⁹⁶**Ru**(⁴⁰**Ca,3**pγ) **1996Ga17**

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010	

1996Ga17: ⁹⁶Ru(⁴⁰Ca,3p γ), E=176 MeV; measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DSAM); deduced levels, J^{π} , δ , band structure. Tandem, an 8π array of 20 HPGe anti-Compton shielded detectors, spherical shell of 71 BGO, models comparison.

1991Re03 (also 1991ReZY): 96 Ru(40 Ca,3pn), E=180 MeV; measured $\gamma\gamma$, $n\gamma$, $nn\gamma$, (recoil) γ -, n(recoil) γ -coin.; deduced transitions between six rotational bands. POLYTESSA array, 10 Compton suppressed detectors.

2001Ri20 (also 2002La09): ¹⁰⁵Pd(³⁵Cl, α 3n γ), E=173 MeV; measured γ , $\gamma\gamma(\theta)$ (DSAM); ¹³³Pm deduced Q(intrinsic) of the

bands. Cyclotron, GAMMASPHERE spectrometer, MICROBALL detector of charged particles.

Other: 1987Wa02 ($T_{1/2}$ measurements by RDM).

¹³³Pm Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0#	3/2+		This state may not necessarily be the g.s., since the experiment is not sensitive to isomeric decay.
84.48 [@] 23	$5/2^{+}$		
129.7 <mark>&</mark> 7	$11/2^{-}$		
147.9 ^a 8	9/2-		
214.2 [#] 3	7/2+		
371.9 3	$(7/2^+)$		
381.9 [@] 3	9/2+		
382.1 7	$15/2^{-}$	50 ps 4	$T_{1/2}$: from 1987Wa02.
410.4^{a}_{μ} 7	13/2-		
571.6# 3	$11/2^+$		
653.4° 3	9/2+		
802.5° 3	13/2+		
810.10 4	11/2*		
812.0° 7	19/2-		
815.9 ^{<i>a</i>} 7	$15/2^{-1}$		
820.3° / 991 2 [°] /	$\frac{1}{2}$		
$1025.3^{\#}.3$	15/2 $15/2^+$		
$1025.5 \ 5$ 1106 6 ^b 1	$15/2^+$		
1190.0 + 1226 0d 7	$(10/2)^{-}$		
1220.9 7	(19/2) $17/2^+$		
1294.9 4 1334 2 ^{<i>a</i>} 7	$\frac{17/2}{21/2^{-1}}$		
$1383.4^{\&}$ 7	$23/2^{-}$		
1425.4 ^{<i>c</i>} 4	$\frac{23}{2}^{+}$		
1534.8 [#] 4	$19/2^{+}$		
1677.4 ^b 4	$19/2^{+}$		
1758.4 ^d 7	$(23/2)^{-}$		
1830.6 [@] 4	$21/2^{+}$		
1927.9 ^{<i>a</i>} 7	25/2-		
1952.1 ^c 5	$21/2^{+}$		
2058.9 7	$27/2^{-}$		
2081.4 [#] 4	$23/2^+$		
2249.1 ^b 5	$23/2^+$		
2388.9 ^d 7	$(27/2)^{-}$		

 96 Ru(40 Ca,3p γ)

				¹³³ Pm Levels (continued)					
E(level) [†]	J ^π ‡	E(level) [†]	J″‡	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡		
2397.1 [@] 4	$25/2^{+}$	3609.1 ^{&} 8	35/2-	4926.2 [°] 7	$37/2^{+}$	6796.8 [#] 10	$47/2^{+}$		
2567.6 [°] 5	$25/2^+$	3655.3 ^b 6	31/2+	4927.6 [#] 7	39/2+	7137.3 ^a 19	49/2-		
2598.5 ^a 7	$29/2^{-}$	3671.8 [@] 5	$33/2^{+}$	5096.8 ^a 10	$41/2^{-}$	7278.6 [@] 14	$49/2^{+}$		
2674.4 [#] 4	$27/2^+$	3911.0 ^d 13	$(35/2)^{-}$	5337.4 [@] 9	$41/2^{+}$	7492.1 ^{&} 13	$51/2^{-}$		
2805.4 <mark>&</mark> 7	31/2-	4059.5 [°] 6	$33/2^+$	5390.0 ^b 12	39/2+	7768.8 [#] 12	$51/2^{+}$		
2909.3 ^b 5	$27/2^+$	4089.2 [#] 5	$35/2^+$	5409.1 ^{&} 8	43/2-	8290.5 [@] 17	$53/2^{+}$		
2991.6 [@] 5	$29/2^+$	4180.8 ^{<i>a</i>} 8	37/2-	5838.3 [#] 9	$43/2^{+}$	8646.6 <mark>&</mark> 19	$55/2^{-}$		
3114.9 <mark>d</mark> 7	$(31/2)^{-}$	4457.7 [@] 7	$37/2^+$	5872.3 ^c 12	$41/2^{+}$	8767.3 [#] 14	$55/2^+$		
3271.9 [°] 5	$29/2^+$	4474.8 ^{&} 8	39/2-	6099.8 ^a 14	$45/2^{-}$	9361.5 [@] 23	$57/2^{+}$		
3338.1 [#] 5	$31/2^+$	4480.0 ^b 6	$35/2^+$	6290.7 [@] 11	$45/2^{+}$	9877.7 ^{&} 25	59/2-		
3348.5 ^a 8	33/2-	4773.0 ^d 16	$(39/2)^{-}$	6414.0 ^{&} 11	$47/2^{-}$				

133 pm Lavals (continued)

1996Ga17 (continued)

[†] From a least-squares fit to $E\gamma$.

[‡] From 1996Ga17, based on DCO value analysis and systematics.

[#] Band(A): 1-qp band based on the $(3/2^+)$ g.s., $\alpha = -1/2$. configuration= $\pi 3/2[411]$ (d_{5/2}). Q(intrinsic)=5.4 eb 6 (1996Ga17) and 4.1 eb 2 (2001Ri20).

^(a) Band(B): 1-qp band based on the $(5/2^+)$ state at 84.5-keV, $\alpha = +1/2$. configuration= $\pi 3/2[411]$ (d_{5/2}). Q(intrinsic)=5.4 eb 6 (1996Ga17) and 4.1 eb 2 (2001Ri20).

& Band(C): 1-qp band based on the $(11/2^{-})$ state 129.7-keV, $\alpha = -1/2$. configuration= $\pi 3/2[541]$ (h_{11/2}), strongly Coriolis mixed. Q(intrinsic)=5.2 eb 5 (1996Ga17) and 4.0 eb 2 (2001Ri20).

^{*a*} Band(D): 1-qp band based on the (9/2⁻)state 147.9-keV, $\alpha = +1/2$. configuration= $\pi 3/2[541]$ (h_{11/2}), strongly Coriolis mixed. Q(intrinsic)=5.2 eb 5 (1996Ga17) and 4.0 eb 2 (2001Ri20).

^b Band(E): 1-qp band based on the (11/2⁺) state at 810.1-keV, $\alpha = -1/2$. configuration= $\pi 9/2[404]$ (g_{9/2}). Q(intrinsic)=7.4 eb 10 (1996Ga17) and 5.0 eb 4 (2001Ri20,2002La09).

^c Band(F): 1-qp band based on the $(9/2^+)$ state at 653.4-keV, $\alpha = +1/2$. configuration= $\pi 9/2[404]$ (g_{9/2}). Q(intrinsic)=7.4 eb 10 (1996Ga17) and 5.0 eb 4 (2001Ri20,2002La09).

^d Band(G): 1-qp band based on the (15/2⁻) state at 815.9-keV, $\alpha = +1/2$. Probable configuration=h_{11/2}, strongly Coriolis mixed band.

$\gamma(^{133}\text{Pm})$

${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult. [#]	$\delta^{@}$	Comments
84.44 27	≈2	84.48	5/2+	0.0	3/2+			
129.52 <i>19</i>	14.6 15	214.2	$7/2^{+}$	84.48	$5/2^{+}$	M1+E2	0.150 16	R(DCO)= 1.45 5, 1.00 4.
156.35 21	5.4 <i>3</i>	810.1	$11/2^{+}$	653.4	$9/2^{+}$	M1+E2	0.23 3	$R(DCO) = 1.21 \ 12.$
167.0 <i>3</i>	13.0 6	381.9	$9/2^{+}$	214.2	$7/2^{+}$	M1+E2	0.178 16	R(DCO)= 1.49 7, 1.07 4.
180.45 25	6.0 <i>3</i>	991.2	$13/2^{+}$	810.1	$11/2^{+}$	M1+E2	0.25 3	$R(DCO) = 1.28 \ 12.$
189.35 <i>23</i>	11.2 6	571.6	$11/2^{+}$	381.9	$9/2^{+}$	M1+E2	0.195 24	R(DCO)= 1.43 11, 1.09 6.
205.0 3	6.8 <i>3</i>	1196.6	$15/2^{+}$	991.2	$13/2^{+}$	M1+E2	0.23 3	$R(DCO) = 1.21 \ 12.$
214.0 5	5.8 6	214.2	$7/2^{+}$	0.0	$3/2^{+}$			
222.4 4	6.9 <i>3</i>	1025.3	$15/2^{+}$	802.5	$13/2^{+}$	M1+E2	0.15 3	R(DCO)= 1.35 9, 1.00 8.
228.55 25	5.3 <i>3</i>	1425.4	$17/2^{+}$	1196.6	$15/2^{+}$	M1+E2	0.24 3	$R(DCO) = 1.25 \ 12.$
230.80 21	8.9 <i>5</i>	802.5	$13/2^{+}$	571.6	$11/2^{+}$	M1+E2	0.18 3	R(DCO)= 1.46 9, 1.06 8.
239.5 7	4.9 <i>3</i>	1534.8	$19/2^{+}$	1294.9	$17/2^{+}$	M1+E2	0.12 4	R(DCO)= 1.38 10, 0.92 10.
250.8 ^{&} 3	3.6 2	2081.4	$23/2^{+}$	1830.6	$21/2^{+}$			
251.82 27	4.5 3	1677.4	$19/2^{+}$	1425.4	$17/2^{+}$			
252.45 23	140 3	382.1	15/2-	129.7	$11/2^{-}$	E2		R(DCO)= 2.02 4.

Continued on next page (footnotes at end of table)

γ ⁽¹³³Pm) (continued)</sup>

E_{γ}^{\dagger}	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult. [#]	$\delta^{@}$	Comments
262.55 23	25 1	410.4	$13/2^{-}$	147.9	9/2-	E2		R(DCO)= 1.92 15.
269.45 21	6.8 4	1294.9	$17/2^{+}$	1025.3	$15/2^{+}$	M1+E2	0.12 4	$R(DCO) = 1.38 \ 10, \ 0.93 \ 10.$
271.6 ^{&} 10	0.9 1	653.4	$9/2^{+}$	381.9	$9/2^{+}$			
274.46 24	4.0 3	1952.1	$21/2^{+}$	1677.4	$19/2^{+}$	M1+E2	0.23 5	R(DCO)= 1.23 15.
277.4 ^{&} 3	2.3 2	2674.4	$27/2^{+}$	2397.1	$25/2^+$			
280.75 23	23 1	410.4	$13/2^{-}$	129.7	$11/2^{-}$			R(DCO)= 2.49 8.
281.6 ^{&} 2	3.3 <i>3</i>	653.4	$9/2^{+}$	371.9	$(7/2^+)$			R(DCO) = 1.3 4.
287 4 ^{&} 2	211	371.9	$(7/2^+)$	84 48	5/2+			R(DCO) = 1.22.15
295.60 27	5.6 3	1830.6	$\frac{(1)^2}{21/2^+}$	1534.8	$19/2^+$	M1+E2	0.13 6	$R(DCO) = 1.35 \ 12.$
296.99 24	3.0 4	2249.1	$23/2^{+}$	1952.1	$21/2^+$			
297.72 24	178	381.9	9/2+	84.48	$5/2^{+}$	E2		R(DCO)= 1.93 <i>13</i> .
309.5 ^{&} 3	2.2 3	3114.9	$(31/2)^{-}$	2805.4	$31/2^{-}$			
315.8 ^{&} 3	4.7 4	2397.1	$25/2^{+}$	2081.4	$23/2^{+}$			
317.3 <mark>&</mark> 5	2.4 3	2991.6	29/2+	2674.4	27/2+			
318.53 26	2.2 5	2567.6	$25/2^{+}$	2249.1	$23/2^{+}$			
329.9 <mark>&</mark> 3	2.1 3	2388.9	$(27/2)^{-}$	2058.9	$27/2^{-}$			
338.39 29	1.51 15	991.2	$13/2^{+}$	653.4	$9/2^{+}$			
341.66 28	1.9 4	2909.3	$27/2^{+}$	2567.6	$25/2^+$			
357.42 19	21.3 9	571.6	$11/2^{+}$	214.2	7/2+	E2		$R(DCO) = 1.99 \ 9.$
362.58 19	1.4 3	3271.9	$29/2^{+}$	2909.3	$27/2^{+}$			
372.6 7	1.2 6	371.9	$(7/2^+)$	0.0	3/2+			
374.9 ^{&} 3	3.8 <i>3</i>	1758.4	$(23/2)^{-}$	1383.4	$23/2^{-}$			R(DCO)= 2.10 15.
383.0 6	1.6 4	3655.3	$31/2^{+}$	3271.9	$29/2^+$			
386.7 3	2.27 20	1196.6	$15/2^{+}$	810.1	$11/2^{+}$			
404 [∞] 1	1.0 4	4059.5	$33/2^{+}$	3655.3	$31/2^{+}$			
405.1 & 4	3.0 3	815.9	$15/2^{-}$	410.4	$13/2^{-}$			
406.6 ^{&} 3	5.4 4	1226.9	$(19/2)^{-}$	820.3	$17/2^{-}$			R(DCO)= 1.9 2.
409.96 17	36 2	820.3	$17/2^{-}$	410.4	$13/2^{-}$			$R(DCO) = 2.08 \ 17.$
411.0 ^{&} 3	5.6 5	1226.9	$(19/2)^{-}$	815.9	$15/2^{-}$			
415.0 ^{&} 3	5.96	1226.9	$(19/2)^{-}$	812.0	19/2-			R(DCO)= 1.95 25.
420.73 16	27.2 12	802.5	$13/2^{+}$	381.9	$9/2^{+}$	E2		R(DCO)= 1.98 15.
424.1 ^{&} 3	4.3 <i>3</i>	1758.4	$(23/2)^{-}$	1334.2	$21/2^{-}$			$R(DCO) = 1.8 \ 3.$
429.86 17	137 6	812.0	19/2-	382.1	$15/2^{-}$	E2		R(DCO)= 1.99 5.
433.9 ^{&} 3	5.4 7	815.9	$15/2^{-}$	382.1	$15/2^{-}$			R(DCO)= 2.05 15.
434.4 <i>3</i>	3.45 25	1425.4	$17/2^{+}$	991.2	$13/2^{+}$			
438.09 17	13 <i>I</i>	820.3	17/2-	382.1	$15/2^{-}$			$R(DCO) = 2.36 \ 10.$
439.1 ^{&} 2	3.7 3	653.4	9/2+	214.2	7/2+			$R(DCO) = 1.27 \ 25.$
453.73 17	29 1	1025.3	$15/2^{+}$	571.6	$11/2^{+}$	E2		$R(DCO) = 1.98 \ 10.$
461.1 ^{<i>x</i>} 2	3.8 4	2388.9	$(27/2)^{-}$	1927.9	25/2-			
480.96 19	3.84 25	1677.4	19/2+	1196.6	$15/2^+$	50		
492.45 21	29.2 15	1294.9	$1/2^{+}$ $10/2^{+}$	802.5	$\frac{13}{2}$	E2 E2		$R(DCO) = 2.01 \ IO.$ $R(DCO) = 1.02 \ IS$
514 4 5	50.7 15 41 3	1334.0	$\frac{19}{2^{-1}}$	820.3	$\frac{13}{2^{-1}}$	E2 E2		R(DCO) = 1.92 IS. R(DCO) = 1.93 IS
516 6 2 2	163	311/ 0	$(31/2)^{-1/2}$	2508 5	20/2-	112		K(DCO)= 1.75 15.
572 20 24	1.0 <i>5</i> 956	1334.2	(31/2) $21/2^{-}$	2390.3 812 0	19/2 ⁻			R(DCO) = 2.38.15
526.74 26	4.35.30	1952.1	$\frac{21/2}{21/2^+}$	1425.4	$17/2^+$			K(DCO)= 2.30 13.
531 4 ^{&} 3	14 9 7	1758.4	$(23/2)^{-}$	1226.9	$(19/2)^{-1}$			
535.80 21	29.4 15	1830.6	$\frac{(23/2)}{21/2^+}$	1294.9	$17/2^+$			
539.7 ^{&} 3	5 1	2598.5	29/2-	2058.9	27/2-			R(DCO)= 1.9 2. This value does not suggest the transition placement (1996Ga17)

between levels with $29/2^-$ and $27/2^-$.

Continued on next page (footnotes at end of table)

γ ⁽¹³³Pm) (continued)</sup>

E_{γ}^{\dagger}	I_{γ} ‡	E_i (level)	\mathbf{J}_i^{π}	$E_f \qquad J_f^{\pi}$	Mult.#	Comments
544.6 ^{&} 3	7.8 6	1927.9	25/2-	1383.4 23/2-		$R(DCO)= 1.7$ 2. This value does not suggest the transition placement (1996Ga17) between levels with $25/2^-$ and $23/2^-$.
546.63 17	37.7 15	2081.4	23/2+	1534.8 19/2+		
566.4 <i>4</i> 571.33.16	26.7 15	2397.1	25/2*	$1830.6 \ 21/2^+$ 812.0 10/2 ⁻	F2	P(DCO) = 2.01 I/I
571.9 4	4.0.3	2249.1	$\frac{23}{2}^{+}$	$1677.4 19/2^+$	L2	R(DCO) = 2.01 10.
592.95 21	31.6 20	2674.4	$\frac{27}{2^+}$	$2081.4 \ 23/2^+$		
593.80 <i>21</i>	34 <i>3</i>	1927.9	25/2-	1334.2 21/2-	E2	R(DCO)= 2.09 20.
594.46 24	22 2	2991.6	$29/2^+$	2397.1 25/2+		
615.46 19	4.0 3	2567.6	25/21	1952.1 21/21		
630.3 3	19.2 9	2388.9	$(27/2)^{-}$	1758.4 (23/2)	b	
643° 1	4.3 4	1025.3	$\frac{15}{2^+}$	$382.1 \ 15/2^{-1}$	E1 ⁰	R(DCO) = 1.9 2.
663 68 18	5.54 221	2909.5	$\frac{21}{2^{+}}$ $\frac{31}{2^{+}}$	$2249.1 \ 25/2^{+}$ 2674 4 27/2 ⁺		
670.69 24	25 3	2598.5	$\frac{31}{2}$ 29/2 ⁻	1927.9 25/2-		
675.47 17	66 <i>3</i>	2058.9	27/2-	1383.4 23/2-		
680.18 18	13.5 7	3671.8	$33/2^{+}$	2991.6 29/2+	,	
698 ^{&} 1	3.7 4	2081.4	$23/2^{+}$	1383.4 23/2-	E1 ^b	R(DCO) = 1.8 2.
704.4 4	4.2 4	3271.9	$29/2^{+}$	$2567.6 \ 25/2^+$	L	
723 [°] 1	5.3 4	1534.8	$19/2^{+}$	812.0 19/2-	E1 ⁰	R(DCO) = 1.7 2.
725.9 ^{x} 3	16.2 16	3114.9	$(31/2)^{-}$	$2388.9 (27/2)^{-}$		
746.13 20	3.7 6	3655.3	$\frac{31}{2}$	2909.3 27/2		
749.95 23	23 2	3348.5	31/2 $33/2^{-}$	$2038.9 \ 27/2$ 2598.5 \ 29/2 ⁻		
751.07 24	19 2	4089.2	$35/2^+$	$3338.1 \ 31/2^+$		
785.9 4	12 1	4457.7	$37/2^{+}$	3671.8 33/2+		
787.67 25	3.0 6	4059.5	$33/2^{+}$	3271.9 29/2+		
796 ^{x} 1	83	3911.0	$(35/2)^{-}$	3114.9 (31/2)-		
803.65 21	26.2	3609.1	35/2	2805.4 31/2		
824.7° 3 832.30.24	3.0 0	4480.0	35/21	$3655.3 \ 31/2^{-1}$		E_{γ} : in the level scheme of 1991Re03 $E_{\gamma}=811.3$ 15.
838.4 5	15 2	4927.6	$39/2^+$	$4089.2 \ 35/2^+$		
862 ^{&} 1	≈4	4773.0	$(39/2)^{-}$	3911.0 (35/2)-		
865.70 21	21 2	4474.8	39/2-	3609.1 35/2-		
866.7 <mark>&</mark> 3	3.5 7	4926.2	$37/2^{+}$	4059.5 33/2+		E_{γ} : in the level scheme of 1991Re03 $E\gamma$ =825.5 15.
879.7 6	8.9 18	5337.4	$41/2^{+}$	4457.7 37/2+		
910 ^{&} 1	2.0 5	5390.0	39/2+	4480.0 35/2+		E_{γ} : in the level scheme of 1991Re03 E_{γ} =868.5 15.
910.7 4	10 2	5838.3	$43/2^+$	4927.6 39/2+		
916.0 0	12 2	5096.8 5409-1	41/2 $43/2^{-}$	4180.8 37/2		
946 <mark>&</mark> 1	225	5872.3	41/2 ⁺	4926 2 37/2+		
953.3 6	5.7 15	6290.7	$45/2^+$	$5337.4 \ 41/2^+$		
958.5 5	93	6796.8	$47/2^+$	5838.3 43/2+		
972.0 ^a 6	10 ^a 2	7768.8	$51/2^{+}$	6796.8 47/2+		
987.9 ^{<i>a</i>} 8	$7.3^{a} 20$	7278.6	49/2+	6290.7 45/2+		
998.5 ⁴ 7	8 ⁴⁴ 2	8767.3	55/2*	7/68.8 51/2+		
1003 1	82	6099.8	$45/2^{-}$	5096.8 41/2-		E_{γ} : in the level scheme of 1991Re03 $E\gamma$ =988.4 7.
1004.9 / 1011 9 ^a 10	5 3 ^a 20	0414.0 8290 5	4772 53/2 ⁺	5409.1 45/2 7278 6 49/2 ⁺		
1037.5 ^{<i>a</i>} 12	$5.3^{a} 20$	7137.3	$49/2^{-}$	6099.8 45/2		
1071.0 ^{<i>a</i>} 15	$4^{a} 2^{-3}$	9361.5	57/2+	8290.5 53/2+		

Continued on next page (footnotes at end of table)

$\gamma(^{133}Pm)$ (continued)

Eγ [†]	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
1078.1 7	5 1	7492.1	51/2-	6414.0	47/2-
1154.5 14	3.7 6	8646.6	$55/2^{-}$	7492.1	$51/2^{-}$
1231.1 ^{<i>a</i>} 15	2.7 ^a 20	9877.7	59/2-	8646.6	55/2-

[†] Weighted averages of values from 1996Ga17 and 1991Re03, except as noted; when $\Delta E\gamma$ is not shown in Table 1 of 1996Ga17, evaluators assigned $\Delta E\gamma$ =0.3 keV.

[‡] From 1996Ga17, except as noted.

[#] From DCO values. $R(DCO)=I_{\gamma\gamma}(\pm 37^{\circ},\pm 37^{\circ})/I_{\gamma\gamma}(\pm 79',\pm 79')$. For stretched E2 (Q) transitions DCO ratios are 1.99; for M1+E2, $\Delta J=1$ transition DCO ≈ 1.0 (1996Ga17).

[@] From $\gamma\gamma(\theta)$ (1996Ga17).

[&] From 1996Ga17.

^{*a*} From 1991Re03; I γ 's were fit to 1996Ga17 values (divided by 1.5). About 20% of I γ values of 1991Re03 have a discrepancy in 2 / 3 times as against I γ of 1996Ga17.

^b The transition, measured in 1996Ga17 and linking the band C and the band E, must change parity, since the parities of these bands are established in 1991Re03. One may assume that any M2 mixing would be extremely weak, since this transition competes with collective E2 transition in the band C. Therefore, the DCO value are compatible with $\Delta J=0$ for these transition but not with $\Delta J=1$.

 $^{133}_{61} Pm_{72}$

⁹⁶**Ru**(⁴⁰**Ca,3**pγ) **1996Ga17**

Legend

 ∞

 $^{133}_{61} Pm_{72}\text{--}8$

From ENSDF

⁹⁶Ru(⁴⁰Ca,3pγ) 1996Ga17

 $^{133}_{61} Pm_{72}$

¹³³₆₁Pm₇₂