¹³²Sn(d,p) 2010Jo03

History

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

2010Jo03,2007Jo09: ²H(¹³²Sn,p); measured E(p), I(p), angular distributions of protons; deduced levels, J^{π} , inverse kinematics; ORNL Holifield Radioactive Ion Beam Facility, ¹³²Sn-beam with E=630 MeV from proton-induced fission of ²³⁸U, thin foil deuterated polyethylene CD₂ target; 20 individual Si detectors, Si detector array SIDAR, six position sensitive ORRUBA detectors, $\Delta E/E$ telescopes, microchannel plate detector. Single-neutron states measured in ¹³³Sn and through the single-particle content of these states, doubly-magic character of ¹³²Sn nuclide is explored. DWBA analysis of $\sigma(\theta)$ data using local and global optical potential parameters. Comparison with data for low-lying single-particle states in ²⁰⁹Pb from ²⁰⁸Pb(d,p) reaction. Cross section data are from supplementary material in the online version of the 2010Jo03 article.

¹³³Sn Levels

There is no evidence for the population of a $9/2^-$ (from $h_{9/2}$ orbital) level at 1561 keV.

E(level)	J^{π}	L	S [@]	Comments
0	7/2-	3	0.86 16	J ^π : $\sigma(\theta)$ pattern fits $2f_{7/2}$ better than $3p_{3/2}$. configuration: proposed $\nu(f_{7/2}^{+1})$. Asymptotic normalization coefficient C ² =0.64 fm ⁻¹ 10. $d\sigma/d\Omega$ (mb/sr)=4.3 7 at 28.8°, 6.9 8 at 31.7°, 6.3 7 at 34.7°, 8.2 9 at 37.6°, 6.9 11 at 42.1°, 9.3 15 at 47.5°, 8.8 15 at 54.5°, 8.8 13 at 59.8°, 8.4 9 at 64.1° (all angles in c.m. system).
853.7 [‡] 3	3/2-	1	0.92 18	J ^π : $\sigma(\theta)$ pattern fits 3p _{3/2} better than 2f _{7/2} . configuration: proposed $\nu(p_{3/2}^{+1})$. Asymptotic normalization coefficient C ² =5.6 fm ⁻¹ 9. d $\sigma/d\Omega$ (mb/sr)=11.5 <i>12</i> at 26.4°, 11.7 <i>11</i> at 29.1°, 13.1 <i>11</i> at 32.1°, 16.5 <i>17</i> at 43.8°, 15.1 <i>15</i> at 50.2°, 11.9 <i>13</i> at 61.6° (all angles in c.m. system).
1363 [#] <i>31</i>	(1/2 ⁻)		1.1 3	configuration: proposed $\nu(p_{1/2}^{+1})$. Asymptotic normalization coefficient C ² =2.6 fm ⁻¹ 4. $d\sigma/d\Omega$ =8.7 mb/sr 17, integrated σ for 33.3°-54.0° (c.m.).
2004.6 ^{‡#}	(5/2-)		1.1 2	configuration: proposed $v(f_{5/2}^{+1})$. Asymptotic normalization coefficient C ² =(0.0009 fm ⁻¹ 2). $d\sigma/d\Omega$ =11.3 mb/sr <i>19</i> , integrated σ for 48.4°-54.7° (c.m.).

[†] From comparison of measured angular distributions with DWBA calculations for L=1 and 3 using FRESCO code with local (Stromich) and global (Lohr-Haeberli for deuteron incoming wave and Chaperl-Hill89 for outgoing protons) optical model parameters.

[‡] From Adopted Levels.

[#] Detailed angular distribution measurements were not possible.

[@] Relative quoted uncertainties include statistical and systematic.