96 Ru(40 Ca,2pn γ) 1999Pa46

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

1991Re03 (1991ReZY): 96 Ru(40 Ca,2pn), E=180 MeV; measured $\gamma\gamma$, n γ , n γ , recoil- γ , n-recoil- γ coin. 133 Sm; deduced levels, Jp, rotational band structure, configuration. POLYTESSA array, 10 Compton-suppressed detectors.

1999Pa46: ⁹⁶Ru(⁴⁰Ca,2pn), E=180 MeV; measured E γ , I γ , $\gamma\gamma$ - and (charged particle) γ -coin., $\gamma\gamma(\theta)$ (DCO). ¹³³Sm; deduced high-spin levels, J, π , B(M1)/B(E2), configurations, deformation. Cranked mean field calculations. Tandem, the 8π spectrometer array of 20 Compton-suppressed HPGe detectors, a 70-element BGO inner ball, and a CsI detector array for charged particle detection.

Other: 1989Wa20. The ¹³³Sm level scheme was built on the basis of $\gamma\gamma$ coin., DCO values analysis and calculations. Rotational structures were determined by examination of their dynamic moments of inertia and alignment gains (1999Pa46 and 1991Re03).

¹³³Sm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0&	$(5/2^+)$	2.89 s 16	$\%\varepsilon + \%\beta^+ = 100; \%\varepsilon p > 0$
139.7 ^{<i>a</i>} 6	$(7/2^+)$		
314.7 ^{&} 6	$(9/2^+)$		
523.8 ^{<i>a</i>} 6	$(11/2^+)$		
762.9 ^{x} 6	$(13/2^+)$		
1032.04 6	$(15/2^{+})$		
1326.4° 6	$(17/2^{+})$		
1040.4 0	$(19/2^{+})$		
$19/6.0^{\circ\circ} 0$ 2326.2 ^{<i>a</i>} 6	$(21/2^+)$ $(23/2^+)$		
2520.2 + 0 2692 1 $\&$ 7	$(25/2^+)$		
3064.4^{a} 7	$(25/2^{+})$ $(27/2^{+})$		
3429.5 ^{&} 8	$(29/2^+)$		
0.0+y ^d	$(1/2^{-})$	3.5 s 4	$\% \varepsilon + \% \beta^+ < 100; \% IT = ?; \% \varepsilon p = ?$
			Additional information 1.
d			$T_{1/2}$: from Adopted Levels.
91.40+y ^{<i>a</i>} 20	$(5/2^{-})$		
290.5+y ^{d} 6	$(9/2^{-})$		
$603.6 + y^d 8$	$(13/2^{-})$		
1033.7+y ^d 8	$(17/2^{-})$		
1577.8+y ^d 8	$(21/2^{-})$		
$2228.9 + y^d 9$	$(25/2^{-})$		
2980.0+y ^d 10	$(29/2^{-})$		
3826.1+y ^d 11	$(33/2^{-})$		
4753.2+y ^d 11	$(37/2^{-})$		
5757.3+y ^d 13	$(41/2^{-})$		
$0.0+z^{\#}$	$(7/2^{-})$		Additional information 2.
101.3+z [@] 3	(9/2-)		
246.3+z [#] 3	$(11/2^{-})$		
436.7+z [@] 4	$(13/2^{-})$		
648.2+z [#] 4	$(15/2^{-})$		
900.5+z [@] 5	$(17/2^{-})$		
1154.4+z [#] 5	(19/2-)		

Continued on next page (footnotes at end of table)

⁹⁶Ru(⁴⁰Ca,2pnγ) **1999Pa46** (continued)

¹³³Sm Levels (continued)

Comments

E(level)	J^{π}	
1448.6+z [@] 5	$(21/2^{-})$	
1741.4+z [#] 5	$(23/2^{-})$	
2071.8+z [@] 5	$(25/2^{-})$	
2403.6+z [#] 6	$(27/2^{-})$	
2772.7+z [@] 6	$(29/2^{-})$	
3142.8+z [#] 7	$(31/2^{-})$	
3550.8+z [@] 6	$(33/2^{-})$	
3956.9+z [#] 7	$(35/2^{-})$	
4397.9+z [@] 8	$(37/2^{-})$	
4840.0+z [#] 9	$(39/2^{-})$	
5785.1+z [#] 11	$(43/2^{-})$	
0.0+u		Additional information 3.
$80.9 + u^{c} 7$	$(1/2^+)$	
96.90+u ⁰ 10	$(3/2^+)$	
$231.02 + u^{c}$ 15	$(5/2^+)$	
268.5+u ^D 5	$(7/2^+)$	
491.1+u ^c 5	$(9/2^+)$	
544.7+u ⁰ 7	$(11/2^+)$	
843.2+u ^c 6	$(13/2^+)$	
910.9+u ⁰ 7	$(15/2^+)$	
12/8./+u ^e /	$(1/2^{+})$	
$1365.5 + u^0 9$	$(19/2^+)$	
1801.5+u ^e 8	$(21/2^{+})$	
$1910.8 + u^{\circ} 10$	$(23/2^+)$	
$2402.7 + u^2 9$	$(23/2^{+})$	
$2544.0 \pm u^{\circ}$ 11 3065 8 \pm u^{\circ} 0	$(21/2^{+})$ $(20/2^{+})$	
$3005.0+u^{-5}$	(23/2)	
$3760.5 \pm \mu^{c}$ 10	(31/2) $(33/2^+)$	
$4077 4 + u^{b} 12$	$(35/2^+)$	
4499.6+u ^c 11	$(37/2^+)$	
4973.5+u ^b 15	$(39/2^+)$	
5294.0+u ^c 12	$(41/2^+)$	
5945.4+u ^b 17	$(43/2^+)$	
7001.5+u? ^b 17	$(47/2^+)$	

[†] From a least-squares fit to $E\gamma$'s. Band assignment is from 1999Pa46.

[‡] On the basis of DCO measurements of 1999Pa46 and systematics.

[#] Band(A): 1-qp band based on the $(7/2^{-})$ state at 0.0+Z-keV, $\alpha = -1/2$; possible configuration= $\nu 7/2[523]$ (h_{11/2}).

[@] Band(a): 1-qp band based on the $(9/2^{-})$ state at 101.3+Z-keV, $\alpha = +1/2$; possible configuration= $\nu 7/2[523]$ (h_{11/2}).

& Band(B): 1-qp band based on the $(5/2^+)$ g.s., $\alpha = +1/2$; possible configuration=v5/2[402] (d_{5/2}).

^{*a*} Band(b): 1-qp band based on the $(7/2^+)$ state at 139.7-keV, $\alpha = -1/2$; possible configuration=v5/2[402] (d_{5/2}).

^b Band(C): 1-qp band based on the (1/2⁺) state at 80.9+U-keV, α =+1/2; possible configuration= ν 1/2[411] (d_{3/2}) which at high-spin may be crossed by the ν 1/2[660] orbital. Probable highly-deformed band.

^c Band(c): 1-qp band based on the $(3/2^+)$ state at 96.90+U-keV, $\alpha = -1/2$; possible configuration= $\nu 1/2$ [411] (d_{3/2}) which at

⁹⁶**Ru**(⁴⁰**Ca,2pn**γ) **1999Pa46** (continued)

¹³³Sm Levels (continued)

high-spin may be crossed by the v1/2[660] orbital. Probable highly-deformed band.

^d Band(D): 1-qp band based on the $(1/2^{-})$ state at 0.0+Y-keV, possible configuration= $\nu 1/2[541]$ (h_{9/2}), decoupled band.

$\gamma(^{133}{\rm Sm})$

When gating on stretched quadrupole transitions, DCO values are equal to ≈ 1.5 for known stretched quadrupole (E2) γ rays, while for known stretched dipole γ rays, the values are ≈ 0.75 (1999Pa46).

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [@]	Comments
91.4 2	34 [#] 10	91.40+y	$(5/2^{-})$	0.0+y	$(1/2^{-})$		
96.9 <i>1</i>	12 [#] 9	96.90+u	$(3/2^+)$	0.0+u			
102.1 5	85 [#] 15	101.3+z	(9/2-)	0.0+z	$(7/2^{-})$		
134.1 <i>1</i>	18 [#] 5	231.02+u	$(5/2^+)$	96.90+u	$(3/2^+)$	D	DCO=0.79 10.
139.1 8	75 7	139.7	$(7/2^+)$	0.0	$(5/2^+)$	D	DCO=0.72 2.
145.0 1	100	246.3+z	(11/2)	101.3+z	(9/2)	D	DCO=0.70 3.
150.1 0	14" / 76 7	231.02+u 268.5+u	$(5/2^+)$ $(7/2^+)$	80.9+u 96.90±u	$(1/2^+)$ $(3/2^+)$	E2 E2	DCO=1.60 /.
175.1 2	40 6	314.7	$(9/2^+)$	139.7	$(7/2^+)$	12	DCO=0.81 8.
190.9 4	51 4	436.7+z	$(13/2^{-})$	246.3+z	$(11/2^{-})$	D	DCO=0.81 7.
199.1 5	79 7	290.5+y	(9/2 ⁻)	91.40+y	(5/2 ⁻)	E2	DCO=1.68 <i>3</i> .
209.1 1	50 [#] 7	523.8	$(11/2^+)$	314.7	$(9/2^+)$	D	DCO=0.66 7.
211.1 4	49 8	648.2+Z	(15/2)	430.7+Z	(13/2)	D	DCO=0.05 9.
223.1 5	14" 8 24 5	491.1+u 762 9	$(9/2^+)$ $(13/2^+)$	268.5+u 523.8	$(1/2^{+})$ $(11/2^{+})$	D D	DCO=0.87.3. DCO=0.75.7
246.0 3	84 6	246.3+z	$(13/2^{-})$ $(11/2^{-})$	0.0+z	$(7/2^{-})$	E2	DCO=1.46 <i>13</i> .
251.7 5	22 6	900.5+z	$(17/2^{-})$	648.2+z	$(15/2^{-})$		
255.5 7	21 6	1154.4+z	(19/2 ⁻)	900.5+z	$(17/2^{-})$		
259.1 7	35# 6	491.1+u	$(9/2^+)$	231.02+u	$(5/2^+)$	E2	DCO=1.67 8.
269.13	20.0	1032.0 544.7 ± 0	$(15/2^{+})$ $(11/2^{+})$	762.9 268 5±11	$(13/2^{+})$ $(7/2^{+})$	D F2	DCO=1.63.3
292.8 2	13 3	1741.4+z	$(11/2^{-})$ $(23/2^{-})$	1448.6+z	$(1/2^{-})$ $(21/2^{-})$	12	DC0-1.05 5.
294.1 2	15 <i>3</i>	1448.6+z	$(21/2^{-})$	1154.4+z	$(19/2^{-})$		
294.1 <i>3</i>	14 4	1326.4	$(17/2^+)$	1032.0	$(15/2^+)$	D	DCO=0.62 8.
298.6 5	11# 8	843.2+u	$(13/2^+)$	544.7+u	$(11/2^+)$	D	DCO=0.65 7.
313.13	$\frac{5}{0}$	603.6+y	(13/2)	290.5+y	(9/2)	E2 D	DCO = 1.55 2.
314.1 0 315 1 7	10" 8 73 7	1040.4 314 7	$(19/2^{+})$ $(9/2^{+})$	1326.4	$(1/2^{+})$ $(5/2^{+})$	D E2	DCO=0.85 9. DCO=1 55 9
330.4 1	$12^{\#} 8$	2071.8+z	$(25/2^{-})$	1741.4+z	$(3/2^{-})$ $(23/2^{-})$	22	
331.9.8	11# 7	2403.6+z	$(27/2^{-})$	2071.8+z	$(25/2^{-})$		
334.8 5	61 5	436.7+z	$(13/2^{-})$	101.3+z	(9/2 ⁻)	E2	DCO=1.55 3.
335.1 9	10 [#] 9	1976.0	$(21/2^+)$	1640.4	$(19/2^+)$	D	DCO=0.67 5.
350.1 <i>1</i>	9 [#] 7	2326.2	$(23/2^+)$	1976.0	$(21/2^+)$	D	DCO=0.68 12.
352.1 <i>3</i>	28 [#] 8	843.2+u	$(13/2^+)$	491.1+u	$(9/2^+)$	E2	DCO=1.60 5.
365.4 7	7 [#] 10	3429.5	$(29/2^+)$	3064.4	$(27/2^+)$	D	DCO=0.79 10.
366.1 <i>3</i>	85 8	910.9+u	$(15/2^+)$	544.7+u	$(11/2^+)$	E2	DCO=1.42 8.
366.1 5	11 [#] 7	2692.1	$(25/2^+)$	2326.2	$(23/2^+)$	D	DCO=0.74 7.
367.7 2	9 [#] 7	1278.7+u	$(17/2^+)$	910.9+u	$(15/2^+)$	D	DCO=0.70 8.
369.1 <i>1</i>	8 [#] 9	2772.7+z	$(29/2^{-})$	2403.6+z	$(27/2^{-})$		
370.4 4	7 # 8	3142.8+z	$(31/2^{-})$	2772.7+z	$(29/2^{-})$		

Continued on next page (footnotes at end of table)

⁹⁶**Ru**(⁴⁰**Ca,2pn**γ) **1999Pa46** (continued)

$\gamma(^{133}\text{Sm})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.@	Comments
373.3 8	8 [#] 9	3064.4	$(27/2^+)$	2692.1	$(25/2^+)$	D	DCO=0.69 8.
384.1 <i>1</i>	35 6	523.8	$(11/2^+)$	139.7	$(7/2^+)$	E2	DCO=1.68 8.
401.7 5	64 8 76 8	648.2+z	$(15/2^{-})$ $(17/2^{-})$	246.3+z	$(11/2^{-})$ $(13/2^{-})$	E2 E2	DCO=1.56 3.
430.12	6 [#] 5	1055.7+y 1801 5±u	(17/2) $(21/2^+)$	1365 5±1	(13/2) $(10/2^+)$	D	DCO=0.72.8
435.1 0	20 20# 8	1001.5±u	(21/2) $(17/2^+)$	843.2 ± 11	$(13/2^+)$	D E2	DCO = 1.40.5
449.1.5	47.5	762.9	(17/2) $(13/2^+)$	314.7	(13/2) $(9/2^+)$	E2 E2	DCO=1.49.5
454.6 6	68 7	1365.5+u	$(19/2^+)$	910.9+u	$(15/2^+)$	E2	DCO=1.56 5.
464.1 <i>3</i>	62 7	900.5+z	$(17/2^{-})$	436.7+z	$(13/2^{-})$	E2	DCO=1.65 5.
506.2 1	25 # 5	1154.4+z	$(19/2^{-})$	648.2+z	$(15/2^{-})$	E2	DCO=1.55 17.
509.1 5	27 6	1032.0	$(15/2^+)$	523.8	$(11/2^+)$	E2	DCO=1.57 5.
522.8 4	17 " 6	1801.5+u	$(21/2^+)$	1278.7+u	$(17/2^+)$	E2	DCO=1.45 9.
544.1 1	66 0 61 5	15//.8+y	(21/2) $(22/2^+)$	1033.7+y	(1/2)	E2 E2	DCO=1.67.6
548 1 1	33.6	1910.8+u 1448 6+z	$(23/2^{-})$ $(21/2^{-})$	900.5+z	$(19/2^{-})$	E2 E2	DCO=1.070. DCO=1.477
563.1 3	41 6	1326.4	$(17/2^+)$	762.9	$(13/2^+)$	E2	DCO=1.59 8.
587.4 <i>4</i>	49 5	1741.4+z	$(23/2^{-})$	1154.4+z	$(19/2^{-})$	E2	DCO=1.65 7.
601.2 2	14 [#] 8	2402.7+u	$(25/2^+)$	1801.5+u	$(21/2^+)$	E2	DCO=1.52 4.
608.4 1	26 5	1640.4	$(19/2^+)$	1032.0	$(15/2^+)$	E2	DCO=1.67 7.
623.1 2	36 6	2071.8+z	$(25/2^{-})$	1448.6+z	$(21/2^{-})$	E2	DCO=1.66 8.
633.2 4	51" 8	2544.0+u	$(27/2^+)$	1910.8+u	$(23/2^+)$	E2 E2	DCO=1.37 9.
649.1 3 651 1 4	30 5 38 1	1976.0 2228 Q±v	$(21/2^{+})$ $(25/2^{-})$	1326.4 1577 8±v	$(1/2^{-})$ $(21/2^{-})$	E2 E2	DCO=1.077.
662.3 9	42 6	2403.6+z	$(23/2^{-})$ $(27/2^{-})$	1741.4+z	$(21/2^{-})$ $(23/2^{-})$	E2 E2	DCO=1.417. DCO=1.369.
663.1 4	10 8	3065.8+u	$(29/2^+)$	2402.7+u	$(25/2^+)$	E2	DCO=1.68 3.
685.9 <i>1</i>	20 [#] 9	2326.2	$(23/2^+)$	1640.4	$(19/2^+)$	E2	DCO=1.57 4.
694.7 2	8 [#] 10	3760.5+u	$(33/2^+)$	3065.8+u	$(29/2^+)$	E2	DCO=1.68 2.
700.9 5	25 5	2772.7+z	$(29/2^{-})$	2071.8+z	$(25/2^{-})$	E2	DCO=1.47 14.
716.1 7	25 [#] 10	2692.1	$(25/2^+)$	1976.0	$(21/2^+)$		
723.1 2	32 5	3267.1+u	$(31/2^+)$	2544.0+u	$(27/2^+)$	E2	DCO=1.65 6.
737.1 6	12 [#] 11	3429.5	$(29/2^+)$	2692.1	$(25/2^+)$		
738.1 4	14 [#] 12	3064.4	$(27/2^+)$	2326.2	$(23/2^+)$		
739.1 2	33 5	3142.8+z	$(31/2^{-})$	2403.6+z	$(27/2^{-})$	E2	DCO=1.56 2.
739.1 4	6 " 7	4499.6+u	$(37/2^+)$	3760.5+u	$(33/2^+)$		
751.1 5	36" 8	2980.0+y	$(29/2^{-})$	2228.9+y	$(25/2^{-})$	E2	DCO=1.70 8.
7704.4.6	$\frac{213}{7^{\#}}$ 11	5350.8+Z	(33/2)	2//2./+Z	(29/2)	E2	DC0=1.44 1.
794.4 0 810 3 6	28.6	3294.0+u 4077.4+u	$(41/2^+)$ $(35/2^+)$	4499.0+u 3267.1+u	$(31/2^+)$ $(31/2^+)$		
814.1 2	20.0	3956.9+z	$(35/2^{-})$	3142.8+z	$(31/2^{-})$ $(31/2^{-})$		
846.1 <i>3</i>	25 [#] 7	3826.1+y	$(33/2^{-})$	2980.0+y	$(29/2^{-})$	E2	DCO=1.49 3.
847.1 <i>4</i>	15 6	4397.9+z	$(37/2^{-})$	3550.8+z	(33/2-)		
883.1 5	10 [#] 9	4840.0+z	(39/2-)	3956.9+z	(35/2-)		
896.1 8	20 6	4973.5+u	$(39/2^+)$	4077.4+u	$(35/2^+)$		
927.1 2	18 [#] 10	4753.2+y	$(37/2^{-})$	3826.1+y	$(33/2^{-})$		
945.1 7	7 <mark>#</mark> 11	5785.1+z	$(43/2^{-})$	4840.0+z	$(39/2^{-})$		
971.9 8	13 # 9	5945.4+u	$(43/2^+)$	4973.5+u	$(39/2^+)$		
1004.1 7	13 [#] 12	5757.3+y	$(41/2^{-})$	4753.2+y	$(37/2^{-})$		
1055.7 ^{&} 5	5 # 8	7001.5+u?	$(47/2^+)$	5945.4+u	$(43/2^+)$		

96 Ru(40 Ca,2pn γ) 1999Pa46 (continued)

$\gamma(^{133}\text{Sm})$ (continued)

[†] Taken from 1999Pa46 which determined more complete level scheme; $E\gamma$'s of 1991Re03 differ from $E\gamma$'s of 1999Pa46 up to 3σ .

[‡] Weighted average from 1996Pa46 and 1991Re03 when was available, except as noted.

- # From 1999Pa46.
 @ From DCO values, suggested by evaluators.
 & Placement of transition in the level scheme is uncertain.

 $^{133}_{62}\text{Sm}_{71}$

¹³³₆₂Sm₇₁

¹³³₆₂Sm₇₁

⁹⁶Ru(⁴⁰Ca,2pnγ) 1999Pa46

Band(C): 1	-qp band based			
on the (1	l/2 ⁺) state at			
80.9+U-l	keV, α=+1/2;			
possible c	configuration=			
v1/2[-	411] (d _{3/2})			
which at 1	high-spin may	Band(c). 1-a	hand hased	
be cro	ssed by the	on the $(3/2^+)$ state at		
v1/2[6	60] orbital	96 90+U-keV $\alpha = -1/2$.		
		possible con	figuration=	
$(47/2^{+})$	<u>7001.5+u</u>	v1/2[41]	[] (d _{3/2})	
		which at hig	h-spin may	
1	056	be crosse	d by the	
(43/2+)	5945.4+u	v1/2[660] orbital	
9	72	(41/2 ⁺)	5294.0+u	
(39/2+)	4973.5+u			
		(37/2+) 794	4400 6	
. 8	396	(3112)	4499.0+u	
$(35/2^+)$	4077.4+u	739		
	10	(33/2+)	3760.5+u	
$(31/2^+)$	3267 1+n	695		
	5207.11 u	(29/2 ⁺)	3065.8+u	
(27/2+) 7	23			
(2112)	2544.0+u	(25/2 ⁺)	2402.7+u	
(23/2+) 6	³³ 1010 8 ····	601		
(23/2)	1910.8+u	$(21/2^+)$ 001	1801.5+u	
(19/2+) 5	⁴⁵ 1365.5+u 🗸	(17/2 ⁺) 523	1278.7+u	
$(15/2^+)$	55 910.9+u	(13/2+)	843.2+11	
(11/2+)	544.7+u	(9/2+) 436	-491.1+n	
(7/2+)3	268.5+u	(5/2+) 352	231.02+u	
$(3/2^+) - \frac{2}{1}$	70 72-96.90+u	(1/2+)_259	<u> </u>	
	··-	150		

Band(A): 1-qp band based on the $(7/2^-)$ state at 0.0+Z-keV, α =-1/2; possible configuration= v7/2[523] (h_{11/2})

[-		11/2/	Band(a): 1-qp band based		
(43/2-)	57	/85.1+z	on the $(9/2^{-})$ state at 101.3+Z-keV, α =+1/2;		
			possible con	figuration=	
9	45		v7/2[523	b] (h _{11/2})	
(39/2 ⁻)	- 48	640.0+z			
8	83		(37/2 ⁻)	4397.9+z	
(35/2 ⁻)	39	956.9+z	847		
8	14		(33/2-)	3550.8+z	
(31/2 ⁻)	31	42.8+z	778		
7	30		(29/2-)	2772.7+z	
(27/2 ⁻)	24	103.6+z 🖌	701		
6	67		(25/2-)	2071.8+z	
(23/2-)	1 7	'41.4+z 💉	(21/2=) 623		
(10/2-) 5	87		(21/2)	1448.6+z	
(19/2)	11	.54.4+z <	(17/2 ⁻) 548	900.5+z	
(15/2 ⁻) 5	6	648.2+z 🍝	(13/2-) 464	126 7 1 7	
$(11/2^{-})$ 4	02 2	46.3+z	$(10/2^{-})$ 225	430.7+2	
$(7/2^{-})$ 2	46	0.0+z	(914) 335	101.3+z	

Band(B): 1-qp on the (5/ α =+1/2; p configuration (d ₅ /	b band based 2 ⁺) g.s., possible =v5/2[402] 2)	Band(b): 1-qp on the (7/2 ⁺ 139.7-keV, possible confi v5/2[402]	band based) state at $\alpha = -1/2$; guration= $(d_{5/2})$
(29/2 ⁺)	3429.5		(512)
737		(27/2+)	3064.4
$(25/2^+)$	2692.1	738	
(21/2 ⁺) 716	1976.0 🖌		2326.2
649		(19/2 ⁺)	1640.4
(17/2 ⁺) (17/2 ⁺)	1326.4	(15/2 ⁺) 608	1032.0
$(13/2^+)$ 503	762.9	(11/2 ⁺) 509	523.8
<u>(9/2⁺)</u> 449	314.7	$(7/2^+)$ 384	139.7
$(5/2^+)$ 315	0.0		137.1

 $^{133}_{62}\text{Sm}_{71}$

⁹⁶Ru(⁴⁰Ca,2<u>pnγ)</u> 1999Pa46 (continued)

 $^{133}_{62}\text{Sm}_{71}$