133 Sn β^- decay (1.46 s) 1983Bl16,1999Sa31

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu, Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

Parent: ¹³³Sn: E=0.0; $J^{\pi}=7/2^-$; $T_{1/2}=1.46$ s 3; $Q(\beta^-)=8095$ 34; % β^- decay=100.0

1999Sa31: ¹³³Sn(β^-) [from ²³⁵U(n,F)]; measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma\gamma(t)$, T_{1/2}; deduced log *ft*, levels, J^{π} . OSIRIS-ISOL on-line mass-separator, Compton suppressed Ge detectors, plastic scintillator, BaF₂ crystal, comparison with shell-model predictions.

1983B116: ¹³³Sn(β^-) [from on-line mass separation]; measured E γ , I γ , $\gamma\gamma$ -, $\beta\gamma$ -coin. ¹³³Sb; deduced levels, J^{π} , I $_{\beta}$, log ft, γ -branching. Shell model.

The decay scheme is based mainly on $\gamma\gamma$ -coincidence measurements of 1999Sa31. For an identification, ¹³³Sb γ -ray spectra were recorded as a function of time following beam collection. The 2707.8-keV, 3249.8-keV, 3449.8-keV, 4555.6-keV, and 5922.6-keV levels, introduced in 1983B116, were not suggested by 1999Sa31.

Others: 1973Bo42, 1978Si05, 1998Sa22.

¹³³Sb Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0 962.32 7 2430 58 12	$7/2^+$ (5/2 ⁺) (3/2 ⁺)	2.34 min 5	T _{1/2} : from Adopted Levels.
2791.53 <i>11</i>	$(3/2^{-})$ $(11/2^{-})$	11.4 ps 45	T _{1/2} : from $\beta \gamma \gamma(t)$ in 1999Sa31. Probable configuration= $(\pi \ 1h_{11/2})^{+1}$.
3822.7 3 4028.77 20 4183.9 3 4210.0 5 4215.27 20 4244.7 3 4200.1 2			
4290.1 3 4294.24 16 4296.17 20 4307.37 20 4537.07 22 4572.78 20 4634.7 7 4650.2 3 4786.0 3 4801.49 15	(9/2,11/2,13/2)		configuration: Probably member of $\pi g_{7/2} \otimes 3^-$ or $\pi g_{7/2} \otimes 4^+$ multiplet (1999Sa31).
4830.2 <i>4</i> 4898.2 <i>4</i> 4902.39 <i>15</i> 4937 3 <i>3</i>	(5/2,7/2,9/2) (7/2,9/2) (5/2,7/2,9/2)		
5001.63 <i>19</i> 5039.84 <i>19</i> 5118.77 <i>18</i>	(5/2,7/2,9/2)		
$\begin{array}{c} 5124.67 \ 13\\ 5149.80 \ 14\\ 5167.53 \ 16\\ 5191.0 \ 3\\ 5276.76 \ 15\\ 5302.71 \ 20\\ 5376.12 \ 20\\ 5413.3 \ 4\\ 5421.5 \ 15\\ 5483.22 \ 20\\ 5485.21 \ 22\\ \end{array}$	(5/2,7/2) (7/2,9/2) (7/2,9/2) (5/2,7/2,9/2) (5/2,7/2,9/2)		

$^{133}\mathrm{Sn}\,\beta^-$ decay (1.46 s) 1983B116,1999Sa31 (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]	$J^{\pi \ddagger}$
5493.7 <i>5</i>	(5/2,7/2,9/2)	5881.49 <i>17</i>	(7/2,9/2)	6124.15 20	6445.3 <i>3</i>	
5560.07 15	(5/2,7/2,9/2)	5920.9 5	(7/2, 9/2)	6136.3 7	6457.87 20	
5593.3 4		5928.6 <i>3</i>		6170.25 20	6498.1 <i>3</i>	
5603.53 20		5938.3 <i>3</i>		6200.5 4	6505.6 <i>3</i>	
5612.49 14	(7/2, 9/2)	5960.24 20		6239.1 <i>14</i>	6515.1 <i>3</i>	
5645.35 15	(5/2,7/2)	5971.04 20		6252.1 4	6576.4 6	
5684.2 <i>3</i>		5977.7 6		6264.5 5	6705.9 6	
5742.5 <i>3</i>		6059.5 <i>3</i>		6286.5 11	6770.9 6	(9/2)
5750.1 5		6067.54 19	(7/2, 9/2)	6314.96 20	6794.6 6	
5790.24 20		6074.9 8		6326.8 4	6950.9 <i>5</i>	
5835.2 6		6093.45 20		6348.96 20		
5841.2 6		6102.7 <i>3</i>		6364.4 <i>3</i>		
5848.8 <i>5</i>		6112.55 20		6411.7 <i>3</i>		

¹³³Sb Levels (continued)

[†] From a least-squares fit to E γ 's. 3838.46- and 3838.46-keV γ 's, depopulating the 4801.49-keV level, contribute 47% to χ^2 . [‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	$\log ft^{\ddagger}$	Comments
$(1.14 \times 10^3 4)$	6950.9	0.0038 10	6.27 13	av E β =407 15
$(1.30 \times 10^3 4)$	6794.6	0.0019 6	6.79 15	av E β =473 15
$(1.32 \times 10^3 4)$	6770.9	0.0032 9	6.59 13	av E β =483 15
$(1.39 \times 10^3 4)$	6705.9	0.0018 7	6.92 18	av $E\beta = 511 \ 15$
$(1.52 \times 10^3 4)$	6576.4	0.0028 7	6.88 12	av E β =568 15
$(1.58 \times 10^3 4)$	6515.1	0.0067 14	6.57 10	av E β =595 15
$(1.59 \times 10^3 4)$	6505.6	0.0108 22	6.37 10	av E β =599 15
$(1.60 \times 10^3 4)$	6498.1	0.0082 18	6.50 11	av E β =602 15
$(1.64 \times 10^3 4)$	6457.87	0.017 3	6.22 9	av E β =620 15
$(1.65 \times 10^3 4)$	6445.3	0.0097 20	6.48 10	av E β =625 15
$(1.68 \times 10^3 4)$	6411.7	0.0100 20	6.50 10	av E β =640 16
$(1.73 \times 10^3 4)$	6364.4	0.0088 18	6.60 10	av E β =661 16
$(1.75 \times 10^3 4)$	6348.96	0.026 5	6.15 9	av E β =668 16
$(1.77 \times 10^3 4)$	6326.8	0.0049 11	6.89 11	av E β =678 16
$(1.78 \times 10^3 4)$	6314.96	0.072 13	5.74 9	av E β =683 16
$(1.81 \times 10^3 4)$	6286.5	0.013 6	6.51 21	av E β =696 16
$(1.83 \times 10^3 4)$	6264.5	0.035 9	6.10 12	av E β =706 16
$(1.84 \times 10^3 4)$	6252.1	0.043 11	6.02 12	av E <i>β</i> =712 <i>16</i>
$(1.86 \times 10^3 4)$	6239.1	0.0011 6	7.63 24	av E β =717 16
$(1.89 \times 10^3 4)$	6200.5	0.0061 14	6.92 11	av E β =735 16
$(1.92 \times 10^3 4)$	6170.25	0.032 6	6.23 9	av E <i>β</i> =748 <i>16</i>
$(1.96 \times 10^3 4)$	6136.3	0.0029 9	7.30 14	av E β =764 <i>16</i>
$(1.97 \times 10^3 4)$	6124.15	0.056 10	6.02 9	av E β =769 16
$(1.98 \times 10^3 4)$	6112.55	0.095 17	5.80 9	av E β =774 16
$(1.99 \times 10^3 4)$	6102.7	0.025 5	6.39 10	av E β =779 16
$(2.00 \times 10^3 4)$	6093.45	0.080 15	5.90 9	av E β =783 16
$(2.02 \times 10^3 4)$	6074.9	0.0049 13	7.13 12	av E β =791 16
$(2.03 \times 10^3 4)$	6067.54	0.055 10	6.08 9	av E β =795 16
$(2.04 \times 10^3 4)$	6059.5	0.022 5	6.49 11	av E β =798 16
$(2.12 \times 10^3 4)$	5977.7	0.0060 6	7.12 6	av E β =836 16
$(2.12 \times 10^3 4)$	5971.04	0.047 9	6.23 9	av Eβ=839 16

From ENSDF

			133 Sn β^- dec	eay (1.46 s) 1	983Bl16,1999Sa31 ((continued)			
β^- radiations (continued)									
E(decay)	E(level)	Ιβ ^{-†#}	$\log ft^{\ddagger}$			Comments			
$(2.13 \times 10^3 4)$	5960.24	0.022 5	6.57 11	av Eβ=844 16					
$(2.16 \times 10^3 4)$	5938.3	0.0120 24	6.85 10	av Eβ=854 16					
$(2.17 \times 10^3 4)$	5928.6	0.013 3	6.82 11	av Eβ=858 16					
$(2.17 \times 10^3 4)$	5920.9	0.105 20	5.92 9	av Eβ=861 16					
$(2.21 \times 10^3 \ 4)$	5881.49	0.049 9	6.29 9	av Eβ=879 16					
$(2.25 \times 10^3 \ 4)$	5848.8	0.0053 13	7.28 11	av Eβ=894 16					
$(2.25 \times 10^3 4)$	5841.2	0.0048 15	7.33 14	av Eβ=898 16					
$(2.26 \times 10^3 4)$	5835.2	0.0060 16	7.24 12	av Eβ=901 16					
$(2.30 \times 10^3 4)$	5790.24	0.016 3	6.84 9	av Eβ=921 16					
$(2.34 \times 10^3 4)$	5750.1	0.0052 3	7.36 4	av Eβ=940 16					
$(2.35 \times 10^3 4)$	5742.5	0.016 3	6.88 9	av Eβ=943 16					
$(2.41 \times 10^3 4)$	5684.2	0.017 3	6.90 9	av Eβ=970 16					
$(2.45 \times 10^{3} 4)$	5645.35	0.137 24	6.02 8	av E β =988 16					
$(2.48 \times 10^{5} 4)$	5612.49	0.7 7	5.3 5	av E β =1003 <i>l</i>	6				
$(2.49 \times 10^3 4)$	5603.53	0.059 11	6.42 9	av $E\beta = 1007 I$	6				
$(2.50 \times 10^3 4)$	5593.3	0.0048 15	7.51 14	av $E\beta = 1012 I$	6				
$(2.53 \times 10^3 4)$	5560.07	0.23 4	5.86 8	av $E\beta = 102 / I$	6				
$(2.60 \times 10^3 4)$	5495.7	0.0108 24	7.23 10	av $E\beta = 1058 I$	0				
$(2.61 \times 10^3 4)$	5485.21	0.036 /	6./19	av $E\beta = 1062$ I	0				
$(2.61 \times 10^{3} 4)$	5485.22	0.122 22	0.199	av $E\beta = 1003 I$	0 6				
(2.07×10^{-4})	5412.2	0.0048 13	7.05 14	av $E\rho = 1091 I$	6				
(2.08×10^{-4})	5376 12	0.013 3	6 32 0	av $E\beta = 1093 T$	6				
$(2.72 \times 10^{3} 4)$	5302.71	0.107 20	0.329	av $E\beta = 1112 T$	6				
(2.73×10^{-4})	5276.76	$0.022 \ J$	6.45.0	av $E\beta = 1140 T$	6				
(2.82×10^{-4})	5191.0	0.091 17	7 46 10	av $E\beta = 1198 T$	6				
(2.90×10^{-4})	5167.53	0.031.6	6 99 9	av $E\beta = 1100 T$ av $E\beta = 1200 T$	6				
$(2.95 \times 10^3 4)$	5149.80	0.52.9	5.77.8	av $E\beta = 1207 I$ av $E\beta = 1217 I$	6				
$(2.97 \times 10^3 4)$	5124.67	0.136 24	6.37 8	av $E\beta = 1229 I$	6				
$(2.98 \times 10^3 4)$	5118.77	0.042 8	6.89 9	av $E\beta = 1232$ I	6				
$(3.06 \times 10^3 4)$	5039.84	0.022.5	7.21 11	av $E\beta = 1269$ /	6				
$(3.09 \times 10^3 4)$	5001.63	0.025 5	7.18 9	av E β =1287 <i>I</i>	6				
$(3.16 \times 10^3 4)$	4937.3	0.0120 24	7.54 9	av E β =1317 <i>I</i>	6				
$(3.19 \times 10^3 4)$	4902.39	0.065 12	6.83 9	av E β =1333 <i>I</i>	6				
$(3.20 \times 10^3 4)$	4898.2	0.013 3	7.53 11	av E β =1335 <i>I</i>	6				
$(3.26 \times 10^3 \ 4)$	4830.2	0.0036 13	8.12 16	av E β =1367 <i>I</i>	6				
$(3.29 \times 10^3 \ 4)$	4801.49	0.092 17	6.73 9	av Eβ=1380 1	6				
$(3.31 \times 10^3 \ 4)$	4786.0	0.013 3	7.59 11	av Eβ=1387 <i>1</i>	6				
$(3.44 \times 10^3 \ 4)$	4650.2	0.0066 16	7.96 11	av Eβ=1451 <i>I</i>	6				
$(3.46 \times 10^3 4)$	4634.7	0.006 3	8.01 22	av Eβ=1458 1	6				
$(3.52 \times 10^3 4)$	4572.78	0.017 4	7.59 11	av Eβ=1488 1	6				
$(3.56 \times 10^3 4)$	4537.07	0.019 4	7.56 10	av Eβ=1504 1	6				
$(3.79 \times 10^3 4)$	4307.37	0.026 5	7.54 9	av Eβ=1612 1	6				
$(3.80 \times 10^3 4)$	4296.17	0.022 5	7.62 10	av E β =1618 <i>I</i>	6				
$(3.80 \times 10^{5} 4)$	4294.24	< 0.002	>8.7	av E β =1619 <i>I</i>	6				
$(3.80 \times 10^{5} 4)$	4290.1	0.0060 16	8.19 12	av E β =1620 <i>I</i>	6				
$(3.85 \times 10^3 4)$	4244.7	0.0079 17	8.09 10	av $E\beta = 1642 l$	6				
$(5.88 \times 10^3 4)$	4215.27	0.037 8	7.43 10	av $E\beta = 1656 I$	0				
$(5.89 \times 10^3 4)$	4210.0	0.0048 15	8.32 14	av $E\beta = 1658 I$	0				
$(3.91 \times 10^3 4)$	4185.9	0.015 3	1.84 9	av $E\beta = 16/1$ I	0				
$(4.07 \times 10^{5} 4)$	4028.77	0.0184	1.83 10	av $Ep=1/44 I$	0 6				
$(4.27 \times 10^{\circ} 4)$	2022.1 2420.59	0.0004 13	0.3/11 0.241u 0	av $E\rho = 1841 I$	7				
$(3.00 \times 10^{\circ} 4)$	2439.38	0.18 3	9.30*** 8	av $Ep = 24/6$ I	/				

From ENSDF

$^{133}\mathrm{Sn}\,\beta^-$ decay (1.46 s) 1983B116,1999Sa31 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ιβ ^{-†#}	Log ft [‡]		Comments	
$(7.13 \times 10^3 4)$	962.32	11.5 21	6.10 8	av Eβ=3194 16		
$(8.10 \times 10^3 4)$	0.0	85 <i>3</i>	5.482 20	av E β =3649 16		

[†] From intensity balance.

[‡] Calculated using the LOGFT code. Values slightly differ from those in 1999Sa31.
[#] Absolute intensity per 100 decays.

 $\gamma(^{133}\text{Sb})$

Iγ normalization: From Iγ(962.1)=12% 2 (1983B116).

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult.	Comments
855.6 2	3.6 3	5149.80	(7/2,9/2)	4294.24	(9/2,11/2,13/2)		
962.1 2	1000 50	962.32	$(5/2^+)$	0.0	7/2+		I_{γ} : 12% 2 of all ¹³³ Sn decays (1983B116).
1318.1 2	1.1 1	5612.49	(7/2,9/2)	4294.24	(9/2,11/2,13/2)		
1477.1 2	7.9 5	2439.58	$(3/2^{+})$	962.32	$(5/2^+)$	[M1+E2]	Mult.: from γ branching (1998Sa22).
1502.6 2	4.5 3	4294.24	(9/2,11/2,13/2)	2791.53	$(11/2^{-})$		
1829.6 15	0.3 1	2791.53	(11/2)	962.32	(5/21)	[E3]	Mult.: from γ branching (1998Sa22).
2106.7 3	1.1 1	4898.2	(7/2,9/2)	2791.53	$(11/2^{-})$		
2358.3 2	4.6 3	5149.80	(1/2,9/2)	2/91.53	(11/2)		
2376.0 2	1.2 1	5167.55	(1/2,9/2)	2/91.53	(11/2)	[[20]	Malta farma a harashira
2439.5 2	8.90	2439.38	(5/2)	0.0	(2/2+)	[E2]	(1998Sa22).
2685.0 2	1.4 2	5124.67	(5/2,7/2)	2439.58	$(3/2^+)$		
2/91.3 2	19 1	2791.53	(11/2)	0.0	1/2*	[M2]	Mult.: from γ branching (1998Sa22).
2821.1 2	3.6 3	5612.49	(7/2,9/2)	2791.53	$(11/2^{-})$		
x3061.2 5	0.22 8						
^30/3.8 13	0.23 9	5991 40	(7/2, 0/2)	2701 52	$(11/2^{-})$		
3089.8 3	0.71	3881.49	(7/2,9/2)	2791.55	(11/2)		
3129.9" 3	8.3" 8	5920.9	(7/2,9/2)	2791.53	$(11/2^{-})$		
3205.4 3	0.8 1	5645.35	(5/2, 1/2)	2439.58	$(3/2^+)$		
3222.0 5	0.32 / 2 1 - 2	4183.9	(7/2, 0/2)	962.32	$(5/2^{+})$ $(11/2^{-})$		
3213.12	3.1 3	0007.34	(7/2,9/2)	2/91.55	(11/2)		
5262.55	0.009	4244.7		902.52	(3/2)		
3330.1 ^{mc} 5	7.0" 16	6124.15		2791.53	(11/2 ⁻)		E_{γ} : poor fit, corresponding energy level difference equal 3332.24 21.
3574.7 2	1.6 2	4537.07		962.32	$(5/2^+)$		
3687.8 <i>3</i>	0.55 9	4650.2		962.32	$(5/2^+)$		
3822.6 [‡] 3	0.53 8	3822.7		0.0	7/2+		
3838.4 2	1.0 1	4801.49		962.32	$(5/2^+)$		
3867.8 4	0.30 9	4830.2	(5/2,7/2,9/2)	962.32	$(5/2^+)$		
3940.1 2	1.2 2	4902.39	(5/2,7/2,9/2)	962.32	$(5/2^+)$		
3979.3 5	0.27 6	6770.9	(9/2)	2791.53	$(11/2^{-})$		
4028.7 [‡] 2	1.5 2	4028.77		0.0	7/2+		

¹³³ Sn β^- decay (1.46 s) 1983B116,1999Sa31 (continued)										
γ ⁽¹³³ Sb) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Comments				
4039.4 5	0.37 8	5001.63	(5/2,7/2,9/2)	962.32	$(5/2^+)$					
$^{x}4060.2$ 4	0.37 8	5030 84		062 32	$(5/2^+)$					
4156.1 2	1.8 2	5118.77		962.32	$(5/2^+)$ $(5/2^+)$					
4162.2 2	6.3 5	5124.67	(5/2,7/2)	962.32	(5/2+)					
4183.7 [‡] <i>3</i>	0.9 1	4183.9		0.0	7/2+					
4209.9 [‡] 5	0.4 1	4210.0		0.0	7/2+					
4215.2 [‡] 2	3.1 3	4215.27		0.0	7/2+					
4228.5 <i>3</i> <i>x</i> 4258.0 <i>7</i>	0.64 9	5191.0	(5/2,7/2,9/2)	962.32	$(5/2^{+})$					
4290.0^{\ddagger} 3	0.200	4290 1		0.0	7/2+					
$4296.1^{\ddagger}2$	182	4296.17		0.0	$7/2^+$					
$4307.3^{\ddagger}2$	2.2.2	4307.37		0.0	$7/2^+$					
4314.4 2	1.9 2	5276.76	(5/2,7/2,9/2)	962.32	$(5/2^+)$					
^x 4324.9 5	0.35 7	5405 01		0(0.00	(5.0+)					
4522.8 2	3.02	5485.21		962.32	$(5/2^+)$					
4523.6 /	3.3" 8	5485.22		962.32	$(5/2^{+})$	E_{γ} : poor fit, corresponding energy level difference equal 4521.07 21				
4531.0 7	0.40 8	5493.7	(5/2,7/2,9/2)	962.32	$(5/2^+)$	1521.07 21.				
4572.7 [‡] 2	1.3 2	4572.78		0.0	7/2+					
4597.8 2	10.6 7	5560.07	(5/2,7/2,9/2)	962.32	$(5/2^+)$					
4634.6 ⁺ 7	0.5 2	4634.7	(7/2, 0/2)	0.0	$7/2^+$					
4683.1.3	0.30 8	5645.35	(7/2,9/2) (5/2,7/2)	962.32	$(5/2^+)$ $(5/2^+)$					
^x 4701.2 4	0.36 9	0010100	(0/2,//2)	202102	(0/=)					
4785.9 [‡] <i>3</i>	1.1 <i>1</i>	4786.0		0.0	7/2+					
4802.1 [‡] 2	6.5 5	4801.49		0.0	7/2+					
x4873.3 11	0.18 8	5010 0		062.22	$(5/2^{+})$					
4002.2 ± 2	0.44 0 4 2 3	J040.0 4002.30	(5/2) (2/2) (2/2)	902.32	(3/2)					
4937 2 3	4.2 J	4937 3	(3/2, 7/2, 9/2)	0.0	7/2+					
5001 5 [‡] 2	1.0 1	5001.63	(5/2, 7/2, 9/2)	0.0	$7/2^+$					
$5039.7^{\ddagger} 2$	1.5 2	5039.84	(3/2,7/2,7/2)	0.0	$7/2^+$					
5119.3 [‡] 3	1.7 2	5118.77		0.0	$7/2^+$					
5124.7 [‡] 2	3.6 3	5124.67	(5/2,7/2)	0.0	7/2+					
5149.4 [‡] 2	35 2	5149.80	(7/2,9/2)	0.0	$7/2^{+}$					
5167.4 [‡] 2	1.4 <i>1</i>	5167.53	(7/2,9/2)	0.0	7/2+					
5191.4 [‡] 9	0.20 6	5191.0	(5/2,7/2,9/2)	0.0	$7/2^{+}$					
5276.6 [‡] 2	5.7 4	5276.76	(5/2,7/2,9/2)	0.0	$7/2^{+}$					
5302.6 [‡] 2	1.8 2	5302.71		0.0	7/2+					
x5325.6 5	0.38 8	5054.10		0.0	7 /2+					
5376.0+ 2 x5402.5.7	8.86 041	5376.12		0.0	1/2*					
5413.2 [‡] 4	1.1.7	5413.3		0.0	7/2.+					
5421.4 [‡] 15	0.4 1	5421.5		0.0	7/2+					
^x 5427.8 15	0.2 1				- 1					
x5450.9 8	0.15 8									
5483.1+ 2	10.2 7	5483.22		0.0	7/2+					
5493.8+ 7	0.5 1	5493.7	(5/2,7/2,9/2)	0.0	7/2+					

			¹³³ Sn β^- decay (1.46 s)			1983B116,1999Sa31 (continued		
					$\gamma(^{133})$	Sb) (continued)		
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^π			
x5548.3 4	0.37 9							
5559.8 [‡] 2	8.76	5560.07	(5/2,7/2,9/2)	0.0	$7/2^{+}$			
5593.2 [‡] 4	0.4 1	5593.3		0.0	7/2+			
5603.3 [‡] 2	4.9 4	5603.53		0.0	7/2+			
5612.2 [‡] 2	26 2	5612.49	(7/2,9/2)	0.0	7/2+			
5645.3 [‡] 2	9.8 6	5645.35	(5/2,7/2)	0.0	7/2+			
5684.1 [‡] <i>3</i>	1.4 <i>1</i>	5684.2		0.0	$7/2^{+}$			
^x 5692.5 5	0.39 7							
5742.4 [‡] 3	1.3 1	5742.5		0.0	$7/2^{+}$			
5750.0 [‡] 5	0.43 7	5750.1		0.0	$7/2^{+}$			
5790.1 2	1.3 1	5790.24		0.0	$7/2^{+}$			
5835.1 [‡] 6	0.5 1	5835.2		0.0	$7/2^{+}$			
5841.1 [‡] 6	0.4 1	5841.2		0.0	$7/2^{+}$			
5881.4 [‡] 2	3.3 <i>3</i>	5881.49	(7/2,9/2)	0.0	$7/2^{+}$			
5920.8 [‡] 5	0.43 8	5920.9	(7/2,9/2)	0.0	$7/2^{+}$			
5928.5 [‡] 3	1.1 <i>1</i>	5928.6		0.0	$7/2^{+}$			
5938.2 [‡] 3	1.0 1	5938.3		0.0	$7/2^{+}$			
5960.1 [‡] 2	1.8 2	5960.24		0.0	$7/2^{+}$			
5970.8 [‡] 2	3.9 <i>3</i>	5971.04		0.0	$7/2^{+}$			
5977.6 [‡] 6	0.5 1	5977.7		0.0	$7/2^{+}$			
6059.4 [‡] 3	1.7 2	6059.5		0.0	$7/2^{+}$			
6068.0 [‡] 3	1.5 1	6067.54	(7/2,9/2)	0.0	$7/2^{+}$			
6074.8 [‡] 8	0.41 8	6074.9		0.0	$7/2^{+}$			
6093.3 [‡] 2	6.7 5	6093.45		0.0	$7/2^{+}$			
6102.5 [‡] 3	2.1 2	6102.7		0.0	$7/2^{+}$			
6112.4 [‡] 2	7.9 5	6112.55		0.0	7/2+			
6124.0 [‡] 2	4.7 3	6124.15		0.0	$7/2^{+}$			
6136.1 [‡] 7	0.24 6	6136.3		0.0	7/2+			
6170.1 [‡] 2	2.7 2	6170.25		0.0	7/2+			
6200.3 [‡] 4	0.51 7	6200.5		0.0	$7/2^{+}$			
6238.9 [‡] 14	0.09 4	6239.1		0.0	$7/2^{+}$			
6251.9 [‡] 4	0.36 6	6252.1		0.0	$7/2^{+}$			
6264.3 [‡] 5	0.29 5	6264.5		0.0	$7/2^{+}$			
6286.3 [‡] 11	0.11 4	6286.5		0.0	$7/2^{+}$			
6314.8 [‡] 2	5.9 4	6314.96		0.0	$7/2^{+}$			
6326.6 [‡] 4	0.41 6	6326.8		0.0	$7/2^{+}$			
6348.8 [‡] 2	2.2 2	6348.96		0.0	$7/2^{+}$			
6364.2 [‡] 3	0.73 8	6364.4		0.0	$7/2^{+}$			
6411.5 [‡] 3	0.83 9	6411.7		0.0	7/2+			
6445.1 [‡] 3	0.81 9	6445.3		0.0	7/2+			
6457.7 [‡] 2	1.4 <i>1</i>	6457.87		0.0	7/2+			
6497.9 [‡] 3	0.68 9	6498.1		0.0	7/2 ⁺			
6505.4 [‡] 3	0.9 1	6505.6		0.0	7/2 ⁺			
6514.9 [‡] 3	0.56 7	6515.1		0.0	, 7/2 ⁺			
6576.2 [‡] 6	0.23 4	6576.4		0.0	7/2 ⁺			

$^{133}\mathrm{Sn}\,\beta^-$ decay (1.46 s) 1983B116,1999Sa31 (continued)

$\gamma(^{133}\text{Sb})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger @}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
6705.7 [‡] 6	0.15 5	6705.9		0.0	7/2+
6794.4 [‡] 6	0.16 4	6794.6		0.0	$7/2^{+}$
6950.7 [‡] 5	0.32 6	6950.9		0.0	$7/2^{+}$

[†] From 1999Sa31, except as noted.

^{\ddagger} These transitions are assumed to feed the ground state (1999Sa31).

[#] From 1983B116.

^(a) For absolute intensity per 100 decays, multiply by 0.012 2.

[&] Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

¹³³Sn β^- decay (1.46 s) 1983Bl16,1999Sa31

¹³³Sn β^- decay (1.46 s) 1983Bl16,1999Sa31

