¹³⁰**Te**(α ,**n** γ) 1983Lo08

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

1983Lo08: ¹³⁰Te(α ,n γ), E=14.1-18.0 MeV; measured E γ , I γ , Ice, E α , $\gamma(\theta)$, $\gamma(t)$; deduced levels, $\alpha(\exp)$, J^{π} . Cyclotron. The level scheme is based on $\gamma\gamma$ -coincidence and excitation function measurements.

¹³³Xe Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	$3/2^{+}$	5.2475 d 5	T _{1/2} : from Adopted Levels.
233.30 20	$11/2^{-}$	2.198 d 13	$T_{1/2}$: from Adopted Levels.
262.79 13	$1/2^{+}$		1/2 1
529.96 14	$5/2^+$		
607.87 17	$5/2^+$		
680.15 16	$3/2^+$		
743.8 <i>3</i>	$(9/2^{-})$		
875.32 18	$7/2^{+}$		
911.72 <i>14</i>	3/2+		
928.6 <i>3</i>	$15/2^{-}$		
1052.40 16	$5/2^{+}$		
1071.04 17	7/2+		
1169.6 <i>3</i>	$13/2^{-}$		
1350.59 16	$(5/2^+)$		
1386.25 <i>21</i>	$9/2^{+}$		
1590.37 24	$(5/2^+)$		
1609.33 <i>23</i>	9/2+		
1701.4 3	$(7/2^+)$		
1716.5 4	$(15/2^{-})$		
1743.9 <i>3</i>	$(13/2^+)$		
1789.64 24	$11/2^{+}$		
1861.8 <i>3</i>	$(9/2^+)$		
1876.4 4	19/2-		
2062.0 3	$(13/2)^+$		
2092.9 3	$11/2^{-}$		
2123.8 4	$23/2^{-}$		

[†] From a least-squares fit to $E\gamma's$. [‡] As suggested in 1983Lo08.

 $\gamma(^{133}\text{Xe})$

Eγ [‡]	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^π	Mult.@	α^{\dagger}	Comments
180.3 2	5.0 15	1789.64	11/2+	1609.33	9/2+	M1	0.1585	$\begin{array}{l} \alpha(\text{K}) \exp = 0.19 \ 8 \\ \alpha(\text{K}) = 0.1362 \ 20; \ \alpha(\text{L}) = 0.0178 \ 3; \ \alpha(\text{M}) = 0.00361 \ 6; \\ \alpha(\text{N}+) = 0.000840 \ 12 \\ \alpha(\text{N}) = 0.000747 \ 11; \ \alpha(\text{O}) = 9.34 \times 10^{-5} \ 14 \\ \gamma(\theta): \ \Delta_2 = -0.8 \ 3 \ \Delta_4 = 0.9 \ 4 \end{array}$
233.3 2	2.0 6	233.30	$11/2^{-}$	0.0	$3/2^{+}$			I_{γ} : isomeric transition.
247.4 2	92	2123.8	23/2-	1876.4	19/2-	E2	0.0785	$\dot{\gamma}(\theta)$: A ₂ =+0.53 4, A ₄ =-0.21 5. Mult.: O, ΔJ =2 from $\gamma(\theta)$: \neq E2 from RUL.
262.8 2	26 4	262.79	1/2+	0.0	3/2+	M1	0.0576	$\begin{array}{l} \alpha({\rm K}) {\rm exp} {=} 0.028 \ 7 \\ \alpha({\rm K}) {=} 0.0496 \ 7; \ \alpha({\rm L}) {=} 0.00640 \ 9; \ \alpha({\rm M}) {=} 0.001299 \\ 19; \ \alpha({\rm N} {+}) {=} 0.000303 \ 5 \end{array}$

Continued on next page (footnotes at end of table)

¹³⁰Te(α ,nγ) **1983Lo08** (continued)

$\gamma(^{133}$ Xe) (continued)

E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
357.6 2	9 2	1743.9	(13/2+)	1386.25	9/2+	(E2)	0.0241	$\begin{array}{l} \alpha(\mathrm{N})=0.000269 \ 4; \ \alpha(\mathrm{O})=3.37\times10^{-5} \ 5\\ \gamma(\theta): \ \mathrm{A}_{2}=-0.09 \ 2, \ \mathrm{A}_{4}=-0.04 \ 2.\\ \alpha(\mathrm{K})=\mathrm{c}0.025 \ 18\\ \alpha(\mathrm{K})=0.0200 \ 3; \ \alpha(\mathrm{L})=0.00321 \ 5;\\ \alpha(\mathrm{M})=0.000661 \ 10; \ \alpha(\mathrm{N}_{+,*})=0.0001502 \ 22 \end{array}$
381.8 2	5.0 15	911.72	3/2+	529.96	5/2+	M1+E2	0.0208 12	$\begin{aligned} \alpha(N) &= 0.0001345 \ I9; \ \alpha(O) &= 1.571 \times 10^{-5} \ 23 \\ \gamma(\theta) &: A_2 &= +0.45 \ I4, \ A_4 &= -0.03 \ I8. \\ \alpha(K) &= 0.0177 \ I3; \ \alpha(L) &= 0.00249 \ I0; \\ \alpha(M) &= 0.000509 \ 23; \ \alpha(N+) &= 0.000117 \ 4 \\ \alpha(N) &= 0.000105 \ 4; \ \alpha(O) &= 1.268 \times 10^{-5} \ I8 \\ \text{Mult: from BUI} \end{aligned}$
403 4 2	8.2	1789 64	11/2+	1386 25	9/2+	M1+F2	0.0179.12	$\gamma(\theta): A_2 = +0.1 4, A_4 = 0.1 5.$ $\gamma(\theta): A_2 = -0.35 5, A_4 = 0.02 7$
105.12	02	1709.01	11/2	1500.25	72	1011 122	0.0179 12	Mult.: $\Delta J=1$; M1+E2 from RUL.
417.4 2	73	680.15	3/2+	262.79	$1/2^{+}$	(M1)	0.01748	$\alpha(K) \exp[-0.010.6]$
								$\alpha(K)=0.01508\ 22;\ \alpha(L)=0.00192\ 3;\alpha(M)=0.000388\ 6;\ \alpha(N+)=9.05\times10^{-5}\ 13\alpha(N)=8.04\times10^{-5}\ 12;\ \alpha(O)=1.009\times10^{-5}\ 15\gamma(\theta);\ A_2=-0.04\ 15;\ A_4=0.18\ 20.$
452.7 2	14 3	2062.0	(13/2)+	1609.33	9/2+	(E2)	0.01190	$\begin{array}{l} \alpha(K) \exp = 0.014 \ 9 \\ \alpha(K) = 0.01003 \ 14; \ \alpha(L) = 0.001493 \ 21; \\ \alpha(M) = 0.000306 \ 5; \ \alpha(N+) = 7.00 \times 10^{-5} \ 10 \\ \alpha(N) = 6.26 \times 10^{-5} \ 9; \ \alpha(O) = 7.45 \times 10^{-6} \ 11 \end{array}$
463.2 2	10 2	1071.04	7/2+	607.87	5/2+	M1	0.01346	$\gamma(\theta)$: A ₂ =0.2 2, A ₄ =-0.2 3. $\alpha(K)\exp=0.010 4$ $\alpha(K)=0.01163 17; \alpha(L)=0.001472 21;$ $\alpha(M)=0.000298 5; \alpha(N+)=6.95 \times 10^{-5} 10$ $\alpha(N)=6.17 \times 10^{-5} 9; \alpha(O)=7.75 \times 10^{-6} 11$
510.5 2		743.8	(9/2 ⁻)	233.30	11/2-	M1+E2	0.0095 11	$\gamma(\theta)$: A ₂ =-0.52 <i>10</i> , A ₄ =-0.12 <i>15</i> . E _{γ} : taken rounded-off value of 1976Me16 by 1983Lo08 (not measured).
530.0 2	100 <i>10</i>	529.96	5/2+	0.0	3/2+	M1+E2	0.0086 10	Mult.: from RUL. $\alpha(K)\exp=0.006 \ I$ $\alpha=0.0086 \ I0; \ \alpha(K)=0.0074 \ I0;$ $\alpha(L)=0.00099 \ 7; \ \alpha(M)=0.000201 \ I2;$ $\alpha(N+)=4.7\times10^{-5} \ A$
								$\alpha(N)=4.1\times10^{-5}$ 3; $\alpha(O)=5.1\times10^{-6}$ 5
546.9 2	26 4	1716.5	(15/2 ⁻)	1169.6	13/2-	(M1)	0.00893 13	$\gamma(\theta)$: A ₂ =0.23 4, A ₄ =0.12 6. $\alpha(K)\exp=0.017 3$ $\alpha=0.00893 13; \alpha(K)=0.00772 11;$ $\alpha(L)=0.000972 14; \alpha(M)=0.000197 3;$ $\alpha(N+) = 4.59 \times 10^{-5} 7$
607.9 2	64 10	607.87	5/2+	0.0	3/2+	M1	0.00691 <i>10</i>	$\alpha(N)=4.07\times10^{-5} 6; \alpha(O)=5.12\times10^{-6} 8$ $\gamma(\theta): A_2=-0.01 8, A_4=-0.33 11.$ $\alpha(K)\exp=0.0023 6$ $\alpha=0.00691 10; \alpha(K)=0.00597 9;$ $\alpha(L)=0.000749 11; \alpha(M)=0.0001515 22;$ $\alpha(N)=1253\times10^{-5} 5$
648.9 2	6.0 15	911.72	3/2+	262.79	1/2+	M1	0.00590 9	$\alpha(N=3.14\times10^{-5} 5; \alpha(O)=3.95\times10^{-6} 6$ $\gamma(\theta): A_2=-0.51 3, A_4=0.04 4.$ $\alpha(K)\exp=0.011 7$ $\alpha=0.00590 9; \alpha(K)=0.00510 8;$ $\alpha(L)=0.000639 9; \alpha(M)=0.0001292 19;$ $\alpha(N+)=3.01\times10^{-5} 5$

Continued on next page (footnotes at end of table)

¹³⁰Te(α ,nγ) **1983Lo08** (continued)

$\gamma(^{133}$ Xe) (continued)

E _γ ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	α^{\dagger}	Comments
680.1 2	18 4	680.15	3/2+	0.0	3/2+	M1	0.00527 8	$\begin{aligned} &\alpha(\mathrm{N}) = 2.68 \times 10^{-5} \ 4; \ \alpha(\mathrm{O}) = 3.37 \times 10^{-6} \ 5\\ &\gamma(\theta): \ \mathrm{A}_2 = -0.29 \ 12, \ \mathrm{A}_4 = -0.12 \ 18. \\ &\alpha(\mathrm{K}) \exp = 0.004 \ 2\\ &\alpha = 0.00527 \ 8; \ \alpha(\mathrm{K}) = 0.00456 \ 7; \\ &\alpha(\mathrm{L}) = 0.000570 \ 8; \ \alpha(\mathrm{M}) = 0.0001152 \ 17; \end{aligned}$
695.3 2	150 <i>15</i>	928.6	15/2-	233.30	11/2-	E2	0.00377 6	$\alpha(N+)=2.69\times10^{-5} 4$ $\alpha(N)=2.39\times10^{-5} 4; \ \alpha(O)=3.00\times10^{-6} 5$ $\gamma(\theta): \ A_2=0.01 3, \ A_4=0.13 4.$ $\alpha(K)\exp=0.0035 6$ $\alpha=0.00377 6; \ \alpha(K)=0.00323 5;$ $\alpha(L)=0.000436 7; \ \alpha(M)=8.87\times10^{-5} 13;$ $\alpha(N+)=2.05\times10^{-5} 3$
706.6 2	16 <i>3</i>	2092.9	11/2-	1386.25	9/2+	E1	0.001369 20	$\alpha(N)=1.82\times10^{-5} 3; \ \alpha(O)=2.23\times10^{-6} 4 \gamma(\theta): \ A_2=0.20 3, \ A_4=-0.03 5. \alpha(K)\exp\leq0.001 \alpha=0.001369 20; \ \alpha(K)=0.001188 17; \alpha(L)=0.0001451 21; \ \alpha(M)=2.92\times10^{-5} 4; \alpha(N+)=6.79\times10^{-6} $
734.0 2	47 7	1609.33	9/2+	875.32	7/2+	M1+E2	0.0038 6	$\alpha(N)=6.04\times10^{-6} \ 9; \ \alpha(O)=7.54\times10^{-7} \ 11$ $\gamma(\theta): \ A_2=-0.40 \ 16, \ A_4=-0.6 \ 2.$ $\alpha(K)\exp=0.0046 \ 14$ $\alpha=0.0038 \ 6; \ \alpha(K)=0.0033 \ 5; \ \alpha(L)=0.00043$ $5; \ \alpha(M)=8.6\times10^{-5} \ 10; \ \alpha(N+)=2.01\times10^{-5}$ 23
789.6 2	10 2	1052.40	5/2+	262.79	1/2+	(E2)	0.00277 4	$\begin{aligned} &\alpha(N)=1.79\times10^{-5}\ 21;\ \alpha(O)=2.2\times10^{-6}\ 3\\ &\gamma(\theta):\ A_2=0.22\ 7,\ A_4=-0.07\ 10.\\ &\alpha(K)\exp=0.004\ 4\\ &\alpha=0.00277\ 4;\ \alpha(K)=0.00238\ 4;\\ &\alpha(L)=0.000315\ 5;\ \alpha(M)=6.39\times10^{-5}\ 9;\\ &\alpha(N+)=1.478\times10^{-5}\ 21 \end{aligned}$
700.0.2	4.0.12	10/1 0	(0/2+)	1071.04	7/0+	D . O		$\begin{array}{l} \alpha(N)=1.316\times10^{-5} \ 19; \ \alpha(O)=1.618\times10^{-6} \ 23\\ \gamma(\theta): \ A_2=0.13 \ 11, \ A_4=-0.19 \ 16. \end{array}$
790.8 2	4.0 12	1801.8	(9/2.)	10/1.04	1/2	D+Q		$\gamma(\theta)$: A ₂ =-0.56 5, A ₄ =0.27 7. Mult.: Δ J=1 from $\gamma(\theta)$.
820.6 2	6.0 15	1350.59	$(5/2^+)$	529.96	5/2+	M1+E2	0.0030 5	$\gamma(\theta)$: A ₂ =0.67 6, A ₄ =-0.87 9. Mult.: from RUL.
856.3 2	44 7	1386.25	9/2+	529.96	5/2+	E2	0.00229 4	$\begin{array}{l} \alpha(\text{K}) \exp = 0.0024 \ 9 \\ \alpha = 0.00229 \ 4; \ \alpha(\text{K}) = 0.00197 \ 3; \\ \alpha(\text{L}) = 0.000258 \ 4; \ \alpha(\text{M}) = 5.23 \times 10^{-5} \ 8; \\ \alpha(\text{N}+) = 1.211 \times 10^{-5} \ 17 \\ \alpha(\text{N}) = 1.078 \times 10^{-5} \ 16; \ \alpha(\text{O}) = 1.330 \times 10^{-6} \ 19 \end{array}$
875.3 2	99 10	875.32	7/2+	0.0	3/2+	E2	0.00218 3	$\gamma(\theta): A_2=0.21 3, A_4=-0.12 4.$ $\alpha(K)\exp=0.0014 7$ $\alpha=0.00218 3; \alpha(K)=0.00188 3;$ $\alpha(L)=0.000245 4; \alpha(M)=4.96\times10^{-5} 7;$ $\alpha(N+)=1.149\times10^{-5} 16$
								$\alpha(N)=1.023\times10^{-5}$ 15; $\alpha(O)=1.262\times10^{-6}$ 18 $\gamma(\theta): A_2=0.23$ 3, $A_4=-0.01$ 4.
911.7 2	20 4	911.72	3/2+	0.0	3/2+	M1+E2	0.0023 4	$\gamma(\theta)$: $A_2 = -0.4 \ 3$, $A_4 = 0.0 \ 5$. Mult.: from RUL.
936.3 2	38 6	1169.6	13/2-	233.30	11/2-	M1	0.00249 4	$\alpha(K)\exp=0.0009\ 6$ $\alpha=0.00249\ 4;\ \alpha(K)=0.00216\ 3;$ $\alpha(L)=0.000267\ 4;\ \alpha(M)=5.39\times10^{-5}\ 8;$ $\alpha(N+)=1.257\times10^{-5}\ 18$

Continued on next page (footnotes at end of table)

-

					¹³⁰ Te(a	α ,n γ) 198	83Lo08 (contin	uued)
						$\gamma(^{133}\text{Xe})$	(continued)	
E _γ ‡	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	$lpha^\dagger$	Comments
947.8 2	31 5	1876.4	19/2-	928.6	15/2-	E2	0.00182 3	$\begin{aligned} \alpha(N) &= 1.117 \times 10^{-5} \ 16; \ \alpha(O) &= 1.406 \times 10^{-6} \ 20 \\ \gamma(\theta): \ A_2 &= -0.83 \ 2, \ A_4 &= 0.07 \ 2. \\ \alpha(K) &exp &= 0.003 \ 3 \\ \alpha &= 0.00182 \ 3; \ \alpha(K) &= 0.001570 \ 22; \\ \alpha(L) &= 0.000203 \ 3; \ \alpha(M) &= 4.10 \times 10^{-5} \ 6; \\ \alpha(N+) &= 9.52 \times 10^{-6} \ 14 \\ \alpha(N) &= 8.47 \times 10^{-6} \ 12; \ \alpha(O) &= 1.048 \times 10^{-6} \ 15 \end{aligned}$
1052.4 2	11 2	1052.40	5/2+	0.0	3/2+			$\gamma(\theta)$: A ₂ =0.34 4, A ₄ =-0.18 5. $\gamma(\theta)$: A ₂ =0.12 6, A ₄ =-0.13 8. Mult : A ₁ =1 2: D O from RUL
1060.4 2	4.0 12	1590.37	(5/2 ⁺)	529.96	5/2+	D		$\gamma(\theta): A_2=0.05 \ 15, \ A_4=-0.03 \ 20.$ Mult: $\Lambda=0. \ D+0$ from RUL.
1071.0 2 1093.5 2 1350.6 2	10 2 6.0 <i>15</i> 11 2	1071.04 1701.4 1350.59	7/2 ⁺ (7/2 ⁺) (5/2 ⁺)	0.0 607.87 0.0	3/2 ⁺ 5/2 ⁺ 3/2 ⁺	(E2) D M1+E2	2 0.00101 12	$ γ(θ): A_2=0.04 2, A_4=-0.14 3. $ $γ(θ): A_2=-0.1 3, A_4=-0.0 4.$ α(K)exp=0.0016 16 α=0.00101 12; α(K)=0.00085 10; $α(L)=0.000104 12; α(M)=2.11×10^{-5} 23;$ $α(N+)=3.74×10^{-5} 7$ $α(N)=4.4×10^{-6} 5; α(O)=5.5×10^{-7} 7;$ $α(IPF)=3.25×10^{-5} 10$ Mult.: $α(K)exp$ allows mult.=D,E2; ≠E1 from level scheme and $γ(θ)$ in ¹³³ I β ⁻ decay.

[†] Additional information 1.
[‡] From 1983Lo08, except as noted.

[#] From 1983Lo08. Under comment to Table V, evaluators assumed $\Delta I\gamma = 10$ % for $I\gamma \ge 100$; $\Delta I\gamma = 15$ % for $100 > I\gamma \ge 25$; $\Delta I\gamma = 20\%$ for $25 > I\gamma \ge 10$; $\Delta I\gamma = 25\%$ for $10 > I\gamma \ge 5$; $\Delta I\gamma = 30\%$ for $I\gamma < 5$. ^(a) From $\gamma(\theta)$ and $\alpha(K) \exp$ in 1983Lo08.

¹³³₅₄Xe₇₉