133 Cs(α ,3n γ), 136 Ba(p,3n γ) 1985Mo01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni	NDS 103, 1 (2004)	31-Jul-2004

1985Mo01: 133 Cs(α ,3n γ) E=55 MeV, 136 Ba(p,3n γ) E=32 MeV.

¹³⁴La Levels

The level scheme is that proposed by 1985Mo01 on the basis of $\gamma\gamma$ -coincidence data. Spin assignments are based on angular distribution results. The data for levels that decay to the ¹³⁴La ground state are adopted; however, the data for levels that reach the 0+Y, J level are not adopted with exception of the gammas multipolarities. The adopted scheme for these levels is based on the ¹²⁴Sn(¹⁵N,5n γ) (2001Ba75) dataset.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments				
0.0	1^{+}	6.45 min 16	T _{1/2} : from Adopted Levels.				
31.89 10	$(2)^{+}$		·/~ ·				
122.86 14							
164.28 14							
186.98 <i>19</i>	$(2)^{+}$						
205.31 19	$(2)^{+}$						
220.27 14							
274.72 14							
329.3 6							
336.43 17		20 (
336.43+x		29 µs 4	Additional information 1. E(level): decays to 336.4 and 329.3 levels by two low-energy unobserved transitions. $T_{1/2}$: from $\gamma(t)$ (1985Mo01).				
381.7 6							
382.9 5	(3 ⁺)						
467.2 7							
484.0 5	(3^{+})						
490.4 6	(4+)						
544.0 0	(4.)						
574 8 8							
501 5 3							
648 1 6	(4^{+})						
659.8.8	(1)						
715.3 7							
727.2 6							
746.4 <i>3</i>							
762.9 7							
852.8 8							
899.8 6							
919.8 8							
0.0+y	J	-	Additional information 2.				
53.4+y 5	J+1	<5 ns	$T_{1/2}$: from 1985Mo01.				
211./+y 6	J+2						
241.0+y 0 452 6-1 y 6	J+2						
-52.0+y0 501 7+y2 6							
518.7+v 6	J+3						
668.7+v 6	J+3						
765.2+v 8	5.0						
813.7+y 6	J+4						
925.8+y 6	J+4						
-							

¹³³Cs(α ,3n γ),¹³⁶Ba(p,3n γ) 1985Mo01 (continued)

¹³⁴La Levels (continued)

E(level) [†]	Jπ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]
976.6+y 6	J+4	1471.6+y 8		1684.5+y 7		2133.1+y 6
1194.8+y 7	J+5	1510.2+y 6	J+6	1710.4+y 8		2146.2+y 7
1234.0+y 6	J+5	1532.7+y 7	J+6	1739.3+y 7	J+7	2320.9+y 10
1412.2+y 6		1555.6+y 6		1968.3+y 9	J+7	

[†] From least-squares fit to $E\gamma$. [‡] As given by 1985Mo01.

$\gamma(^{134}\text{La})$

E_{γ}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α ^{&}	Comments
(31.89 10)	0.7 4	31.89	$(2)^{+}$	0.0	1+	M1+E2	9.5 18	E_{γ}, α : from ¹³⁴ Ce ε decay.
(41.4)		164 28		122.86				I_{γ} : from intensity balance and α .
53.4 5	17.5 [#]	53.4+y	J+1	0.0+y	J	M1+E2	6.7	$\alpha(K)$ = 5.75; $\alpha(L)$ = 0.783; $\alpha(M)$ = 0.1624;
								$\alpha(N+)=0.0447$ Mult: $\alpha(exp)=6.2$ (1985Mo01)
								I_{γ} : from intensity balance and α .
54.6 [‡] 5	19 [‡] 9	329.3		274.72				
56.0 [‡] 5	7.0 [‡] 35	220.27		164.28				
61.7 [‡] 5	8.4 [‡] 40	336.43		274.72				
84.3 [‡] 5	$1.2^{\ddagger} 6$	467.2		382.9	(3 ⁺)			
86.4 [‡] 5	2.6 [‡] 13	570.4		484.0	(3 ⁺)			
^x 93.4 2	6.9 28							E_{γ} : observed in off-beam coincidence with 164.3 γ and 122.6 γ .
97.4 2	9.0 30	220.27		122.86		(M1+E2)	1.7 5	Mult.: $\gamma(\theta)$: A ₂ =-0.12 <i>13</i> , A ₄ =0.04 <i>17</i> .
107.5 2	2.5 12	490.4		382.9	(3^{+})			
110.4 2	15.5	274.72		164.28	(4+)			$\gamma(\theta)$: A ₂ =-0.03 6, A ₄ =-0.01 9.
115.81 5	2.2° 11 38.8	039.8 336.43		544.0 220.27	(4.)			$\gamma(\theta)$: A ₂ =-0.07 3 A ₄ =0.12 4
122.9 2	20 5	122.86		0.0	1+			$\gamma(\theta)$: $A_2 = -0.06 \ 6$, $A_4 = 0.10 \ 8$.
144.9 2	46 [#] 9	813.7+y	J+4	668.7+y	J+3	(M1+E2)	0.46 8	Mult.: $\gamma(\theta)$: A ₂ =-0.31 2, A ₄ =0.07 3.
149.6 [‡] 5	4.1 [‡] 20	336.43		186.98	$(2)^{+}$			
151.9 2	21 4	274.72		122.86				$\gamma(\theta)$: A ₂ =-0.07 4, A ₄ =-0.07 6.
158.3 2	50 [#] 5	211.7+y	J+2	53.4+y	J+1	(M1+E2)	0.35 5	Mult.: $\gamma(\theta)$: A ₂ =-0.40 2, A ₄ =0.05 3.
161.1 2	11 3	544.0	(4+)	382.9	(3^+)	(M1+E2)	0.33 3	Mult.: $\gamma(\theta)$: A ₂ =-0.24 8, A ₄ =0.06 11.
^x 168.9.2	2.9.15	104.20		0.0	1			$\gamma(6)$. A ₂ =0.04 4, A ₄ =0.05 4.
172.2 2	9.6 30	336.43		164.28				
173.5 [‡] 5	7.7 [‡] 40	205.31	$(2)^{+}$	31.89	$(2)^{+}$	M1+E2	0.26 3	Mult.: $\gamma(\theta)$: A ₂ =-0.18 8, A ₄ =0.07 10.
177.6 [‡] 5	47 [‡] 20	382.9	(3 ⁺)	205.31	$(2)^{+}$	(M1+E2)	0.24 3	Mult.: $\gamma(\theta)$: A ₂ =-0.10 2, A ₄ =-0.08 3.
183.2 2	3.8 19	727.2		544.0	(4+)	(E2)	0.24	Mult.: $\gamma(\theta)$: A ₂ =0.33 24, A ₄ =-0.21 30.
187.0 2	5.0 20	186.98	$(2)^{+}$	0.0	1+			
187.6 2	56" 6	241.0+y	J+2	53.4+y	J+1	(M1+E2)	0.21 2	Mult.: $\gamma(\theta)$: A ₂ =-0.34 2, A ₄ =0.00 3.
187.6 ⁺ 5	4.0+ 20	570.4		382.9	(3^{+})			
205.3.2	0.0 <i>23</i> 60.6	205.31	$(2)^{+}$	0.0	1+	M1+E2	0.156.8	Mult: $\gamma(\theta)$: A ₂ =-0.08 2, A ₄ =-0.06 3
211.6 2	000	452.6+y	(2)	241.0+y	J+2		5.120 0	1
220.2 2	9.4 30	220.27		0.0	1^{+}			$\gamma(\theta)$: A ₂ =0.08 10, A ₄ =-0.08 14.

Continued on next page (footnotes at end of table)

133 Cs(α ,3n γ), 136 Ba(p,3n γ) 1985Mo01 (continued)								
$\gamma(^{134}La)$ (continued)								
Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α &	Comments
229.1 2	13.4 [#] 40	1739.3+y	J+7	1510.2+y	J+6	(M1+E2)	0.112 2	Mult.: $\gamma(\theta)$: A ₂ =-0.41 6, A ₄ =0.09 8.
245.5 [‡] 5	16.5 [‡] 80	574.8		329.3		(M1+E2)	0.091 <i>1</i>	Mult.: $\gamma(\theta)$: A ₂ =-0.14 5, A ₄ =-0.10 7.
257.5 2	12.3 [#] 40	1234.0+y	J+5	976.6+y	J+4	(M1+E2)	0.079 3	Mult.: $\gamma(\theta)$: A ₂ =-0.31 10, A ₄ =0.13 14.
258.8 [‡] 5 260.0 2 265.2 2	9.5 [‡] 50 3.0 15 11 4 5 1 25	381.7 919.8 648.1	(4+)	122.86 659.8 382.9	(3 ⁺)	(M1+E2)	0.072 2	$\gamma(\theta)$: A ₂ =-0.06 9, A ₄ =-0.18 13. Mult.: $\gamma(\theta)$: A ₂ =-0.06 9, A ₄ =-0.18 13.
272.7 3	100 10	274.72		0.0	1+			$\gamma(\theta)$: A ₂ =0.04 2, A ₄ =-0.05 2.
276.2 2	14 [#] 4	1510.2+v	J+6	1234.0+v	J+5	(M1+E2)	0.064 3	Mult.: $\gamma(\theta)$: A ₂ =-0.28 6, A ₄ =-0.20 8.
277.5 ^a	@	518.7+y	J+3	241.0+y	J+2			
278.6 [‡] 5	14 [‡] 7	484.0	(3^{+})	205.31	$(2)^{+}$	(M1+E2)	0.062 3	Mult.: $\gamma(\theta)$: A ₂ =-0.09 5, A ₄ =-0.09 7.
282.4 [‡] 5	3.8 [‡] 19	852.8		570.4		. ,		
290.0 2	1.9 [#] 9	501.7+y?		211.7+y	J+2			
307.0 2	30 [#] 6	518.7+y	J+3	211.7+y	J+2	(M1+E2)	0.047 3	Mult.: $\gamma(\theta)$: A ₂ =-0.35 04, A ₄ =0.04 06.
332.4 [‡] 5	2.2 [‡] 11	715.3		382.9	(3 ⁺)			
337.9 2	14 [#] 4	1532.7+y	J+6	1194.8+y	J+5	(M1+E2)		Mult.: $\gamma(\theta)$: A ₂ =-0.35 8, A ₄ =0.03 11.
380.0 [‡] 5	2.9 [‡] 15	762.9		382.9	(3 ⁺)			
381.2 2 386.2 2	37 # 7 5.5 22	1194.8+y 591.5	J+5	813.7+y 205.31	J+4 (2) ⁺	(M1+E2)		Mult.: $\gamma(\theta)$: A ₂ =-0.48 3, A ₄ =0.06 5.
406.9 2 410.0 2	6.7 [#] 27 14 5	2146.2+y 746.4		1739.3+y 336.43	J+7	(M1+E2) (E2)		Mult.: $\gamma(\theta)$: A ₂ =-0.05 <i>16</i> , A ₄ =0.13 <i>20</i> . Mult.: $\gamma(\theta)$: A ₂ =0.27 <i>8</i> , A ₄ =-0.08 <i>11</i> .
427.7 2	49 [#] 5	668.7+y	J+3	241.0+y	J+2			Mult.: $\gamma(\theta)$: A ₂ =-0.29 3, A ₄ =-0.01 4.
435.6 5	14.2 [#] 40	1968.3+y	J+7	1532.7+y	J+6	(M1+E2)		Mult.: $\gamma(\theta)$: A ₂ =-0.35 9, A ₄ =0.03 13.
457.2 [‡] 5	23 ^{‡#} 11	668.7+y	J+3	211.7+y	J+2			Mult.: $\gamma(\theta)$: A ₂ =-0.12 5, A ₄ =0.02 7.
458.0 [‡] 5	5.7 ^{‡#} 30	976.6+y	J+4	518.7+y	J+3			
515.6 [‡] 5	14 ^{‡#} 7	1710.4+y		1194.8+y	J+5			$\gamma(\theta)$: A ₂ <0.0.
524.2 [‡] 5	т. т.	765.2+y		241.0+y	J+2			
598.4 [‡] 5	6.8 ⁴ <i>#</i> 30	1412.2+y		813.7+y	J+4			
610.5 5	4.2 ^{+#} 21	2320.9+y		1710.4+y				
625.1+ 5	8.9+ 40	899.8		274.72				$\gamma(\theta)$: A ₂ =0.01 10, A ₄ =-0.19 20.
684.8 2 ^x 686.3 2	8.6# <i>30</i> 3.6 <i>18</i>	925.8+y	J+4	241.0+y	J+2	(E2)		Mult.: $\gamma(\theta)$: A ₂ =0.34 9, A ₄ =-0.06 15.
715.3 2	8.4 [#] 30	1234.0+y	J+5	518.7+y	J+3	(E2)		Mult.: $\gamma(\theta)$: A ₂ =0.47 14, A ₄ =-0.26 18.
718.9 [‡] 5	9.2 ^{‡#} 40	1532.7+y	J+6	813.7+y	J+4	(E2)		Mult.: $\gamma(\theta)$: A ₂ =0.30 11, A ₄ =-0.19 14.
743.5 2	8.6 [#] 30	1412.2+y		668.7+y	J+3			
764.9 2	5.5 [#] 22	976.6+y	J+4	211.7+y	J+2	(E2)		Mult.: $\gamma(\theta)$: A ₂ =0.30 10, A ₄ =-0.08 20.
802.9 [‡] 5	$7.6^{\mp \#}_{\#} 40$	1471.6+y		668.7+y	J+3			
870.8 2	$6.3^{\#}_{\#} 25$	1684.5+y		813.7+y	J+4			Mult.: $\gamma(\theta)$: A ₂ =0.12 <i>12</i> , A ₄ =-0.02 <i>20</i> .
886.9 2	9.5 [#] 40	1555.6+y		668.7+y	J+3			
899.1 2	5.7# 23	2133.1+y		1234.0+y	J+5			$\gamma(\theta)$: A ₂ =0.12 8, A ₄ =0.03 10.
^x 961.1 2	4.2 # 21							

[†] From (p,3nγ), except as noted.
[‡] Line contaminated.
[#] From (α,3nγ), normalized to Iγ(274.7)=100.

¹³³Cs(α ,3n γ),¹³⁶Ba(p,3n γ) **1985Mo01** (continued)

 $\gamma(^{134}La)$ (continued)

@ Weak.

- & Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^{*a*} Placement of transition in the level scheme is uncertain.
- $x \gamma$ ray not placed in level scheme.

¹³⁴₅₇La₇₇

¹³⁴₅₇La₇₇