		History		
	Туре	Author	Citation	Literature Cutoff Date
	Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112,855 (2011)	31-Oct-2010
$Q(\beta^{-}) = -1.00 \times$	$10^4 \text{ syst}; S(n)=1.0$	2×10^4 syst; $S(p)=2.9 \times 10^3$ syst; $Q(\alpha)=2.7 \times 10^3$	syst 2012Wa38	
Note: Current e	evaluation has used	the following Q record –10191 SY10372	SY2846 SY2542 sy	st 2009AuZZ.
$\Delta Q(\beta^+)=357, \Delta$	$\Delta S(n)=357, \Delta S(p)=$	=277, $\Delta Q(\alpha)$ =281 (syst.,2009AuZZ).		
Q(<i>ɛ</i> p)=6969 19	97 (syst,2009AuZZ).		

¹³³Sm Levels

Cross Reference (XREF) Flags

A 96 Ru(40 Ca,2pn γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0#	(5/2+)	2.89 s 16	A	
139.7 [@] 6	$(7/2^+)$		Α	
314.7 [#] 6	$(9/2^+)$		Α	
523.8 [@] 6	$(11/2^+)$		Α	
762.9 [#] 6	$(13/2^+)$		Α	
1032.0 ^(@) 6	$(15/2^+)$		Α	
1326.4# 6	$(17/2^+)$		Α	
1640.4 [@] 6	$(19/2^+)$		Α	
1976.0 [#] 6	$(21/2^+)$		Α	
2326.2 ^(@) 6	$(23/2^+)$		Α	
2692.1 [#] 7	$(25/2^+)$		Α	
3064.4 ^(@) 7	$(27/2^+)$		Α	
3429.5 [#] 8	$(29/2^+)$		Α	
0.0+y	(1/2 ⁻)	3.5 s 4	A	 %ε+%β⁺=?; %IT=?; %εp=? Additional information 1. E(level): The assignment of this level as an isomer is tentative. Calculations using the Woods-Saxon-Strutinsky approach in 2006Xu07 predict that the 1/2[541] orbital is 120 keV lower in energy compared to 5/2[402] one. J^π: Tentative assignment. Given the proposed v1/2[541] (h_{9/2}) configuration, the rotational band associated with this state would be expected to have large signature splitting owing to the strong Coriolis interactions, and in some instances the J^π=5/2⁻ band member becomes lower in energy. T_{1/2}: weighted average of 3.7 s 7 (1993BrZU) and 3.4 s 5 (2001Xu04) from 156.8γ(t) and 369.6γ(t). configuration: v1/2[541] (h_{9/2}).
91.40+y ^{&} 20	(5/2 ⁻)		A	

¹³³Sm Levels (continued)

E(level) [†]	J ^π ‡	XREF	Comments
290.5+y ^{&} 6	$(9/2^{-})$	A	
603.6+y& 8	$(13/2^{-})$	А	
$1033.7 + v^{\&} 8$	$(17/2^{-})$	Α	
$1577.8 + v^{\&} 8$	$(21/2^{-})$	A	
$2228.9 + v^{\&} 9$	$(25/2^{-})$	A	
$2980.0 \pm v^{\&} 10$	$(29/2^{-})$	Δ	
$3826 1 + y^{\&} 11$	$(23/2^{-})$	Δ	
$1753 2 \pm y^{\&} 11$	$(35/2^{-})$	Δ	
$5757.2 + y^{\&} 13$	$(37/2^{-})$	л л	
$0.0+z^{a}$	$(7/2^{-})$	A	Additional information 2
0.012	(7/2)		configuration: $v7/2[523]$ (h _{11/2}), supported by the in-band properties.
101.3+z ^b 3	$(9/2^{-})$	A	
246.3+z ^a 3	$(11/2^{-})$	Α	
436.7+z ^b 4	$(13/2^{-})$	Α	
$648.2 + z^{a}$ 4	$(15/2^{-})$	Α	
$900.5 + z^{b} 5$	$(17/2^{-})$	Α	
$1154.4 + z^{a} 5$	$(19/2^{-})$	A	
$1448.6 + z^0 5$	$(21/2^{-})$ $(22/2^{-})$	A	
$1/41.4+2^{\circ}$ 5	(25/2)	A	
$2071.8+2^{\circ}5$ 2403 6+ z^{a} 6	$(23/2^{-})$ $(27/2^{-})$	A	
$27727 + z^{b} 6$	$(29/2^{-})$	Δ	
$3142.8 + z^a$ 7	$(2)/2^{-})$ $(31/2^{-})$	A	
3550.8+z ^b 6	$(33/2^{-})$	А	
3956.9+z ^a 7	$(35/2^{-})$	Α	
4397.9+z ^b 8	$(37/2^{-})$	Α	
4840.0+z ^a 9	$(39/2^{-})$	Α	
5785.1+z ^{<i>a</i>} 11	$(43/2^{-})$	A	
0.0+u		A	Additional information 3. $E(loval)_{i}$ the $(5/2^{+})$ as a set the $(1/2^{-})$ isometric loval in ¹³³ Sm
80.9+u ^c 7	$(1/2^{+})$	A	configuration: $y1/2[411]$ (d ₂₀).
$96.90 \pm u^d$ 10	$(3/2^+)$	A	·····8································
231.02+u ^c 15	$(5/2^+)$	A	
268.5+u ^d 5	$(7/2^+)$	Α	
491.1+u ^c 5	$(9/2^+)$	Α	
544.7+u ^d 7	$(11/2^+)$	Α	
843.2+u ^c 6	$(13/2^+)$	A	
$910.9 + u^{a} 7$	$(15/2^+)$	A	
$12/8.7 + u^{\circ} / 1265.5 + u^{\circ} / 0$	$(1/2^{+})$ $(10/2^{+})$	A	
$1303.3 + u^{\circ} 9$ $1801.5 + u^{\circ} 8$	$(19/2^+)$ $(21/2^+)$	A A	
$1910.8 + u^d$ 10	$(23/2^+)$	A	
2402.7+u ^c 9	$(25/2^+)$	A	
2544.0+u ^d 11	$(27/2^+)$	Α	
3065.8+u ^c 9	$(29/2^+)$	Α	
$3267.1 + u^{d}$ 11	$(31/2^+)$	A	
5700.5+u- 10	$(33/2^{+})$	A	

¹³³Sm Levels (continued)

E(level) [†]	J π ‡	XREF
4077.4+u ^d 12	$(35/2^+)$	Α
4499.6+u ^c 11	$(37/2^+)$	Α
4973.5+u ^d 15	$(39/2^+)$	Α
5294.0+u ^c 12	$(41/2^+)$	Α
5945.4+u ^d 17	$(43/2^+)$	Α
7001.5+u? ^d 17	$(47/2^+)$	Α

[†] From least-squares fit to $E\gamma$'s.

[‡] From deduced transition multipolarities and the observed apparent band structures with $\Delta J=2$ cascade transitions or with $\Delta J=1$ cascade and $\Delta J=2$ crossover transitions in 96 Ru(40 Ca,2pn γ).

[#] Band(A): 1-qp band based on the $(5/2^+)$ g.s., $\alpha = +1/2$; possible configuration= $\nu 5/2$ [402] (d_{5/2}).

[@] Band(B): 1-qp band based on the $(7/2^+)$ state at 139.7-keV, $\alpha = -1/2$; possible configuration=v5/2[402] (d_{5/2}).

& Band(C): 1-qp band based on the $(1/2^{-})$ state at 0.0+Y-keV, possible configuration= $\nu 1/2[541]$ (h_{9/2}), decoupled band.

^{*a*} Band(D): 1-qp band based on the $(7/2^{-})$ state at 0.0+Z-keV, $\alpha = -1/2$; possible configuration= $\nu 7/2$ [523] (h_{11/2}).

^b Band(E): 1-qp band based on the (9/2⁻) state at 101.3+Z-keV, α =+1/2; possible configuration= ν 7/2[523] (h_{11/2}).

^{*c*} Band(F): 1-qp band based on the (1/2⁺) state at 80.9+U-keV, α =+1/2; possible configuration= ν 1/2[411] (d_{3/2}) which at high-spin may be crossed by the ν 1/2[660] orbital. Probable highly-deformed band.

^d Band(G): 1-qp band based on the $(3/2^+)$ state at 96.90+U-keV, $\alpha = -1/2$; possible configuration= $\nu 1/2$ [411] (d_{3/2}) which at high-spin may be crossed by the $\nu 1/2$ [660] orbital. Probable highly-deformed band.

E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^π	Mult.‡
139.7	$(7/2^+)$	139.1 8	100	0.0	$(5/2^+)$	(M1)
314.7	$(9/2^+)$	175.1 2	55 8	139.7	$(7/2^+)$	× /
		315.1 7	100 10	0.0	$(5/2^+)$	E2
523.8	$(11/2^+)$	209.1 <i>1</i>	100 14	314.7	$(9/2^+)$	(M1)
	· · ·	384.1 <i>1</i>	70 12	139.7	$(7/2^+)$	E2
762.9	$(13/2^+)$	239.1 <i>1</i>	51 11	523.8	$(11/2^+)$	(M1)
		449.1 5	100 11	314.7	$(9/2^+)$	E2
1032.0	$(15/2^+)$	269.1 3	74 22	762.9	$(13/2^+)$	(M1)
		509.1 5	100 22	523.8	$(11/2^+)$	E2
1326.4	$(17/2^+)$	294.1 <i>3</i>	34 10	1032.0	$(15/2^+)$	(M1)
		563.1 <i>3</i>	100 15	762.9	$(13/2^+)$	E2
1640.4	$(19/2^+)$	314.1 6	62 31	1326.4	$(17/2^+)$	(M1)
		608.4 <i>1</i>	100 19	1032.0	$(15/2^+)$	E2
1976.0	$(21/2^+)$	335.1 9	33 30	1640.4	$(19/2^+)$	(M1)
		649.1 <i>3</i>	100 17	1326.4	$(17/2^+)$	E2
2326.2	$(23/2^+)$	350.1 <i>1</i>	45 <i>35</i>	1976.0	$(21/2^+)$	(M1)
		685.9 <i>1</i>	100 45	1640.4	$(19/2^+)$	E2
2692.1	$(25/2^+)$	366.1 5	44 28	2326.2	$(23/2^+)$	(M1)
		716.1 7	100 40	1976.0	$(21/2^+)$	
3064.4	$(27/2^+)$	373.3 8	57 64	2692.1	$(25/2^+)$	(M1)
		738.1 4	100 86	2326.2	$(23/2^+)$	
3429.5	$(29/2^+)$	365.4 7	58 <i>83</i>	3064.4	$(27/2^+)$	(M1)
		737.1 6	100 93	2692.1	$(25/2^+)$	
91.40+y	$(5/2^{-})$	91.4 2	100	0.0+y	$(1/2^{-})$	
290.5+y	$(9/2^{-})$	199.1 5	100	91.40+y	$(5/2^{-})$	E2
603.6+y	$(13/2^{-})$	313.1 5	100	290.5+y	$(9/2^{-})$	E2
1033.7+y	$(17/2^{-})$	430.1 2	100	603.6+y	$(13/2^{-})$	E2

 γ ⁽¹³³Sm)

Continued on next page (footnotes at end of table)

γ ⁽¹³³Sm) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]
1577.8+y	$(21/2^{-})$	544.1 <i>1</i>	100	1033.7+y	$(17/2^{-})$	E2
2228.9+y	$(25/2^{-})$	651.1 4	100	1577.8+y	$(21/2^{-})$	E2
2980.0+y	$(29/2^{-})$	751.1 5	100	2228.9+y	$(25/2^{-})$	E2
3826.1+y	$(33/2^{-})$	846.1 <i>3</i>	100	2980.0+y	$(29/2^{-})$	E2
4753.2+y	$(37/2^{-})$	927.1 2	100	3826.1+y	$(33/2^{-})$	
5757.3+y	$(41/2^{-})$	1004.1 7	100	4753.2+y	$(37/2^{-})$	
101.3+z	$(9/2^{-})$	102.1 5	100	0.0+z	$(7/2^{-})$	
246.3+z	$(11/2^{-})$	145.0 <i>1</i>	100	101.3+z	$(9/2^{-})$	(M1)
		246.0 3	84 6	0.0+z	$(7/2^{-})$	E2
436.7+z	$(13/2^{-})$	190.9 4	84 7	246.3+z	$(11/2^{-})$	(M1)
		334.8 5	100 8	101.3+z	$(9/2^{-})$	E2
648.2+z	$(15/2^{-})$	211.1 4	77 13	436.7+z	$(13/2^{-})$	(M1)
		401.7 5	100 13	246.3+z	$(11/2^{-})$	E2
900.5+z	$(17/2^{-})$	251.7 5	36 10	648.2+z	$(15/2^{-})$	
	(10/0-)	464.1 3	100 11	436.7+z	$(13/2^{-})$	E2
1154.4+z	$(19/2^{-})$	255.5 7	84 24	900.5+z	$(17/2^{-})$	
1.1.10.6	(01/0-)	506.2 1	100 20	648.2+z	$(15/2^{-})$	E2
1448.6+z	$(21/2^{-})$	294.1 2	46 9	1154.4+z	$(19/2^{-})$	
1741 4	(22/2-)	548.1 1	100 18	900.5+z	$(1^{-}/2^{-})$	E2
1/41.4+z	(23/2)	292.8 2	26.0	1448.6+z	(21/2)	
0071.0	(25/2-)	587.4 4	100 10	1154.4+z	(19/2)	E2
2071.8+Z	(25/2)	330.4 1	33 22	1/41.4+Z	(23/2)	F 2
2402 6	(07/0-)	623.1 2	100 17	1448.6+z	(21/2)	E2
2403.6+z	(21/2)	331.9 8	26 17	20/1.8+z	(25/2)	F 2
0770 7 .	(20/2-)	662.3 9	100 14	1/41.4+z	(23/2)	E2
2772.7+Z	(29/2)	309.1 <i>I</i>	32 30 100 20	2403.0+2 2071.8+7	(21/2)	EO
2142.8 + 7	$(21/2^{-})$	700.9 5	21 24	2071.8+Z	(23/2)	E2
5142.0+Z	(31/2)	730.1.2	100 15	2/12.7+2 2/03.6+7	(29/2)	E2
3550 8±7	$(33/2^{-})$	739.1 2	100 15	2403.0 ± 2	(21/2) $(20/2^{-})$	E2 E2
3056 0±z	$(35/2^{-})$	814.1.2	100	$21/2.7\pm 2$ $31/2.8\pm 7$	(29/2) $(31/2^{-})$	Ľ2
4307.9 ± 7	$(33/2^{-})$	847 1 4	100	3142.0+2 3550 8+7	(31/2) $(33/2^{-})$	
4840.0 ± 7	$(30/2^{-})$	88315	100	3956 9+z	$(35/2^{-})$	
5785 1+z	$(3)/2^{-})$	945 1 7	100	4840.0+7	$(39/2^{-})$	
96 90+11	$(3/2^+)$	96.9.7	100	0.0+1	(3)[2])	
231.02+u	$(5/2^+)$	134.1 /	100 28	96.90+11	$(3/2^+)$	(M1)
20110214	(0/2)	150.1.6	78.39	80.9+11	$(1/2^+)$	E2
268.5+u	$(7/2^+)$	172.1 5	100	96.90+u	$(3/2^+)$	E2
491.1+u	$(9/2^+)$	223.1 5	40 23	268.5+u	$(7/2^+)$	(M1)
		259.1 7	100 17	231.02+u	$(5/2^+)$	E2
544.7+u	$(11/2^+)$	276.1 8	100	268.5+u	$(7/2^+)$	E2
843.2+u	$(13/2^+)$	298.6 5	39 29	544.7+u	$(11/2^+)$	(M1)
		352.1 <i>3</i>	100 29	491.1+u	$(9/2^+)$	E2
910.9+u	$(15/2^+)$	366.1 <i>3</i>	100	544.7+u	$(11/2^+)$	E2
1278.7+u	$(17/2^+)$	367.7 2	41 32	910.9+u	$(15/2^+)$	(M1)
		436.1 8	100 40	843.2+u	$(13/2^+)$	E2
1365.5+u	$(19/2^+)$	454.6 6	100	910.9+u	$(15/2^+)$	E2
1801.5+u	$(21/2^{+})$	435.1 [#] 6	35 30	1365.5+u	$(19/2^{+})$	(M1)
	(,-)	522.8 4	100 35	1278.7+u	$(17/2^+)$	E2
1910.8+u	$(23/2^+)$	545.3 3	100	1365.5+u	$(19/2^+)$	E2
2402.7+u	$(25/2^+)$	601.2 2	100	1801.5+u	$(21/2^+)$	E2
2544.0+u	$(27/2^+)$	633.2 4	100	1910.8+u	$(23/2^+)$	E2
3065.8+u	$(29/2^+)$	663.1 4	100	2402.7+u	$(25/2^+)$	E2
3267.1+u	$(31/2^+)$	723.1 2	100	2544.0+u	$(27/2^+)$	E2
3760.5+u	$(33/2^+)$	694.7 <i>2</i>	100	3065.8+u	$(29/2^+)$	E2

Continued on next page (footnotes at end of table)

$\gamma(^{133}\text{Sm})$ (continued)	$\gamma(^{133}\text{Sm})$	(continued)
---------------------------------------	---------------------------	-------------

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	
4077.4+u	$(35/2^+)$	810.3 6	100	3267.1+u (31/2 ⁺)
4499.6+u	$(37/2^+)$	739.1 4	100	3760.5+u (33/2 ⁺)
4973.5+u	$(39/2^+)$	896.1 8	100	4077.4+u (35/2 ⁺)
5294.0+u	$(41/2^+)$	794.4 6	100	4499.6+u (37/2 ⁺)
5945.4+u	$(43/2^+)$	971.9 8	100	4973.5+u (39/2 ⁺)
7001.5+u?	$(47/2^+)$	1055.7 [#] 5	100	5945.4+u (43/2+)

[†] From 90 Ru(40 Ca,2pn γ) data.

¹From $\gamma \gamma(\theta)$ (DCO) values and the observed apparent band structures with $\Delta J=2$ cascade transitions or with $\Delta J=1$ cascade and $\Delta J=2$ crossover transitions in 96 Ru(40 Ca,2pn γ). [#] Placement of transition in the level scheme is uncertain.

 $^{133}_{62}\text{Sm}_{71}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{133}_{62}\mathrm{Sm}_{71}$

		Band(F): 1-qp band based on the $(1/2^+)$ state at 80.9+U-keV, α =+1/2; possible configuration= v1/2[411] (d _{3/2}) which at high-spin may be crossed by the v1/2[660] orbital
		(41/2 ⁺) 5294.0+u
		(37/2 ⁺) ⁷⁹⁴ 4499.6+u
		$(33/2^+) \stackrel{739}{\bullet} 3760.5+u$
		(29/2 ⁺) 695 3065.8+u
Band(D): 1.an hand hase	1	(25/2 ⁺) 663 2402.7+u
on the $(7/2^-)$ state at		$(21/2^+)$ 601 1801.5+u
0.0+Z-keV, α=-1/2;		$(17/2^+)$ 1278.7+u
possible configuration=		$(13/2^{+})$ /843.2+u $(0/2^{\pm})$ /26 /403 1
$v7/2[523](h_{11/2})$	Band(E): 1-qp band based on the $(9/2^{-})$ state at	$\frac{(5/2^+)}{(5/2^+)}$ $\frac{430}{352}$ $\frac{491.1+u}{231}$
(43/2-) 5795 1	$101.3+Z-keV. \alpha =+1/2:$	$\frac{(1/2^+)}{(1/2^+)}$ 259 80 9+11
(43/2) 5/85.1+Z	possible configuration=	00014
945	v7/2[523] (h _{11/2})	
$(39/2^{-})$ 4840.0+z		
883	(37/2 ⁻) 4397.9+z	
(35/2 ⁻) 3956.9+z	847	
814	(33/2 ⁻) 3550.8+z	
(31/2 ⁻) 3142.8+z	778	
(27/2-) 739	(29/2 ⁻) 2772.7+z	
(27/2) 2403.6+z	(25/2-) 701 2071 817	
$(23/2^{-})$ 662 1741.4+z		
(10/0-) 587	$(21/2^{-})$ $\overset{623}{\checkmark}$ 1448.6+z	
$(19/2^{-})$ 567 1154.4+z	(17/2-) 548 900 5+7	
(15/2) 506 648.2+z	$(13/2^{-})$ 464 436.7+z	
(11/2) 402 246.3+Z	$(9/2^{-})$ 335 101.3+z	
(<i>112</i>) 246 0.0+2		

Band(C): 1-qp band based on the (1/2 ⁻) state at 0.0+Y-keV, possible configuration=v1/2[541] (h _{9/2}), decoupled band	l

on the (1/ 0.0+Y-kc configurati (h _{9/2}), dec	'2 ⁻) state at eV, possible on=v1/2[541] oupled band
(41/2 ⁻)	5757.3+y
(37/2 ⁻) ¹⁰	04 4753.2+y

927

846

 $(33/2^{-})$

3826.1+y

2980.0+y ⁷⁵¹ 2228.9+y

1577.8+y

1033.7+y

430 /290.5+y

313 91.40+y

Band(A): 1-qp band based on the $(5/2^+)$ g.s., $\alpha = +1/2$; possible configuration= $v5/2[402]$ $(d_{5/2})$ $(29/2^+)$ 3429.5 $(25/2^+)$ 737 $(25/2^+)$ 738 $(25/2^-)$ 751 $(21/2^-)$ 541 $(17/2^-)$ 544 $(13/2^-)$ 430 $(5/2^-)$ 1199 $(11/2^+)$ 688 $(13/2^+)$ 608 $(103/2^+)$ 608 $(103/2^+)$ 608 $(103/2^+)$ 608 $(103/2^+)$ 608 $(103/2^+)$ 608 $(103/2^-)$ 616 $(10/2^+)$ 608 $(103/2^+)$ 608 $(103/2^+)$ 608 $(103/2^+)$ 609 $(11/2^+)$ 509 $(11/2^+)$ 509 $(11/2^+)$ 384 $(139/2^+)$ 315 $(11/2^+)$ 315 (1					(29/2 ⁻)
$\begin{array}{c} \text{on the } (5/2^+) \text{ g.s.,} \\ \alpha=\pm1/2; \text{ possible} \\ \text{configuration}=v5/2[402] \\ (d_{5/2}) \\ (29/2^+) \\ (25/2^+) \\ (25/2^+) \\ (21/2^-) \\ (21/2^-)$	Band(A): 1-qr	band based			(25/2-) 751
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	on the (5/ α=+1/2; j configuration (d _{5/}	2 ⁺) g.s., possible n=v5/2[402] 2)	Band(B): 1-qp on the (7/2 ⁺ 139.7-keV, possible confi v5/2[402]	band based) state at $\alpha = -1/2$; guration= $(d_{5/2})$	$\begin{array}{c} (21/2^{-}) & 651 \\ \hline (17/2^{-}) & 544 \\ \hline (13/2^{-}) & 544 \\ \hline (9/2^{-}) & 430 \\ \hline & 313 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(29/2+)	3429.5			$(5/2^{-})$ 199.
$\begin{array}{c} (23/2^+) & 738 \\ (21/2^+) & 716 \\ (17/2^+) & 649 \\ (13/2^+) & 563 \\ (13/2^+) & 563 \\ (5/2^+) & 315 \\ (5/2^+) & 315 \\ \end{array} \begin{array}{c} (23/2^+) & 738 \\ (23/2^+) & 738 \\ (19/2^+) & 686 \\ (19/2^+) & 686 \\ (10/2^+) & 608 \\ (10/2^+) & 608 \\ (10/2^+) & 608 \\ (10/2^+) & 608 \\ (10/2^+) & 509 \\ (11/2^+) & 509 \\ (5/2^+) & 315 \\ (0, 0) \\ (7/2^+) & 384 \\ (13/2^+) & 317 \\ (11/2^+) & 317 \\ (11/2^+) & 384 \\ (13/2^+) & 317 \\ (11/$	(25/2 ⁺) 737	2692.1		3064.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	716		(23/2+) 738	2326.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(21/2 ⁺) (21/2 ⁺	1976.0	(19/2 ⁺) 686	1640.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1326.4	(15/2+) 608	1032.0	
$(5/2^+)$ $(5/2^+)$ $(7/2$	$\frac{(13/2^+)}{(9/2^+)}$ 440		(11/2+) 509	523.8	
	$(5/2^+)$ (449) $(5/2^+)$ 315	0.0	(7/2 ⁺) 384	139.7	

 $^{133}_{62}\text{Sm}_{71}$

 $^{133}_{62}\text{Sm}_{71}$