#### <sup>252</sup>Cf SF decay 2002Hw03,2004Hw02

|                 | History                                  |                     |                        |  |
|-----------------|------------------------------------------|---------------------|------------------------|--|
| Туре            | Author                                   | Citation            | Literature Cutoff Date |  |
| Full Evaluation | Yu. Khazov and A. Rodionov, F. G. Kondev | NDS 112, 855 (2011) | 31-Oct-2010            |  |

Parent: <sup>252</sup>Cf: E=0;  $J^{\pi}=0^+$ ;  $T_{1/2}=2.645$  y 8; %SF decay=3.092 8 2002Hw03, 2004Hw02: <sup>252</sup>Cf(SF); measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin,  $T_{1/2}$ . <sup>133</sup>Te; deduced levels,  $J^{\pi}$ , possible configurations.

GAMMASPHERE array with 102 Compton-suppressed Ge detectors. Comparison with shell model.

Others: 2003Ha49, 2005Hw06 (the same group).

The <sup>133</sup>Te level scheme is based on relative intensities and coincidences of the observed  $\gamma$ -transitions (2002Hw03). Level configurations are proposed by 2002Hw03.

### <sup>133</sup>Te Levels

| E(level) <sup>†</sup>        | $J^{\pi \ddagger}$   | T <sub>1/2</sub> | Comments                                                                        |
|------------------------------|----------------------|------------------|---------------------------------------------------------------------------------|
| 0.0                          | $(3/2^+)$            | 12.5 min 3       | $J^{\pi}$ , $T_{1/2}$ : from Adopted Levels.                                    |
| 334.3 <sup>#</sup> 4         | $(11/2^{-})$         | 55.4 min 4       | $T_{1/2}$ : from Adopted Levels.                                                |
| 1484.9 <sup>#</sup> 3        | $(15/2^{-})$         |                  |                                                                                 |
| 1610.4 <sup>#</sup> 5        | $(19/2^{-})$         | 99 ns 6          | $T_{1/2}$ : from time-gated triple $\gamma$ -ray coincidence method (2005Hw06). |
| 1803.9 <sup>#</sup> 6        | $(17/2^{-})$         |                  |                                                                                 |
| 2331.5 <sup>@</sup> 5        | $(21/2^{-})$         |                  |                                                                                 |
| 3070.1 <sup>#</sup> 6        | $(23/2^{-})$         |                  |                                                                                 |
| 3522.5 <sup>@</sup> 7        | $(23/2^{-})$         |                  |                                                                                 |
| 3825.4 7                     |                      |                  |                                                                                 |
| 3833.47                      | $(21/2^{+})$         |                  |                                                                                 |
| $4003.5^{a}$ 7               | (21/2)<br>$(25/2^+)$ |                  |                                                                                 |
| 4032.9 <sup><i>a</i></sup> 8 | $(23/2^+)$           |                  |                                                                                 |
| 4313.1 <sup><i>a</i></sup> 8 | $(27/2^+)$           |                  |                                                                                 |
| 5214.7 <mark>&amp;</mark> 7  | $(23/2^{-})$         |                  |                                                                                 |
| 5501.5 <mark>&amp;</mark> 8  | $(25/2^{-})$         |                  |                                                                                 |
| 5600.8 7                     |                      |                  |                                                                                 |
| 5687.6 <sup>&amp;</sup> 7    | $(27/2^{-})$         |                  |                                                                                 |
| 5941.5 <sup>&amp;</sup> 7    | $(29/2^{-})$         |                  |                                                                                 |
| 6163.5 <mark>&amp;</mark> 8  | $(31/2^{-})$         |                  |                                                                                 |

<sup>†</sup> From a least-squares fit to  $E\gamma's$ .

<sup>‡</sup> From systematics in Te isotopes. Configuration assignment is mostly based on shell-model calculations (2002Hw02). <sup>#</sup> Band(A): Multiplet of  $\pi(g_{7/2}^2) \otimes \nu(h_{11/2}^{-1})$  configuration.

<sup>(a)</sup> Band(B): Multiplet of  $\pi(g_{7/2}d_{5/2}) \otimes \nu(h_{11/2}^{-1})$  configuration.

& Band(C): Multiplet of  $\pi(g_{7/2}^2) \otimes \nu((h_{11/2}^{-2})(f_{7/2}^{+1}))$  configuration.

<sup>*a*</sup> Band(D): Multiplet of  $\pi(g_{7/2}h_{11/2}) \otimes \nu(h_{11/2}^{-1})$  configuration.

| γ( | <sup>133</sup> Te) |
|----|--------------------|
|    |                    |

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_f^\pi$ |
|------------------------|------------------------|------------------------|----------------------|--------|--------------------|
| 125.5 3                | 78.3                   | 1610.4                 | $(19/2^{-})$         | 1484.9 | $(15/2^{-})$       |
| 186.1 5                | < 0.15                 | 5687.6                 | $(27/2^{-})$         | 5501.5 | $(25/2^{-})$       |
| 193.5 <i>3</i>         | 15.5                   | 1803.9                 | $(17/2^{-})$         | 1610.4 | $(19/2^{-})$       |
| 222.0 5                | 1.0                    | 6163.5                 | $(31/2^{-})$         | 5941.5 | $(29/2^{-})$       |
| 253.9 5                | 0.5                    | 5941.5                 | $(29/2^{-})$         | 5687.6 | $(27/2^{-})$       |

Continued on next page (footnotes at end of table)

### <sup>252</sup>Cf SF decay 2002Hw03,2004Hw02 (continued)

# $\gamma(^{133}\text{Te})$ (continued)

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Comments                                                                       |
|------------------------|------------------------|------------------------|----------------------|------------------|------------------------|--------------------------------------------------------------------------------|
| 286.8 5                | < 0.2                  | 5501.5                 | $(25/2^{-})$         | 5214.7           | $(23/2^{-})$           | $E_{\gamma}$ : $E_{\gamma}$ =268.8 quoted by 2002Hw03 and 2003Ha49 is a typo.  |
| 309.6 5                | 1.6                    | 4313.1                 | $(27/2^+)$           | 4003.5           | $(25/2^+)$             |                                                                                |
| 440.0 5                | < 0.06                 | 5941.5                 | $(29/2^{-})$         | 5501.5           | $(25/2^{-})$           | $E_{\gamma}$ : $E_{\gamma}$ =540.0 quoted by 2002Hw03 and 2003Ha49 is a typo.  |
| 472.9 5                | 0.5                    | 5687.6                 | $(27/2^{-})$         | 5214.7           | $(23/2^{-})$           |                                                                                |
| 475.9 5                | < 0.06                 | 6163.5                 | $(31/2^{-})$         | 5687.6           | $(27/2^{-})$           | $E_{\gamma}$ : $E_{\gamma}$ =475.09 quoted by 2002Hw03 and 2003Ha49 is a typo. |
| 481.0 5                | 0.9                    | 4003.5                 | $(25/2^+)$           | 3522.5           | $(23/2^{-})$           |                                                                                |
| 721.1 <i>3</i>         | 28.8                   | 2331.5                 | $(21/2^{-})$         | 1610.4           | $(19/2^{-})$           |                                                                                |
| 738.6 5                | 9.5                    | 3070.1                 | $(23/2^{-})$         | 2331.5           | $(21/2^{-})$           |                                                                                |
| 933.4 5                | 8.2                    | 4003.5                 | $(25/2^+)$           | 3070.1           | $(23/2^{-})$           |                                                                                |
| 962.8 5                | 0.5                    | 4032.9                 | $(23/2^+)$           | 3070.1           | $(23/2^{-})$           |                                                                                |
| 1150.6 <i>3</i>        | 100                    | 1484.9                 | $(15/2^{-})$         | 334.3            | $(11/2^{-})$           |                                                                                |
| 1191.0 5               | 1.8                    | 3522.5                 | $(23/2^{-})$         | 2331.5           | $(21/2^{-})$           |                                                                                |
| 1459.7 5               | 0.2                    | 3070.1                 | $(23/2^{-})$         | 1610.4           | $(19/2^{-})$           |                                                                                |
| 1498.0 5               | 0.5                    | 5501.5                 | $(25/2^{-})$         | 4003.5           | $(25/2^+)$             |                                                                                |
| 1603.0 5               | 0.6                    | 3934.5                 | $(21/2^+)$           | 2331.5           | $(21/2^{-})$           |                                                                                |
| 1628.4 5               | 1.1                    | 5941.5                 | $(29/2^{-})$         | 4313.1           | $(27/2^+)$             |                                                                                |
| 1684.1 5               | 0.9                    | 5687.6                 | $(27/2^{-})$         | 4003.5           | $(25/2^+)$             |                                                                                |
| 2144.6 5               | 0.6                    | 5214.7                 | $(23/2^{-})$         | 3070.1           | $(23/2^{-})$           |                                                                                |
| 2215.0 5               | 1.1                    | 3825.4                 |                      | 1610.4           | $(19/2^{-})$           |                                                                                |
| 2223.0 5               | 1.2                    | 3833.4                 |                      | 1610.4           | $(19/2^{-})$           |                                                                                |
| 3990.4 5               | 1.2                    | 5600.8                 |                      | 1610.4           | $(19/2^{-})$           |                                                                                |

<sup>†</sup> From 2002Hw03;  $\Delta E\gamma$ =0.3 keV for I $\gamma$ >10 and 0.5 keV for the others are assumed by the evaluators.



<sup>133</sup><sub>52</sub>Te<sub>81</sub>

# <sup>252</sup>Cf SF decay 2002Hw03,2004Hw02



<sup>133</sup><sub>52</sub>Te<sub>81</sub>



(21/2<sup>+</sup>) 3934.5

<sup>133</sup><sub>52</sub>Te<sub>81</sub>