¹³³Nd ε decay (\approx 70 s) 1995Br24

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010	

Parent: ¹³³Nd: E=127.97 *11*; $J^{\pi}=(1/2^+)$; $T_{1/2}\approx70$ s; $Q(\varepsilon)=5605$ 48; $\mathscr{H}\varepsilon+\mathscr{H}\mathscr{H}^+$ decay>97.3 1995Br24,1993BrZS: ¹³³Nd(ε) [from ⁹²Mo(⁴⁶Ti,4p1n)¹³³Nd, ⁹²Mo(⁴⁶Ti,3p2n)¹³³Pm E=246 MeV] measured γ , ce, $\gamma\gamma(t)$, (ce) $\gamma(t)$, $x\gamma(t)$, ex(t), deduced ¹³³Pr levels, $T_{1/2}$, $\alpha(exp)$. Tandem, mass-separator, tape transport system, Ge, Si detectors; particle plus triaxial rotor model calculation. The assignment of transitions to decay of the isomer was made by comparison with the ¹³³Nd decay studies (1989Li22) where source contained ≈ 8 times less isomer. The main ^{133m}Nd isomer decay leads to a direct feeding of the 402 keV excited state.

¹³³Pr Levels

E(level) [†]	Jπ‡	T _{1/2} ‡	E(level) [†]	J#‡	E(level) [†]	Jπ‡
0.0	$(3/2^+)$	6.5 min 3	402.78 10	$(1/2^+, 3/2^+)$	744.00 8	$(1/2^+, 3/2)$
61.67 8	$(5/2^+)$		489.80? 20	(3/2)	898.81 <i>18</i>	
166.68 8	$(5/2^+, 7/2^+)$		586.30 12	$(3/2^+)$	1041.99 22	(1/2, 3/2)
192.03 17	$(11/2^{-})$	1.1 s 2	639.05 12	(1/2, 3/2)	1221.9 5	
295.59 13	$(7/2^{-})$		656.4 4			

[†] From a least squares fit to $E\gamma's$.

[‡] From Adopted Levels.

 $\gamma(^{133}\text{Pr})$

The isomer to ground state $\varepsilon + \beta^+$ decay is unknown and therefore the decay scheme cannot be normalized. Most of the feeding is expected into the 402-keV level.

E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult. [‡]	$\alpha^{\#}$	Comments
61.7 <i>1</i>	52	61.67	(5/2+)	0.0	(3/2+)	M1	5.22	$\alpha(L)\exp=0.67 \ 15; \ \alpha(M)\exp=0.30 \ 13; \ M/L=0.27 \ 8 \\ \alpha(K)=4.44 \ 7; \ \alpha(L)=0.617 \ 10; \ \alpha(M)=0.1300 \\ 20; \ \alpha(N+)=0.0341 \ 5 \\ \alpha(N)=0.0291 \ 5; \ \alpha(O)=0.00467 \ 7; \\ \alpha(P)=0.000342 \ 5 \\ \end{array}$
103.6 2	1.0 5	295.59	(7/2-)	192.03	(11/2 ⁻)	E2	1.87	$\begin{aligned} &\alpha(\text{L})\exp=0.75\ 20;\ \alpha(\text{M})\exp=0.23\ 8;\ \text{L/K}=0.70\\ &20;\ \text{M/L}=0.30\ 9;\ \text{M/K}=0.19\ 6\\ &\alpha(\text{K})=1.093\ 17;\ \alpha(\text{L})=0.604\ 10;\ \alpha(\text{M})=0.1361\\ &23;\ \alpha(\text{N}+)=0.0336\ 6\\ &\alpha(\text{N})=0.0294\ 5;\ \alpha(\text{O})=0.00412\ 7;\\ &\alpha(\text{P})=5.75\times10^{-5}\ 9 \end{aligned}$
105.1 2	4 1	166.68	(5/2+,7/2+)	61.67	(5/2+)	M1+E2	1.4 4	$\alpha(K)\exp<1.7; \ \alpha(L)\exp=0.23 \ 7; \ L/K=0.19 \ 6; \\ M/L=0.28 \ 9; \ M/K=0.066 \ 20 \\ \alpha(K)=1.00 \ 5; \ \alpha(L)=0.35 \ 22; \ \alpha(M)=0.08 \ 5; \\ \alpha(N+)=0.019 \ 13 \\ \alpha(N)=0.017 \ 11; \ \alpha(O)=0.0024 \ 15; \\ \alpha(P)=6.4\times10^{-5} \ 10 $
130.4 2	0.6 2	192.03	(11/2 ⁻)	61.67	(5/2+)	E3	7.60 12	$ \begin{aligned} &\alpha(\text{L)exp}=4.1 \ 6; \ \alpha(\text{M})\text{exp}=1.3 \ 2; \ \text{L/K}=1.7 \ 3; \\ &\text{M/K}=0.54 \ 12; \ \text{M/L}=0.30 \ 8 \\ &\alpha(\text{K})=2.40 \ 4; \ \alpha(\text{L})=4.02 \ 7; \ \alpha(\text{M})=0.943 \ 16; \\ &\alpha(\text{N}+)=0.232 \ 4 \\ &\alpha(\text{N})=0.204 \ 4; \ \alpha(\text{O})=0.0279 \ 5; \\ &\alpha(\text{P})=0.0001277 \ 19 \end{aligned} $

Continued on next page (footnotes at end of table)

			¹³³ Nd	ε decay (a	e70 s) 1995	Br24 (cont	tinued)	
E_{γ}^{\dagger}	I_{γ}^{\dagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^π	Mult. [‡]	α #	Comments
154.6.4	103	898 81		744.00	$(1/2^+ 3/2)$			$\alpha(\exp)$: $\alpha(K)\exp=2.4$ is equal to theoretical value and is used for normalization of I γ to Ice.
166.7 <i>1</i> 233 9 <i>1</i>	$0.5\ 2$ 1 0 4	166.68 295.59	$(5/2^+, 7/2^+)$ $(7/2^-)$	0.0	$(3/2^+)$ $(5/2^+)$			
341.0 3	$31 \\ 303$	402.78	$(1/2^+, 3/2^+)$	61.67 295 59	$(5/2^+)$ $(7/2^-)$			
402.8 1	100	402.78	(1/2 ⁺ ,3/2 ⁺)	0.0	(3/2+)	M1	0.0292	$\alpha(K) \exp = 0.028 \ 6; \ \alpha(L) \exp = 0.0042 \ 8; \ M/L = 0.15 \ 3 \ \alpha(K) = 0.0250 \ 4; \ \alpha(L) = 0.00333 \ 5; \ \alpha(M) = 0.000699 \ 10; \ \alpha(N+) = 0.000184 \ 3 \ \alpha(N) = 0.0001564 \ 22; \ \alpha(O) = 2.53 \times 10^{-5} \ 4; \ \alpha(P) = 1.89 \times 10^{-6} \ 3$
419.6 <i>1</i>	5.8 6	586.30	(3/2+)	166.68	(5/2 ⁺ ,7/2 ⁺)	M1+E2	0.022 4	$\begin{array}{l} \alpha(\Gamma) & (10) (10) & 0 \\ \alpha(K) \exp[=0.019 \ 4] \\ \alpha(K) = 0.019 \ 4; \ \alpha(L) = 0.00279 \ 21; \\ \alpha(M) = 0.00059 \ 4; \\ \alpha(N+) = 0.000154 \ 12 \\ \alpha(N) = 0.000132 \ 10; \\ \alpha(O) = 2.08 \times 10^{-5} \ 20; \\ \alpha(P) = 1.4 \times 10^{-6} \ 4 \end{array}$
472.1 3	1.6 6	639.05	(1/2,3/2)	166.68	$(5/2^+, 7/2^+)$			
489.8 ^{&} 2 496.1 4 524.7 3	11 2 0.3 3 3.6 7	489.80? 898.81 586.30	(3/2) $(3/2^+)$	0.0 402.78 61.67	$(3/2^+)$ $(1/2^+, 3/2^+)$ $(5/2^+)$			
577.4 [@] 1	4.2 [@] 8	639.05	(1/2,3/2)	61.67	$(5/2^+)$			
577.4 [@] 1	$1.9^{@} 6$	744.00	$(1/2^+, 3/2)$	166.68	$(5/2^+, 7/2^+)$			
639.1 <i>4</i>	2.2 6	639.05	(3/2) (1/2,3/2)	0.0	$(3/2^+)$ $(3/2^+)$			
639.2 2 682.3 2	0.5 2 1.8 <i>3</i>	1041.99 744.00	(1/2,3/2) $(1/2^+,3/2)$	402.78 61.67	$(1/2^+, 3/2^+)$ $(5/2^+)$			
732.1 [@] 3	0.7 [@] 3	898.81		166.68	$(5/2^+, 7/2^+)$			
732.1 ^{@&} 6 743.9 <i>1</i> 836.9 <i>4</i> 899.2 <i>4</i>	1.2 [@] 5 5.0 5 1.0 4 3.8 4	1221.9 744.00 898.81 898.81	(1/2 ⁺ ,3/2)	489.80? 0.0 61.67 0.0	(3/2) $(3/2^+)$ $(5/2^+)$ $(3/2^+)$			

[†] From 1995Br24.
[‡] From internal conversion electron measurements in 1995Br24.
[#] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
[@] Multiply placed with intensity suitably divided.
[&] Placement of transition in the level scheme is uncertain.

¹³³Nd ε decay (\approx 70 s) 1995Br24

