(HI,xnγ) **1991Wa09**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 103, 1 (2004)	31-Jul-2004

1991Wa09: 92 Mo(46 Ti,3pn γ) E=210 MeV; 64 Zn(74 Se,3pn γ) E=290 MeV, up to 6 Compton-suppressed Ge detectors. 2002La09: 105 Pd(35 Cl,2p4n γ) E=173 MeV, Gammasphere plus Microball arrays, measured Quadrupole moments using DSAM.

¹³⁴Pm Levels

The partial level scheme is that proposed by 1991Wa09 on the basis of coincidence data. The spin and parity assignments are based on transition multipolarities and theoretical predictions (bandhead spins assumed to be correct).

E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}	E(level)	J^{π}
0.0+y [†]	(7 ⁻)	965.9+y [‡] 3	(12^{+})	2840.6+y [‡] 4	(17^{+})	734.3+z [#] 4	(13^{+})
106.19+y [†] 18	(8 ⁻)	1167.3+y [†] 3	(13 ⁻)	2927.6+y [†] 5	(18 ⁻)	1256.1+z [#] 4	(15 ⁺)
215.02+y [†] 20	(9 ⁻)	1316.9+y [‡] 3	(13 ⁺)	3291.3+y [‡] 4	(18^{+})	1907.1+z [#] 5	(17^{+})
272.00+y [‡] 20	(8 ⁺)	1497.5+y [†] 3	(14 ⁻)	3299.3+y [†] 4	(19 ⁻)	2662.8+z [#] 5	(19 ⁺)
353.9+y [‡] 3	(9 ⁺)	1622.0+y [‡] 4	(14^{+})	3702.0+y [‡] 5	(19 ⁺)	3494.2+z [#] 6	(21^+)
386.65+y [†] 22	(10 ⁻)	1838.9+y [†] <i>3</i>	(15 ⁻)	4224.6+y [‡] 5	(20^{+})	4369.6+z [#] 6	(23 ⁺)
485.0+y [‡] 3	(10 ⁺)	2029.3+y [‡] 4	(15^{+})	5198.6+y [‡] 6	(22^{+})	5299.2+z [#] 6	(25^+)
605.63+y [†] 23	(11 ⁻)	2192.2+y [†] 4	(16 ⁻)	$0.0+z^{@}$		6318.9+z [#] 7	(27^{+})
735.9+y [‡] 3	(11^{+})	2410.4+y [‡] 4	(16^{+})	127.10+z [#] 20	(9 ⁺)	7438.9+z [#] 12	(29 ⁺)
871.75+y [†] 25	(12 ⁻)	2550.9+y [†] 4	(17 ⁻)	359.3+z [#] 3	(11^{+})		

[†] Band(A): negative-parity band built on Configuration= $((\pi g_{7/2})(\nu h_{11/2}))$.

[‡] Band(B): positive-parity band built on Configuration=((π N11/2)(ν h_{11/2})).

[#] Band(C): doubly-decoupled band built on Configuration=((π h_{11/2})(ν h_{9/2})), transition Quadrupole Moment=3.9 2 (2002La09), other: 5.3 9 (1991Wa09).

 $\gamma(^{134}\underline{Pm})$

[@] y>145+Y; unobserved γ from (9⁺), 127.1+Z to (8⁺), 272.0+Y level.

E_{γ}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [†]	α #	$I_{(\gamma+ce)}$ ‡	Comments
82.0 2	353.9+y	(9 ⁺)	272.00+y	(8 ⁺)	(M1)	2.79	90 9	α (K)= 2.364; α (L)= 0.333; α (M)= 0.0707; α (N+)=0.02005
106.2 2	106.19+y	(8 ⁻)	0.0+y	(7 ⁻)	(M1)	1.323	89 9	α (K)= 1.122; α (L)= 0.1577; α (M)= 0.0335; α (N+)=0.00961
108.8 2	215.02+y	(9 ⁻)	106.19+y	(8 ⁻)	(M1)	1.235	62 6	α (K)= 1.048; α (L)= 0.1471; α (M)= 0.0313; α (N+)=0.00897
127.1 2	127.10+z	(9^{+})	0.0+z		D		<18	
131.1 <i>3</i>	485.0+y	(10 ⁺)	353.9+y	(9+)	(M1)	0.729	79 8	α (K)= 0.619; α (L)= 0.0865; α (M)=0.01835; α (N+)=0.00527
171.6 2	386.65+y	(10 ⁻)	215.02+y	(9 ⁻)	(M1)	0.343	36 4	α (K)= 0.291; α (L)= 0.0405; α (M)=0.00859; α (N+)=0.00245
212.9 2	485.0+y	(10 ⁺)	272.00+y	(8+)	(E2)	0.1654	5.5 7	α (K)= 0.1224; α (L)= 0.0335; α (M)=0.00745; α (N+)=0.00201
215.0 3	215.02+y	(9-)	0.0+y	(7^{-})			<5	
219.0 2	605.63+y	(11 ⁻)	386.65+y	(10 ⁻)	(M1)	0.1756	15.8 16	α (K)= 0.1494; α (L)=0.02063; α (M)=0.00438; α (N+)=0.00123
229.9 2	965.9+y	(12 ⁺)	735.9+y	(11 ⁺)	(M1)	0.1539	25 3	$\alpha(K) = 0.1309; \ \alpha(L) = 0.01806; \ \alpha(M) = 0.00383; \ \alpha(N+) = 0.00108$

Continued on next page (footnotes at end of table)

(HI,xnγ) **1991Wa09** (continued)

γ ⁽¹³⁴Pm) (continued)</sup>

Eγ	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [†]	α #	$I_{(\gamma+ce)}$ ‡	Comments
232.2 2	359.3+z	(11+)	127.10+z	(9+)	(E2)	0.1241	26 3	$\alpha(K) = 0.0935; \ \alpha(L) = 0.02386;$ $\alpha(M) = 0.00529; \ \alpha(N+-) = 0.00143$
250.9 2	735.9+y	(11 ⁺)	485.0+y	(10 ⁺)	(M1)	0.1215	56 6	$\alpha(K) = 0.1034; \ \alpha(L) = 0.01424;$ $\alpha(K) = 0.003202; \ \alpha(L) = 0.01424;$
266.1 2	871.75+y	(12 ⁻)	605.63+y	(11 ⁻)	(M1)	0.1038	10.5 11	$\alpha(M)=0.00302; \alpha(N+)=0.00085$ $\alpha(K)=0.0883; \alpha(L)=0.01215;$
272.0 2	272.00+y	(8 ⁺)	0.0+y	(7 ⁻)	(E1)	0.01823	100 10	$\alpha(M)=0.00258; \alpha(N+)=0.00072$ $\alpha(K)=0.01558; \alpha(L)=0.00209;$
280.5 2	386.65+y	(10 ⁻)	106.19+y	(8 ⁻)	(E2)	0.0674	10.2 10	α (M)=0.00044; α (N+)=0.00012 α (K)= 0.0524; α (L)=0.01171;
295.7 2	1167.3+y	(13 ⁻)	871.75+y	(12 ⁻)	(M1)	0.0783	8.0 10	α (M)=0.00258; α (N+)=0.00069 α (K)= 0.0667; α (L)=0.00915;
305.1 2	1622.0+y	(14 ⁺)	1316.9+y	(13 ⁺)	(M1)	0.0721	8.4 10	$\alpha(M)=0.00194; \ \alpha(N+)=0.00054$ $\alpha(K)=0.0614; \ \alpha(L)=0.00842;$
330.3 <i>3</i>	1497.5+y	(14 ⁻)	1167.3+y	(13 ⁻)	(M1)	0.0585	6.4 7	α (M)=0.00179; α (N+)=0.00050 α (K)= 0.0499; α (L)=0.00682;
341.4 2	1838.9+y	(15 ⁻)	1497.5+y	(14 ⁻)	(M1)	0.0537	3.0 5	α (M)=0.00145; α (N+)=0.00040 α (K)= 0.0457; α (L)=0.00625;
350.8 2	1316.9+y	(13 ⁺)	965.9+y	(12 ⁺)	(M1)	0.0500	17.8 <i>18</i>	α (M)=0.00133; α (N+)=0.00037 α (K)= 0.0426; α (L)=0.00582;
252 5 2	2102.2		1020.0	(15-)			2	α (M)=0.00123; α (N+)=0.00034
353.5 <i>3</i> 375.0 <i>2</i>	2192.2+y 734.3+z	(16) (13^+)	1838.9+y 359.3+z	(15) (11^+)	(E2)	0.0277	<3 23 2	$\alpha(K)=0.02234; \alpha(L)=0.00423;$
381.1 2	2410.4+y	(16 ⁺)	2029.3+y	(15 ⁺)			5.9 7	$\alpha(M) = 0.00092; \ \alpha(N+) = 0.00023$ $\alpha(K) = 0.0344; \ \alpha(L) = 0.00468;$ $\alpha(M) = 0.00000; \ \alpha(N+) = 0.00027$
382.0 <i>3</i>	735.9+y	(11 ⁺)	353.9+y	(9 ⁺)	(E2)	0.0263	10.0 10	$\alpha(M) = 0.00099, \alpha(N+) = 0.00027$ $\alpha(K) = 0.02120; \alpha(L) = 0.00398;$ $\alpha(M) = 0.00097; \alpha(N+) = 0.00023$
390.6 2	605.63+y	(11 ⁻)	215.02+y	(9 ⁻)	(E2)	0.02462	16.0 <i>16</i>	$\alpha(M) = 0.00087, \ \alpha(N+) = 0.00023$ $\alpha(K) = 0.01991; \ \alpha(L) = 0.00370; \ \alpha(M) = 0.00080; \ \alpha(N+) = 0.00022$
407.2 2	2029.3+y	(15 ⁺)	1622.0+y	(14 ⁺)	(M1)	0.0340	6.5 7	$\alpha(M) = 0.00080; \ \alpha(N+) = 0.00022$ $\alpha(K) = 0.0290; \ \alpha(L) = 0.00394;$ $\alpha(M) = 0.00082; \ \alpha(N+) = 0.00022$
430.1 2	2840.6+v	(17^{+})	2410.4+v	(16^{+})			4.8 6	$\alpha(M)=0.00083; \alpha(N+)=0.00023$
450.0 3	3291.3+y	(18^+)	2840.6+y	(17^+)			3.1 5	
480.9 2	965.9+y	(12^+)	485.0+y	(10+)	(E2)	0.01369	14.4 15	$\alpha(K)=0.01125; \ \alpha(L)=0.00191; \ \alpha(M)=0.00041; \ \alpha(M)=0.00041; \ \alpha(M)=0.00011$
485.1 2	871.75+y	(12 ⁻)	386.65+y	(10 ⁻)	(E2)	0.01337	14.9 <i>15</i>	$\alpha(M) = 0.00041, \alpha(N+) = 0.00011$ $\alpha(K) = 0.01100; \alpha(L) = 0.00186;$ $\alpha(M) = 0.00040; \alpha(N+) = 0.00011$
521.8.2	1256.1+z	(15^{+})	734.3 + z	(13^{+})	(E2)	0.01107	21.2	$\alpha(K)=0.00000; \alpha(L)=0.00149$
561.7 2	1167.3+v	(13^{-})	605.63+v	(11^{-})	(E2)	0.00913	21.5 22	$\alpha(K)=0.00753; \alpha(L)=0.00121$
581.1 2	1316.9+v	(13^{+})	735.9+v	(11^{+})	(E2)	0.00837	32 3	$\alpha(K)=0.00691; \alpha(L)=0.00110$
625.6 2	1497.5 + v	(14^{-})	871.75+v	(12^{-})	(E2)	0.00696	17.2 17	$\alpha(K) = 0.00577; \alpha(L) = 0.00089$
651.0 2	1907.1 + z	(17^{+})	1256.1+z	(15^+)	(E2)	0.00631	16.0 16	$\alpha(K) = 0.00524; \alpha(L) = 0.00080$
656.2.2	1622.0+v	(14^+)	965.9+v	(12^+)	(E2)	0.00619	29.3	$\alpha(K) = 0.00514; \alpha(L) = 0.00079$
671.7.2	1838.9 + v	(15^{-})	1167.3+v	(13^{-})	(E2)	0.00585	16.8.17	$\alpha(\mathbf{K}) = 0.00486; \ \alpha(\mathbf{L}) = 0.00074$
694.6.2	2192.2 + y	(16^{-})	1497.5 + v	(12^{-})	(E2)	0.00539	15.8 16	$\alpha(\mathbf{K}) = 0.00449; \ \alpha(\mathbf{L}) = 0.00068$
712.0 2	2550.9 + v	(17^{-})	1838.9+v	(15^{-})	(E2)	0.00509	16.0 16	$\alpha(K)=0.00424; \alpha(L)=0.00064$
712.4 2	2029.3 + y	(15^+)	1316.9+v	(13^+)	(E2)	0.00508	17.3 17	$\alpha(K) = 0.00423; \alpha(L) = 0.00063$
735.4.3	2927.6 + v	(18^{-})	2192.2 + v	(16^{-})	(E2)	0.00471	8.4.8	$\alpha(\mathbf{K}) = 0.00393; \ \alpha(\mathbf{L}) = 0.00058$
748.4 2	3299.3 + v	(19^{-})	2550.9 + v	(17^{-})	(E2)	0.00452	7.2.8	$\alpha(K) = 0.00378; \alpha(L) = 0.00056$
755.7 2	2662.8+z	(19^+)	1907.1 + z	(17^+)	(E2)	0.00442	12.4 12	$\alpha(K) = 0.00370; \alpha(L) = 0.00055$
788.5 2	2410.4+v	(16^{+})	1622.0+v	(14^{+})	(E2)	0.00401	17.2 17	$\alpha(K)=0.00336; \alpha(L)=0.00049$
811.1 2	2840.6+v	(17^+)	2029.3+v	(15^+)	()		13.3 13	
831.4 2	3494.2+z	(21^+)	2662.8+7	(19^+)	(E2)	0.00356	9.1 10	$\alpha(K)=0.00298; \alpha(L)=0.00043$
861.4.3	3702.0+v	(19^+)	2840.6+v	(17^+)	()		<10	
875.4 2	4369.6+z	(23^{+})	3494.2+7	(21^+)	(E2)	0.00317	7.3 8	$\alpha(K)=0.00266; \alpha(L)=0.00038$
881.2 2	3291.3+y	(18 ⁺)	2410.4+y	(16 ⁺)	(E2)	0.00312	12.8 13	$\alpha(K)=0.00262; \alpha(L)=0.00037$

Continued on next page (footnotes at end of table)

1991Wa09 (continued) $(HI,xn\gamma)$

γ ⁽¹³⁴Pm) (continued)</sup>

Eγ	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult. [†]	α #	$I_{(\gamma+ce)}$ ‡	Comments
929.6 2	5299.2+z	(25^+)	4369.6+z (2	23+)	(E2)	0.00278	5.8 7	$\alpha(K)=0.00234; \ \alpha(L)=0.00033$
933.3 2	4224.6+y	(20^{+})	3291.3+y (1	18+)	(E2)	0.00275	11.0 14	α (K)=0.00232; α (L)=0.00033
974.0 <i>3</i>	5198.6+y	(22^{+})	4224.6+y (2	$20^{+})$			7.4 8	
1019.7 <i>3</i>	6318.9+z	(27^{+})	5299.2+z (2	25+)	(E2)	0.00228	3.7 7	$\alpha(K)=0.00192; \ \alpha(L)=0.00027$
1120 1	7438.9+z	(29^+)	6318.9+z (2	27+)			<3	

[†] From angular correlation data, assuming that D is M1 and Q is E2 for in-band transitions. [‡] For ${}^{92}Mo({}^{46}Ti,3pn\gamma)$.

[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{134}_{61} Pm_{73}$

(HI,xnγ) 1991Wa09

 $^{134}_{\ 61} Pm_{73}$

(HI,xnγ) 1991Wa09 (continued)

 $^{134}_{61} Pm_{73}$