		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 103,1 (2004)	31-Jul-2004

 $Q(\beta^{-}) = -5.36 \times 10^{3} \text{ syst}; S(n) = 9.40 \times 10^{3} \text{ } 8; S(p) = 1.70 \times 10^{3} \text{ } 8; Q(\alpha) = 2.01 \times 10^{3} \text{ } 9$ 2012Wa38 Note: Current evaluation has used the following Q record -5232.0 SY9.40E+3 8 1700 70 2010 90 2003Au03. $\Delta Q(\beta^{-}) = 204$ (2003Au03).

¹³⁴Pm Levels

Bands: as given by 1991Wa09 and based on theoretical predictions.

Cross Reference (XREF) Flags

A 134 Sm ε decay **B** (HI,xn γ)

E(level)	Jπ&	T _{1/2}	XREF	Comments
0.0^{\dagger}	(2 ⁺)	≈5 s	AB	$%ε+%β^+=100$ J ^π : ε decay to 2 ⁺ , (3 ⁺); systematics. T _{1/2} : from 1988KeZX. T _{1/2} =3 to 20 s (1989Vi04).
0.0+x [†]	(5 ⁺)	22 s 1		%ε+%β ⁺ =100 No IT decay observed. J ^π : ε decay to 4 ⁺ , 6 ⁺ ; systematics. T _{1/2} : weighted average of 24 s 2 (1977Bo02), 21 s <i>I</i> (1988BeYG), and 23 s 2 (1990Ko25).
112.30 18			Α	
118.90 13	(1^{+})		Α	J^{π} : log $ft \approx 4.2$ from 0 ⁺ .
229.11 14			Α	
280.03 15			A	
304.71 23 709 7 7			A A	
418.93 19			A	
498.96 19			A	
537.4 4			Α	
887.4 4			Α	
0.0+y [‡]	(7 ⁻)		В	J^{π} : theoretical predictions, configuration=((π g _{7/2})(ν h _{11/2})).
106.19+y [‡] 18	(8 ⁻)		В	
215.02+y [‡] 20	(9 ⁻)		В	
272.00+y [#] 20	(8+)		В	J ^{π} : systematics and theoretical predictions, configuration=((π h _{11/2})(ν h _{11/2})).
353.9+y [#] 3	(9 ⁺)		В	
386.65+y [‡] 22	(10 ⁻)		В	
485.0+y [#] 3	(10^{+})		В	
605.63+y [‡] 23	(11 ⁻)		В	
735.9+y [#] 3	(11^{+})		В	
871.75+y [‡] 25	(12 ⁻)		В	
965.9+y [#] 3	(12^{+})		В	
1167.3+y [‡] 3	(13-)		В	
1316.9+y [#] 3	(13 ⁺)		В	
1497.5+y [‡] 3	(14 ⁻)		В	
1622.0+y [#] 4	(14^{+})		В	

¹³⁴Pm Levels (continued)

E(level)	Jπ &	XREF	Comments
1838.9+y [‡] 3	(15^{-})	В	
2029.3+y [#] 4	(15^{+})	В	
2192.2+y [‡] 4	(16 ⁻)	В	
2410.4+y [#] 4	(16 ⁺)	В	
2550.9+y [‡] 4	(17 ⁻)	В	
2840.6+y [#] 4	(17^{+})	В	
2927.6+y [‡] 5	(18 ⁻)	В	
3291.3+y [#] 4	(18^{+})	В	
3299.3+y [‡] 4	(19 ⁻)	В	
3702.0+y [#] 5	(19 ⁺)	В	
4224.6+y [#] 5	(20^{+})	В	
5198.6+y [#] 6	(22^{+})	В	
0.0+z		В	E(level): y >145+y; unobserved γ from (9 ⁺), 127.1+Z to (8 ⁺), 272.0+y level.
127.10+z [@] 20	(9+)	В	J^{π} : theoretical predictions, possible configuration=((π h _{11/2})(ν h _{9/2})).
359.3+z [@] 3	(11^{+})	В	
734.3+z [@] 4	(13^{+})	В	
1256.1+z [@] 4	(15^{+})	В	
1907.1+z [@] 5	(17^{+})	В	
2662.8+z [@] 5	(19 ⁺)	В	
3494.2+z [@] 6	(21^{+})	В	
4369.6+z [@] 6	(23^{+})	В	
5299.2+z [@] 6	(25^{+})	В	
6318.9+z [@] 7	(27^{+})	В	
7438.9+z [@] 12	(29^{+})	В	

 † Relative position of isomers is unknown.

[‡] Band(A): negative-parity band built on Configuration=((π g_{7/2})(ν h_{11/2})).

[#] Band(B): positive-parity band built on Configuration=((π N11/2)(ν h_{11/2})).

[@] Band(C): Doubly-decoupled band built on Configuration=((π h_{11/2})(ν h_{9/2})), transition Quadrupole Moment=3.9 2 (2002La09).

 $\gamma(^{134}\text{Pm})$

& For collective states, assignments are based on band structure and decay pattern.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
112.30		112.3 2	100	0.0 ((2+)			
118.90	(1^{+})	118.9 2	100	0.0 ((2+)	[M1]	0.961	$\alpha(K)= 0.815; \ \alpha(L)= 0.1142; \ \alpha(M)=0.02426; \ \alpha(N+)=0.00696$
229.11		110.2 2	77 16	118.90 ((1^+)			
		116.8 <i>3</i>	23 8	112.30				
		229.1 2	100 16	0.0 ((2^+)			
280.03		50.8 5	6.7 20	229.11				
		161.2 <i>3</i>	100 40	118.90 ((1^+)			
		280.0 2	87 14	0.0 ((2^+)			
304.71		185.8 2	100	118.90 ((1^+)			
409.4		104.7 <i>3</i>	100 21	304.71				
		129.5 5	96 <i>21</i>	280.03				

Continued on next page (footnotes at end of table)

γ ⁽¹³⁴Pm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α #	Comments
418.93		300.0 2 419.0 3	100 20 59 17	118.90 0.0	(1^+) (2^+)			
498.96		218.9 2 380.1 2	100 <i>10</i> 53 7	280.03 118.90	(1 ⁺)			
537.4		257.4 <i>3</i>	100	280.03				
887.4 106.19+y	(8 ⁻)	768.5 <i>3</i> 106.2 <i>2</i>	100 100	118.90 0.0+y	(1^+) (7^-)	(M1)	1.323	α (K)= 1.122; α (L)= 0.1577; α (M)= 0.0335;
215.02+y	(9 ⁻)	108.8 2	100 10	106.19+y	(8 ⁻)	(M1)	1.235	$\alpha(N+)=0.00961$ $\alpha(K)=1.048; \ \alpha(L)=0.1471; \ \alpha(M)=0.0313;$ $\alpha(N+)=0.00807$
		215.0.3	<18	0.0+v	(7^{-})			a(11+)=0.00097
272.00+y	(8 ⁺)	272.0 2	100	0.0+y	(7^{-})	(E1)	0.01823	$\alpha(K)=0.01558; \alpha(L)=0.00209; \alpha(M)=0.00044; \alpha(N+.)=0.00012$
353.9+y	(9 ⁺)	82.0 2	100	272.00+y	(8 ⁺)	(M1)	2.79	$\alpha(M) = 0.00011$; $\alpha(M) = 0.00012$ $\alpha(K) = 2.364$; $\alpha(L) = 0.333$; $\alpha(M) = 0.0707$; $\alpha(N+) = 0.02005$
386.65+y	(10 ⁻)	171.6 2	100 10	215.02+y	(9 ⁻)	(M1)	0.343	$\alpha(K) = 0.291; \ \alpha(L) = 0.0405; \ \alpha(M) = 0.00859; \ \alpha(N+) = 0.00245$
		280.5 2	36 4	106.19+y	(8 ⁻)	(E2)	0.0674	$\alpha(\mathbf{K}) = 0.0524; \ \alpha(\mathbf{L}) = 0.01171; \ \alpha(\mathbf{M}) = 0.00258; \ \alpha(\mathbf{N}+) = 0.00069$
485.0+y	(10 ⁺)	131.1 <i>3</i>	100 10	353.9+y	(9+)	(M1)	0.729	$\alpha(K) = 0.619; \ \alpha(L) = 0.0865; \ \alpha(M) = 0.01835; \ \alpha(N+) = 0.00527$
		212.9 2	10.3 13	272.00+y	(8+)	(E2)	0.1654	$\alpha(\mathbf{K}) = 0.1224; \ \alpha(\mathbf{L}) = 0.0335; \ \alpha(\mathbf{M}) = 0.00745; \ \alpha(\mathbf{N}+) = 0.00201$
605.63+y	(11 ⁻)	219.0 2	86 9	386.65+y	(10 ⁻)	(M1)	0.1756	α (K)= 0.1494; α (L)=0.02063; α (M)=0.00438; α (N+)=0.00123
		390.6 2	100 10	215.02+y	(9 ⁻)	(E2)	0.02462	α (K)=0.01991; α (L)=0.00370; α (M)=0.00080; α (N+)=0.00022
735.9+y	(11 ⁺)	250.9 2	100 10	485.0+y	(10 ⁺)	(M1)	0.1215	α (K)= 0.1034; α (L)=0.01424; α (M)=0.00302; α (N+)=0.00085
		382.0 <i>3</i>	20 2	353.9+y	(9 ⁺)	(E2)	0.0263	α (K)=0.02120; α (L)=0.00398; α (M)=0.00087; α (N+)=0.00023
871.75+y	(12 ⁻)	266.1 2	64 6	605.63+y	(11 ⁻)	(M1)	0.1038	α (K)= 0.0883; α (L)=0.01215; α (M)=0.00258; α (N+)=0.00072
		485.1 2	100 10	386.65+y	(10 ⁻)	(E2)	0.01337	α (K)=0.01100; α (L)=0.00186; α (M)=0.00040; α (N+)=0.00011
965.9+y	(12+)	229.9 2	100 10	735.9+y	(11+)	(M1)	0.1539	$\alpha(K) = 0.1309; \ \alpha(L) = 0.01806; \ \alpha(M) = 0.00383; \ \alpha(N+) = 0.00108$
		480.9 2	66 7	485.0+y	(10+)	(E2)	0.01369	$\alpha(K)=0.01125; \ \alpha(L)=0.00191; \ \alpha(M)=0.00041; \ \alpha(N+)=0.00011$
1167.3+y	(13 ⁻)	295.7 2	35 4	871.75+y	(12 ⁻)	(M1)	0.0783	$\alpha(K) = 0.0667; \ \alpha(L) = 0.00915;$ $\alpha(M) = 0.00194; \ \alpha(N+) = 0.00054$
	(1.2.1.)	561.7 2	100 10	605.63+y	(11^{-})	(E2)	0.00913	$\alpha(K)=0.00753; \alpha(L)=0.00121$
1316.9+y	(13+)	350.8 2	53 5	965.9+y	(12+)	(MI)	0.0500	$\alpha(K) = 0.0426; \ \alpha(L) = 0.00582; \ \alpha(M) = 0.00123; \ \alpha(N+) = 0.00034$
1407 5 .	(1 4 -)	581.1 2	100 10	735.9+y	(11^{+})	(E2)	0.00837	$\alpha(\mathbf{K}) = 0.00691; \ \alpha(\mathbf{L}) = 0.00110$
1497.5+y	(14)	330.3 3	35 4	1167.3+y	(13)	(M1)	0.0585	$\alpha(\mathbf{K}) = 0.0499; \ \alpha(\mathbf{L}) = 0.00682; \ \alpha(\mathbf{M}) = 0.00145; \ \alpha(\mathbf{N}+) = 0.00040$
1622.0	(1.4^{+})	025.0 2	100 10	8/1./5+y	(12)	(E2)	0.00696	$\alpha(\mathbf{K}) = 0.005 / /; \alpha(\mathbf{L}) = 0.00089$
1022.0+y	(14')	305.1 2	213	1316.9+y	(13')	(M1)	0.0721	$\alpha(\mathbf{K}) = 0.0014; \ \alpha(\mathbf{L}) = 0.00842; \ \alpha(\mathbf{M}) = 0.00179; \ \alpha(\mathbf{N}+) = 0.00050$
1020.0	(15-)	656.2 2	100 10	965.9+y	(12^+)	(E2)	0.00619	$\alpha(K) = 0.00514; \ \alpha(L) = 0.00079$
1838.9+y	(15 ⁻)	341.4 2	17 3	1497.5+y	(14 ⁻)	(M1)	0.0537	$\alpha(K) = 0.0457; \alpha(L) = 0.00625; \alpha(M) = 0.00133; \alpha(N+) = 0.00037$
2020.2	(15+)	6/1.7 2	100 10	1167.3+y	(13^{-})	(E2)	0.00585	$\alpha(\mathbf{K}) = 0.00486; \ \alpha(\mathbf{L}) = 0.00074$
2029.3+y	(15')	407.2.2	514	1622.0+y	(14')	(M1)	0.0340	$\alpha(\mathbf{K}) = 0.0290; \ \alpha(\mathbf{L}) = 0.00394; \ \alpha(\mathbf{M}) = 0.00083; \ \alpha(\mathbf{N}+) = 0.00023$

Continued on next page (footnotes at end of table)

$\gamma(^{134}\text{Pm})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult. [‡]	α #	Comments
2029.3+y	(15^{+})	712.4 2	100 10	1316.9+y	(13^{+})	(E2)	0.00508	$\alpha(K)=0.00423; \alpha(L)=0.00063$
2192.2+v	(16^{-})	353.5 3	<19	1838.9+v	(15^{-})			
J		694.6 2	100 10	1497.5+v	(14^{-})	(E2)	0.00539	$\alpha(K)=0.00449; \alpha(L)=0.00068$
2410.4+v	(16^{+})	381.1 2	34 4	2029.3+v	(15^+)			$\alpha(K) = 0.0344; \alpha(L) = 0.00468;$
J				j	(-)			$\alpha(M)=0.00099; \alpha(N+)=0.00027$
		788.5 2	100 10	1622.0+v	(14^{+})	(E2)	0.00401	$\alpha(K)=0.00336; \alpha(L)=0.00049$
2550.9+v	(17^{-})	712.0 2	100	1838.9+v	(15^{-})	(E2)	0.00509	$\alpha(K)=0.00424; \alpha(L)=0.00064$
2840.6+v	(17^+)	430.1 2	36 5	2410.4+v	(16^+)	()		u() ···································
j		811.1 2	100 10	2029.3+v	(15^+)			
2927.6+v	(18^{-})	735.4 3	100	2192.2+v	(16^{-})	(E2)	0.00471	$\alpha(K)=0.00393; \alpha(L)=0.00058$
3291.3+v	(18^{+})	450.0 <i>3</i>	24 4	2840.6+v	(17^+)			
· · J		881.2.2	100 10	2410.4+v	(16^+)	(E2)	0.00312	$\alpha(K)=0.00262; \alpha(L)=0.00037$
3299.3+v	(19^{-})	748.4 2	100	2550.9+v	(17^{-})	(E2)	0.00452	$\alpha(K)=0.00378; \alpha(L)=0.00056$
3702.0+v	(19^+)	861.4 3	100	2840.6+v	(17^+)			
4224.6+v	(20^{+})	933.3 2	100	3291.3+v	(18^+)	(E2)	0.00275	$\alpha(K)=0.00232; \alpha(L)=0.00033$
5198.6+v	(22^{+})	974.0 <i>3</i>	100	4224.6+v	(20^{+})			
127.10+z	(9 ⁺)	127.1 2	100	0.0 + z		D		
359.3+z	(11^{+})	232.2 2	100	127.10+z	(9^{+})	(E2)	0.1241	$\alpha(K) = 0.0935; \alpha(L) = 0.02386;$
								$\alpha(M)=0.00529; \alpha(N+)=0.00143$
734.3+z	(13^{+})	375.0 2	100	359.3+z	(11^{+})	(E2)	0.0277	$\alpha(K)=0.02234; \alpha(L)=0.00423;$
					. ,			$\alpha(M)=0.00092; \alpha(N+)=0.00025$
1256.1+z	(15^{+})	521.8 2	100	734.3+z	(13^{+})	(E2)	0.01107	$\alpha(K)=0.00909; \alpha(L)=0.00149$
1907.1+z	(17^{+})	651.0 2	100	1256.1+z	(15^{+})	(E2)	0.00631	$\alpha(K)=0.00524; \alpha(L)=0.00080$
2662.8+z	(19 ⁺)	755.7 2	100	1907.1+z	(17^{+})	(E2)	0.00442	$\alpha(K)=0.00370; \alpha(L)=0.00055$
3494.2+z	(21^{+})	831.4 2	100	2662.8+z	(19+)	(E2)	0.00356	$\alpha(K)=0.00298; \alpha(L)=0.00043$
4369.6+z	(23^{+})	875.4 2	100	3494.2+z	(21^{+})	(E2)	0.00317	$\alpha(K)=0.00266; \alpha(L)=0.00038$
5299.2+z	(25+)	929.6 2	100	4369.6+z	(23+)	(E2)	0.00278	$\alpha(K)=0.00234; \alpha(L)=0.00033$
6318.9+z	(27^{+})	1019.7 <i>3</i>	100	5299.2+z	(25+)	(E2)	0.00228	$\alpha(K)=0.00192; \alpha(L)=0.00027$
7438.9+z	(29+)	1120 1	100	6318.9+z	(27^+)	. /		

[†] Relative photon branching from each level.
[‡] From (HI,xnγ), unless stated otherwise.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $^{134}_{61} Pm_{73}$

 $^{134}_{61} Pm_{73}$

 $^{134}_{\ 61}Pm_{73}$

 $^{134}_{61} Pm_{73}$