0.75 s	¹³⁴ Te daughter with 7 (1990Fo03).				
13.0 4 279 1	(1) ⁺ (7 ⁻)	AB 10.07 s 5 BC		$%\beta^-=100; ~%\beta^-n=0.088 ~4~(1993Ru01)$ Additional information 1. E(level): From ¹³⁵ Sn β ⁻ n decay (2005Sh23). $%\beta^-n$ from 1993Ru01. Others: 0.120% $8~(1980I ~13~(1968To19)).$ T _{1/2} : from 1993Ru01. Others: 11.1 s $8~(1968De ~(1972Ke21)~10.2 s ~3~(1974Ge20)~10.3 s ~4~(1972Ke21)~10.3 s ~4~(1972Ke21)~10~(1972Ke21)$	Lu04), 0.08 18), 11.3 s	4% 20 (1977Ru04), 0.055% 3 (1968To19), 10.3 s 5				
		0		10.5 s 3 (1982He06). J ^{π} : Member of (π g _{7/2})(ν f _{7/2}) multiplet, the (7 ⁻) Shell Model calculations.	assignmer	nt is made based on				
331.1 3	$(2^{-})^{\ddagger}$	<1 ^{&} ns	AB							
384.0 4	$(3^{-})^{+}$		AB	I^{π} , 114a, from A^{π} , 167a, row to IDI-7 ⁻						
555.0 5	$(3^{-})^{\ddagger}$		В	The 171 γ depopulating this level has been seen only in ²⁴⁸ Cm SF decay, however, placement in the level scheme is done by 2002Ko53 based on coincidence betw 171.3 γ and 52.8 γ , 317.7 γ .						
617 <i>1</i>	(6 ⁻)	0	В	J^{π} : γ rays to $J^{\pi}=5^{-}$ and 7^{-} .						
885.0 4	(1 ⁻) [‡]	<1 ^{&} ns	AB							
935.0 <i>3</i> 1331.0? <i>5</i>	$(2^{-})^{+}$ (2^{-})		AB A	J ^{π} : 2 ⁻ assignment consistent with probable M1 γ value for the decay and weak population to th decays.	v decay to 2° e 3^{-} state a	331 and 383 levels; log <i>ft</i> at 384 in both β - and γ				
1352 <i>1</i> 1385.0 <i>5</i> 1900 0 <i>4</i>	$(8^{-})^{\#}$ (5^{-}) (1^{-})^{@}		C B A	Configuration= $((\pi g_{7/2})+(\nu h_{9/2}))$. J ^{π} : γ rays to J ^{π} =4 ⁻ and J ^{π} =6 ⁻ .						
2170.0 4	$(1^{-})^{@}$		A							
2405 1	(9 ⁺) [#]		С	Configuration=((π h _{11/2})+(ν f _{7/2})).						
2429.8 4	(1 ⁻) [@]		Α	. 7						
2713 <i>I</i> $(10^+)^{\#}$ C Configuration= $((\pi g_{7/2})+(\nu i_{13/2})).$										
3775 50	$\begin{array}{rcl} 3775 \ 50 & (1^{+}) & <1^{\&} \ \text{ns} & A & \ \% n = 100 \ (1990 \text{Fo03}) \\ \text{Additional information 2.} \end{array}$									

Adopted Levels, Gammas (continued)

¹³⁴Sb Levels (continued)

E(level) [†]	J^{π}	XREF	Comments				
			J ^π : Based on strong neutron peak in ¹³⁴ Sn β ⁻ n decay this level is presumed to be fed by an allowed transition in ¹³⁴ Sn β decay (1990Fo03). Proposed configuration=((π h _{11/2})+(ν h _{9/2})).				
4373.2 15	$(10^{-})^{\#}$	С					
4704.2 16	(11 ⁻) [#]	С					
4796.2 14	$(12^{-})^{\#}$	С					
4849.2 14	$(12^{-})^{#}$	С					
5045.2 15	(13 ⁻) [#]	С					
5324 2	(14 ⁻) [#]	С					

[†] From least-squares fit to $E\gamma$ assuming $\Delta E=1$ keV, unless otherwise specified. [‡] Following 2002Ko53 in ¹³⁴Sn β^- decay, from $\gamma\gamma$ coincidences, I γ pattern, comparisons with Shell Model calculations. [#] As given in 2001Fo02, from $\gamma\gamma$ coincidences, γ intensity pattern, Shell Model calculations. [@] From log *ft* and decay of γ ray decay only to levels with $J^{\pi}=1^-$ or $J^{\pi}=2^-$. [&] From ¹³⁴Sn β^- decay.

γ (¹³⁴ Sb))
$\gamma(^{154}\text{Sb})$)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	E_f	\mathbf{J}_f^{π}	Comments
13.0	(1 ⁻)	(13.0)	100	0.0	(0 ⁻)	xref=AB
331.1	(2 ⁻)	318.0 [†] 5	100 [†] 1	13.0	(1 ⁻)	
		331.0 [†] 5	2.6 [†] 3	0.0	(0 ⁻)	
384.0	(3 ⁻)	53.0 [†] 5	100 [†] 38	331.1	(2 ⁻)	
		371.0 5	64 [†] 5	13.0	(1^{-})	
441	(5 ⁻)	162.0 [‡] 5	100 [‡]	279	(7^{-})	
555.0	(4 ⁻)	114.0 [‡] 5	17 [‡] 6	441	(5 ⁻)	
		171.0 [‡] 5	100 [‡] 11	384.0	(3 ⁻)	
617	(6 ⁻)	176.0 [‡] 5	27 5	441	(5 ⁻)	
		338.0 [‡] 5	100 [‡] 3	279	(7^{-})	
885.0	(1^{-})	554.0 5	38 1	331.1	(2^{-})	
		872.0 5	100 1	13.0	(1 ⁻)	
		885.0 [†] 5	24.1 2	0.0	(0 ⁻)	
935.0	(2 ⁻)	551.0 5	113 [†] <i>13</i>	384.0	(3 ⁻)	
		604.0^{\dagger} 5	48 [†] 4	331.1	(2 ⁻)	
		922.0 5	100 2	13.0	(1 ⁻)	
		935.0 [†] 5	3.9 11	0.0	(0 ⁻)	
1331.0?	(2 ⁻)	947.0 ^{T&} 5	100 [†] 75	384.0	(3 ⁻)	E_{γ} : Alternatively F947 could be placed depopulating a 1278 keV level in ¹³⁴ Sb. Placement from 1331 level suggested by 2005Sh23 is based upon observation of a 1000 and a anorga sume
		1000 078 5	50 50	331.1	(2^{-})	E : Observed as weak peak in laser on singles spectrum only
1352	(8^{-})	1072 5 [#]	100#	279	(2^{-})	L_{γ} . Observed as weak peak in laser-on singles spectrum only.
1385.0	(5^{-})	768 0 5	$100^{\ddagger} 17$	617	(6^{-})	
1505.0	(5)	830.0 [‡] 5	42 21	555.0	(4^{-})	
1900.0	(1-)	965.0 [†] 5	45 [†] 3	935.0	(2 ⁻)	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

 $\gamma(^{134}\text{Sb})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.
1900.0	(1^{-})	1015.0 [†] 5	100 [†] 9	885.0	(1^{-})	
		1569.0 [†] 5	54 [†] 8	331.1	(2^{-})	
2170.0	(1 ⁻)	1235.0 [†] 5	90 [†] 9	935.0	(2^{-})	
		1285.0 [†] 5	100 [†] 22	885.0	(1 ⁻)	
		1839.0 [†] 5	56 [†] 22	331.1	(2 ⁻)	
2405	(9+)	1053 [@]		1352	(8-)	
		2126 [@]		279	(7 ⁻)	
2429.8	(1 ⁻)	1495.0 [†] 5	100 [†] 4	935.0	(2 ⁻)	
		1545.0 [†] 5	49 [†] 4	885.0	(1 ⁻)	
		2098.0 [†] 5	33† 7	331.1	(2 ⁻)	
		2417.0 [†] 5	$60^{\dagger} 5$	13.0	(1 ⁻)	
2713	(10^{+})	307.5 [#]	100 [#]	2405	(9 ⁺)	D
		1361.5 [#]	13 [#] 3	1352	(8-)	
		2434.5 [#]	56 [#] 12	279	(7 ⁻)	
4373.2	(10 ⁻)	1968 [@]		2405	(9 ⁺)	
4704.2	(11 ⁻)	1991 [@]		2713	(10^{+})	
4796.2	(12 ⁻)	423 [@]		4373.2	(10 ⁻)	
		2083 [@]		2713	(10^{+})	
		2391 [@]		2405	(9^{+})	
4849.2	(12 ⁻)	2136 [@]		2713	(10^{+})	
		2444 [@]		2405	(9^{+})	
5045.2	(13 ⁻)	196 [@]		4849.2	(12^{-})	
		249 [@]		4796.2	(12 ⁻)	
5324	(14 ⁻)	279 [@]		5045.2	(13-)	

[†] From ¹³⁴Sn β⁻ decay.
[‡] From ¹³⁵Sn β⁻n decay.
[#] From ²⁴⁸Cm SF decay.
[@] From ²⁴⁸Cm SF decay.
[&] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{134}_{51}{\rm Sb}_{83}$