(HI,xnγ):SD 1995Wi13

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010

1995Wi13: ¹⁰⁰Mo(³⁷Cl,4n γ) E=155 MeV; measured $\gamma\gamma$, $\gamma\gamma\gamma$ and $\gamma\gamma\gamma\gamma\gamma$ coin deduced 4 SD bands. The EUROGAM γ ray spectrometer with 41 escape suppressed HPGe detectors.

1997Ha05: ¹⁰⁵Pd(³⁵Cl, α 2pn γ) E=180 MeV; measured E γ , $\gamma\gamma\gamma$, $\gamma\gamma\gamma$ (particle) coin deduced SD bands. GAMMASPHERE and MICROBALL arrays.

Multiple, excited superdeformed bands observed and suggested on the analogy of other superdeformed bands in this region and calculations. There were reported four SD bands (1995Wi13). These bands are weakly populated (0.2% - 1% of the reaction channel). The SD-1 and SD-2 bands are associated with the proton orbital of configuration= $\pi 9/2[404]$ (g_{9/2}) and SD-3 and SD-4 bands are associated with configuration= $\pi 5/2[532]$ (h_{11/2}). Dipole linking transitions between SD-1 and SD-2 bands have been reported. SD-1 and SD-2 bands feed a positive parity band at J=41/2; SD-3 and SD-4 feed negative parity yrast band at J=43/2. It is assumed that unseen linking transitions contribute $\Delta J \approx 6\hbar$.

The SD-3 band extends from 53/2 to 105/2 according to the γ ray spectrum, but the authors (1995Wi13) mention it to extend up to 113/2.

Additional information 1.

¹³³Pr Levels

E(level) [†]	Jπ‡	Comments
y [@]	(51/2)	Additional information 2. J^{π} : $J \approx (51/2)$.
390.0+y [#] 8	J+1	
800.0+y [@] 8	J+2	
1230.0+y [#] 10	J+3	
1671.0+y [@] 11	J+4	
2138.0+y [#] 12	J+5	
2614.0+y [@] 13	J+6	
3117.0+y [#] _16	J+7	
3627.0+y [@] 16	J+8	
4167.0+y [#] <i>19</i>	J+9	
4712.0+y [@] 19	J+10	
5288.0+y [#] 21	J+11	
5868.0+y [@] 22	J+12	
6480.0+y [#] _23	J+13	
7096.0+y [@] 24	J+14	
7745+y [#] _3	J+15	
8395+y [@] 3	J+16	
9066+y [#] 3	J+17	
9775+y [@] 3	J+18	
10478+y [#] 3	J+19	
11225+y [@] 3	J+20	
11967+y [#] 3	J+21	
12755+y [@] 3	J+22	
z&	(53/2)	Additional information 3. J^{π} : $J_1 \approx (53/2)$.
784.0+z ^{&} 10	J1+2	
1638.0+z ^{&} 15	J1+4	

(HI,xnγ):SD **1995Wi13** (continued)

¹³³Pr Levels (continued)

Comments

E(level) [†]	Jπ‡	
2571.0+z ^{&} 18	J1+6	
3584.0+z ^{&} 20	J1+8	
4682.0+z ^{&} 23	J1+10	
5864.0+z ^{&} 25	J1+12	
7130+z ^{&} 3	J1+14	
8481+z ^{&} 3	J1+16	
9909+z& 3	J1+18	
11399+z ^{&} 4	J1+20	
12971+z ^{&} 4	J1+22	
14620+z ^{&} 4	J1+24	
16356+z ^{&} 4	J1+26	
u ^a	(55/2)	Additional information 4.
		J^{π} : $J_2 \approx (53/2)$.
821.0+u ^a 10	J2+2	
1706.0+u ^a 15	J2+4	
2667.0+u ^a 18	J2+6	
3702.0+u ^a 20	J2+8	
4812.0+u ^a 23	J2+10	
5996.0+u ^a 25	J2+12	
7260+u ^a 3	J2+14	
8602+u ^a 3	J2+16	
10022+u ^a 3	J2+18	
11522+u ^a 4	J2+20	
13098+u ^a 4	J2+22	
14754+u ^a 4	J2+24	

[†] From least-squares fit to $E\gamma's$.

[‡] From band assignment and calculations.

[#] Band(A): SD-1 band. Probable configuration= $\pi 9/2[404]$ (g_{9/2}) orbital. Signature partner of SD-2 band. Percent population=1.0% for the strongest transitions relative to total population of ¹³³Pr.

[@] Band(B): SD-2 band. Probable configuration= $\pi 9/2[404]$ (g_{9/2}) orbital. Signature partner of SD-1 band. Percent population=1.0% for the strongest transitions relative to total population of ¹³³Pr.

& Band(C): SD-3 band. Probable Configuration=($\pi_{5/2}$ [532]) of h_{11/2} orbital. Signature partner of SD-4 band. Percent population=0.5% for the strongest transitions relative to total population of ¹³³Pr.

^{*a*} Band(D): SD-4 band. Probable Configuration=($\pi_{5/2}$ [532]) of h_{11/2} orbital. Signature partner of SD-3 band. Percent population=0.2% for the strongest transitions relative to total population of ¹³³Pr.

$\gamma(^{133}\text{Pr})$

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
390		390.0+y	J+1	у	(51/2)	
410		800.0+y	J+2	390.0+y	J+1	
430	0.15 2	1230.0+y	J+3	800.0+y	J+2	B(M1)/B(E2)=0.74 13 (1995Wi13).
441	0.16 5	1671.0+y	J+4	1230.0+y	J+3	B(M1)/B(E2)=0.7 2 (1995Wi13).
467		2138.0+y	J+5	1671.0+y	J+4	
476	0.19 5	2614.0+y	J+6	2138.0+y	J+5	B(M1)/B(E2)=0.90 16 (1995Wi13).
784	100	784.0+z	J1+2	Z	(53/2)	

Continued on next page (footnotes at end of table)

(HI,xnγ):SD **1995Wi13** (continued)

$\gamma(^{133}\text{Pr})$ (continued)

Eγ	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Comments
800	0.15 10	800.0+v	J+2	v	(51/2)	
821	100	821.0+u	J2+2	u	(55/2)	
840	0.76 4	1230.0+v	J+3	390.0+v	J+1	
854	100	1638.0+z	J1+4	784.0+z	J1+2	
871	0.96.3	1671.0+v	J+4	800.0+v	J+2	
885	100	1706.0+u	J2+4	821.0+u	J2+2	
908	0.88 4	2138.0+v	J+5	1230.0+v	J+3	
933	100	2571.0+z	J1+6	1638.0+z	J1+4	
943	1.00 4	2614.0+v	J+6	1671.0+v	J+4	
961	100	2667.0+u	J2+6	1706.0+u	J2+4	
979	0.96.5	3117.0+v	J+7	2138.0+v	J+5	
1013	0.94 4	3627.0+v	J+8	2614.0+v	J+6	
1013	100	3584.0+z	J1+8	2571.0+z	J1+6	
1035	100	3702.0+u	J2+8	2667.0+u	J2+6	
1050	0.89 4	4167.0+v	J+9	3117.0+v	J+7	
1085	0.86 4	4712.0+v	J+10	3627.0+v	J+8	
1098	100	4682.0+z	J1+10	3584.0+z	J1+8	
1110	100	4812.0+u	J_{2+10}	3702.0+u	J2+8	
1121	0.81 4	5288.0+v	J+11	4167.0+v	J+9	
1156	0.80 3	5868.0+v	J+12	4712.0+v	J+10	
1182	100	5864.0+z	J1+12	4682.0+z	J1+10	
1184	100	5996.0+u	J2+12	4812.0+u	J_{2+10}	
1192	0.73 4	6480.0+v	J+13	5288.0+v	J+11	E_{α} : 1195 (1997Ha05).
1228	0.66 4	7096.0+v	J+14	5868.0+v	J+12	-y ().
1264	100	7260+u	J2+14	5996.0+u	J2+12	
1265	0.56 4	7745+v	J+15	6480.0+v	J+13	E_{α} : 1269 (1997Ha05).
1266	100	7130+z	J1+14	5864.0+z	J1+12	
1299		8395+v	J+16	7096.0+v	J+14	
1321	0.40 4	9066+v	J+17	7745+v	J+15	E_{α} : 1345 (1997Ha05).
1342	100	8602+u	J2+16	7260+u	J2+14	
1351	100	8481+z	J1+16	7130+z	J1+14	
1380	0.43 3	9775+y	J+18	8395+y	J+16	
1412	0.25 4	10478 + v	J+19	9066+v	J+17	E_{ν} : 1429 (1997Ha05).
1420	100	10022+u	J2+18	8602+u	J2+16	
1428	100	9909+z	J1+18	8481+z	J1+16	
1450	0.18 3	11225+y	J+20	9775+y	J+18	
1489	0.18 4	11967+v	J+21	10478 + v	J+19	
1490	100	11399 + z	J1+20	9909+z	J1+18	
1500	100	11522+u	J2+20	10022+u	J2+18	
1530	0.22 3	12755+v	J+22	11225 + v	J+20	
1572	100	12971 + z	J1+22	11399 + z	J1+20	
1576	100	13098+u	J2+22	11522+u	J2+20	
1649	100	14620+z	J1+24	12971+z	J1+22	
1656	100	14754+u	J2+24	13098+u	J2+22	

[†] Absolute intensities (%) relative to total population of ¹³³Pr. Values were read from intensity plot shown by 1995Wi13 in fig.2. At the high energy end of the spectrum, intensities are given for two additional γ rays of SD-3 band and for one additional γ ray of SD-4 band. But these γ rays are not shown in the γ ray spectra of fig. 1.

(HI,xnγ):SD 1995Wi13

	e,	
J2+24	le la	14754+u
J2+22		13098+u
J2+20		11522+u_
J2+18		10022+u_
J2+16		8602+u_
J2+14		7260+u_
J2+12	· · · · · · · · · · · · · · · · · · ·	5996.0+u
<u>J2+10</u>		4812.0+u
J2+8		3702.0+u
J2+6	e e	2667.0+u
J2+4	20 gg	1706.0+u
J2+2		821.0+u
(55/2)	· · · · · · · · · · · · · · · · · · ·	u
J1+24	° °s ₽	14620+z
J1+22		12971+z
J1+20		11399+z_
J1+18	<u>\$</u>	9909+z
J1+16		8481+z
J1+14		7130+z
J1+12		5864.0+z
J1+10	• • • • • • • • • • • • • • • • • • •	4682.0+z
<u>J1+8</u>	<u>\$</u>	3584.0+z
J1+6	<u> </u>	2571.0+z
J1+4		1638.0+z
J1+2		_∞784.0+z
(53/2) I+22		<u>2</u> 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
J+21		11967+y
J+20	·	11225+y
J+19		10478+y

¹³³₅₉Pr₇₄

4

¹³³₅₉Pr₇₄

(HI,xnγ):SD 1995Wi13

Band(D): SD-4 band						
J2+24	J2+24 14754+u					
J2+22	16	56 13098+u				
J2+20	15	⁵⁷⁶ 11522+u				
J2+18	15	⁵⁰⁰ 10022+u				
J2+16	14	²⁰ 8602+u				
J2+14	13	⁴² 7260+u				
J2+12	12	⁶⁴ 5996.0+u				
J2+10	11	⁸⁴ 4812.0+u				
J2+8	11	¹⁰ 3702.0+u				
J2+6	10	³⁵ 2667.0+u				
J2+4	9	⁶¹ 1706.0+u				
J2+2	8	⁸⁵ 821.0+u				
(55/2)	8	21 u				

(C): SD-3 band
(C): SD-3 band

16356+z

J1+26

J1+24	14620+z
	1649
J1+22	12971+z
11.00	1572
J1+20	11399+z
J1+18	¹⁴⁹⁰ 9909+z
	1428
J1+16	8481+z
J1+14	¹³⁵¹ 7130+z
J1+12	¹²⁶⁶ 5864.0+z
J1+10	¹¹⁸² 4682.0+z
J1+8	¹⁰⁹⁸ 3584.0+z
J1+6	¹⁰¹³ 2571.0+z
J1+4	⁹³³ 1638.0+z
J1+2	854 784.0+z
(53/2)	784 z

			,
Band	(A): SD-1 band		
		J+22	12755+y
J+21	11967+y		1520
	1490	J+20	1550 11225+y
J+19	1469 10478+y		1450
	1412 0055	J+18	9775+y
J+17	9066+y	1.16	1380 9205
I±15	1321 7745+v	J+10	0395+y
J 110		J+14	1299 7096.0+y
J+13	¹²⁶⁵ 6480.0+y		1228 - 2 - 2 - 2
T-11	1192 5288 0+v	J+12	1228 5868.0+y
J+11	5200.01y	J+10	1156 4712.0+y
J+9	1121 4167.0+y	- T.O	1085 2627 0
J+7	1050 3117.0+y	<u>J+8</u>	1005 5027.0+y
	979 2138 0±v	J+6	1013 2614.0+y
J+3	2130.0+y	J+4	943 1671.0+y
J+3	908 1230.0+y	J+2	871 800.0+y
J+1	840 390.0+y	(51/2)	800 Y
			· · · · · · · · · · · · · · · · · · ·

Band(B): SD-2 band

¹³³₅₉Pr₇₄