|                 | History                                  |                    |                        |
|-----------------|------------------------------------------|--------------------|------------------------|
| Туре            | Author                                   | Citation           | Literature Cutoff Date |
| Full Evaluation | Yu. Khazov and A. Rodionov, F. G. Kondev | NDS 112,855 (2011) | 31-Oct-2010            |

Parent: <sup>133</sup>Ce: E=37.2 7;  $J^{\pi}=9/2^-$ ;  $T_{1/2}=5.1$  h 3;  $Q(\varepsilon)=3071$  32;  $\%\varepsilon+\%\beta^+$  decay $\le 100$ 

1978He16: <sup>133</sup>Ce  $\varepsilon$  (5.1 h) [from Ba( $\alpha$ ,xn)]; measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , ce; deduced levels,  $\alpha$ (exp), log *ft*. Ge(Li) detectors, Compton suppressed system, magnetic spectrometer, chemical procedure and mass-separator. 1984Gr30: <sup>133</sup>Ce  $\varepsilon$  (5.1 h) [from Gd(p,X), E=660 MeV]; measured ce; deduced  $\alpha$ (exp),  $\delta$ . Magnetic spectrograph.

Other measurements: 1967Ab10, 1968Ge01, 1968Ab02, 1973Mo08, 1984Is06.

| <sup>133</sup> La Lo | evels |
|----------------------|-------|
|----------------------|-------|

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$         | T <sub>1/2</sub> # | Comments                                                                                                                           |
|-----------------------|----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 5/2+                       | 3.912 h 8          | $T_{1/2}$ : from Adopted Levels.                                                                                                   |
| 87.940 11             | $5/2^{+}$                  | 1.30 ns <i>10</i>  |                                                                                                                                    |
| 97.259 10             | 3/2+                       | <0.4 ns            | $T_{1/2}$ : from 1973Mo08, delayed coincidence. Other: 0.4 ns 6 (1984Is06), $\leq 0.1$ ns (1972Be77).                              |
| 130.804 10            | 7/2+                       | 1.12 ns 18         | $T_{1/2}$ : supersedes the value of 1.19 ns 20 in 1970BaYT. Other: 0.8 ns 3 (1967Ab10)                                             |
| 477.213 21            | 9/2+                       |                    | (-, -, -, -, -, -, -, -, -, -, -, -, -, -                                                                                          |
| 495.02 <i>3</i>       | 7/2+                       |                    |                                                                                                                                    |
| 535.588 21            | 11/2-                      | 64 ns 5            | g=1.37 8 (1979BuZW)<br>g: from $\gamma\gamma(\theta, H, t)$ ; =2.2 (1969GeZZ).<br>T <sub>1/2</sub> : from $\gamma(t)$ of 1975Bu10. |
| 541.20 <i>3</i>       | 7/2+                       |                    | 1/2 $7(9)$                                                                                                                         |
| 563.348.25            | $9/2^+$                    |                    |                                                                                                                                    |
| 591.25.6              | $7/2.9/2^+$                |                    |                                                                                                                                    |
| 654 60 4              | $11/2^+$                   |                    |                                                                                                                                    |
| 765 38 6              | $(5/2^+)$                  |                    |                                                                                                                                    |
| 784 531 22            | $(3/2)^{-}$                |                    |                                                                                                                                    |
| 838 74 4              | 9/2+                       |                    |                                                                                                                                    |
| 867 15 7              | $(7/2^+)$                  |                    |                                                                                                                                    |
| 950 35 5              | $(9/2)^+$                  |                    |                                                                                                                                    |
| 979.91.9              | $(5/2)^{-15/2^{-10}}$      |                    |                                                                                                                                    |
| 1045 025 23           | $0/2^{-}$                  |                    |                                                                                                                                    |
| 1002 38 5             | $\frac{9}{2}$<br>7/2+ 9/2+ |                    |                                                                                                                                    |
| 1153 35 5             | $13/2^{-}$                 |                    |                                                                                                                                    |
| 1188 56 5             | 13/2<br>$13/2^+$           |                    |                                                                                                                                    |
| 1104.632.8            | $7/2 0/2^+$                |                    |                                                                                                                                    |
| 1218 90 14            | 7/2+                       |                    |                                                                                                                                    |
| 1311.09.9             | $7/2^+$ $9/2$ $11/2$       |                    |                                                                                                                                    |
| 1318 572 10           | $7/2 9/2^+$                |                    |                                                                                                                                    |
| 1365 01 4             | $11/2^{-}$                 |                    |                                                                                                                                    |
| 1306.40.4             | 5/2 <sup>-</sup>           |                    |                                                                                                                                    |
| 1468 86 4             | $9/2^{-}$                  |                    |                                                                                                                                    |
| 1561 16 10            | $(11/2^{-})$               |                    |                                                                                                                                    |
| 1690 64 4             | $(9/2)^{-}$                |                    |                                                                                                                                    |
| 1715 40 5             | (7/2)<br>$7/2^{-} 9/2^{-}$ |                    |                                                                                                                                    |
| 1734 15 14            | $(11/2^{-})$               |                    |                                                                                                                                    |
| 1735 44 4             | $(9/2)^{-}$                |                    |                                                                                                                                    |
| 1748 29 6             | 7/2 9/2                    |                    |                                                                                                                                    |
| 1753 62 5             | $7/2^{-} 9/2 11/2^{+}$     |                    |                                                                                                                                    |
| 1778 232 9            | $7/2 9/2 11/2^+$           |                    |                                                                                                                                    |
| 1784 19 6             | $(9/2^+ 11/2^+)$           |                    |                                                                                                                                    |
| 1784 76? 11           | $7/2^{-} 9/2 11/2^{-}$     |                    |                                                                                                                                    |
| 1806 62 7             | $(9/2^{-} 11/2^{-})$       |                    |                                                                                                                                    |
| 1850 90 5             | $(9/2^{-})$                |                    |                                                                                                                                    |
| 1000.000              | (7) - )                    |                    |                                                                                                                                    |

| <sup>133</sup> Ce ε decay (5.1 h) | 1978He16 (continued) |
|-----------------------------------|----------------------|
|-----------------------------------|----------------------|

|                       |                                |                       | _                  |                       |                        |
|-----------------------|--------------------------------|-----------------------|--------------------|-----------------------|------------------------|
| E(level) <sup>†</sup> | $J^{\pi \ddagger}$             | E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | E(level) <sup>†</sup> | $J^{\pi \ddagger}$     |
| 1857.39 <i>3</i>      | 7/2-                           | 2036.04 3             | 7/2-,9/2-          | 2250.00 9             | $7/2^+, 9/2^+$         |
| 1912.81 5             | 9/2-                           | 2062.16 4             | 9/2-               | 2298.5? 3             | 7/2,9/2+               |
| 1958.67 16            | 9/2-,11/2                      | 2122.59 18            | $11/2^{-}$         | 2359.87 8             | $(7/2, 9/2, 11/2)^{-}$ |
| 1967.76 5             | 7/2-,9/2-                      | 2132.08 7             | 7/2,9/2+           | 2367.35 17            | $(7/2, 9/2)^+$         |
| 1983.38 10            | 7/2-,9/2,11/2+                 | 2137.18 7             | 9/2-               | 2501.31 11            | 9/2-,11/2+             |
| 2018.26 6             | 7/2-                           | 2155.17 6             | $(9/2^{-})$        | 2572.76? 24           | $(7/2^+)$              |
| 2029.84 9             | 7/2,9/2+                       | 2175.64 9             | $(11/2^{-})$       | 2734.8? 4             | 7/2-,9/2+              |
| 2035.22 7             | $(7/2^{-}, 9/2^{-}, 11/2^{-})$ | 2199.95 6             | $(9/2^{-})$        | 2851.11 22            | $(9/2^{-}, 11/2^{+})$  |

# <sup>133</sup>La Levels (continued)

<sup>†</sup> From a least-squares fit to  $E\gamma$ 's. <sup>‡</sup> From 'Adopted Levels and gammas'. <sup>#</sup> From  $\gamma\gamma$ (t) of 1973Mo08 and 1984Is06, except as noted.

| E(decay)     | E(level) | $I\beta^+$ ‡ | I $\varepsilon^{\ddagger}$ | Log ft  | $I(\varepsilon + \beta^+)^{\dagger\ddagger}$ | Comments                                                                                                    |
|--------------|----------|--------------|----------------------------|---------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| (257 32)     | 2851.11  |              | 0.344 25                   | 6.13 14 | 0.344 25                                     | εK=0.813 7; εL=0.145 5; εM+=0.0421 17                                                                       |
| (373 32)     | 2734.8?  |              | 0.065 24                   | 7.22 19 | 0.065 24                                     | εK=0.827 3; εL=0.1341 20; εM+=0.0385 7                                                                      |
| (535 32)     | 2572.76? |              | 0.20 3                     | 7.07 9  | 0.20 3                                       | εK=0.8359 12; εL=0.1277 9; εM+=0.0364 3                                                                     |
| (607 32)     | 2501.31  |              | 0.51 5                     | 6.78 7  | 0.51 5                                       | εK=0.8381 9; εL=0.1260 7; εM+=0.03586 22                                                                    |
| $(741 \ 32)$ | 2367.35  |              | 0.30 4                     | 7.19 8  | 0.30 4                                       | εK=0.8410 6; εL=0.1239 5; εM+=0.03514 14                                                                    |
| (748 32)     | 2359.87  |              | 0.81 6                     | 6.77 6  | 0.81 6                                       | εK=0.8411 6; εL=0.1238 4; εM+=0.03510 14                                                                    |
| (810 32)     | 2298.5?  |              | 0.078 5                    | 7.86 6  | 0.078 5                                      | εK=0.8421 5; εL=0.1230 4; εM+=0.03486 12                                                                    |
| (858 32)     | 2250.00  |              | 2.20 9                     | 6.46 5  | 2.20 9                                       | εK=0.8428 4; εL=0.1225 3; εM+=0.03470 10                                                                    |
| (908 32)     | 2199.95  |              | 2.73 8                     | 6.42 5  | 2.73 8                                       | εK=0.8434 4; εL=0.1221 3; εM+=0.03455 9                                                                     |
| (933 32)     | 2175.64  |              | 1.24 7                     | 6.79 5  | 1.24 7                                       | εK=0.8436 4; εL=0.1219 3; εM+=0.03448 9                                                                     |
| (953 32)     | 2155.17  |              | 0.96 8                     | 6.92 6  | 0.96 8                                       | εK=0.8438 4; εL=0.12173 24; εM+=0.03443 8                                                                   |
| (971 32)     | 2137.18  |              | 1.52 13                    | 6.73 6  | 1.52 13                                      | εK=0.8440 3; εL=0.12159 23; εM+=0.03438 8                                                                   |
| (976 32)     | 2132.08  |              | 0.81 3                     | 7.01 5  | 0.81 3                                       | εK=0.8441 3; εL=0.12155 23; εM+=0.03437 8                                                                   |
| (986 32)     | 2122.59  |              | 0.32 4                     | 7.42 7  | 0.32 4                                       | εK=0.8442 3; εL=0.12148 23; εM+=0.03435 8                                                                   |
| (1046 32)    | 2062.16  |              | 5.42 13                    | 6.25 4  | 5.42 13                                      | εK=0.8447 3; εL=0.12107 20; εM+=0.03421 7                                                                   |
| (1072 32)    | 2036.04  |              | 14.69 25                   | 5.84 4  | 14.69 25                                     | εK=0.8449 3; εL=0.12091 19; εM+=0.03416 7                                                                   |
| (1073 32)    | 2035.22  |              | 1.13 7                     | 6.95 5  | 1.13 7                                       | εK=0.8449 3; εL=0.12091 19; εM+=0.03416 7                                                                   |
| (1078 32)    | 2029.84  |              | 1.52 7                     | 6.83 5  | 1.52 7                                       | εK=0.8450 3; εL=0.12088 19; εM+=0.03415 7                                                                   |
| (1090 32)    | 2018.26  |              | 4.54 25                    | 6.36 5  | 4.54 25                                      | εK=0.8451 3; εL=0.12081 18; εM+=0.03412 6                                                                   |
| (1125 32)    | 1983.38  |              | 0.91 5                     | 7.09 5  | 0.91 5                                       | εK=0.8453 3; εL=0.12061 17; εM+=0.03406 6                                                                   |
| (1140 32)    | 1967.76  |              | 2.74 8                     | 6.62 4  | 2.74 8                                       | εK=0.8454 3; εL=0.12053 17; εM+=0.03403 6                                                                   |
| (1150 32)    | 1958.67  |              | 0.28 5                     | 7.62 9  | 0.28 5                                       | εK=0.8455 2; εL=0.12048 17; εM+=0.03401 6                                                                   |
| (1195 32)    | 1912.81  |              | 3.29 9                     | 6.58 4  | 3.29 9                                       | εK=0.8458 2; εL=0.12024 16; εM+=0.03394 5                                                                   |
| (1251 32)    | 1857.39  |              | 2.43 13                    | 6.76 4  | 2.43 13                                      | εK=0.8460 1; εL=0.11997 15; εM+=0.03385 5                                                                   |
| (1257 32)    | 1850.90  |              | 3.53 10                    | 6.60 4  | 3.53 10                                      | εK=0.84599 9; εL=0.11994 15; εM+=0.03384 5                                                                  |
| (1302 32)    | 1806.62  |              | 0.39 5                     | 7.59 7  | 0.39 5                                       | εK=0.8460; εL=0.11972 15; εM+=0.03377 5                                                                     |
| (1323 32)    | 1784.76? |              | 0.44 6                     | 7.55 7  | 0.44 6                                       | εK=0.8460 2; εL=0.11961 16; εM+=0.03373 5                                                                   |
| (1324 32)    | 1784.19  |              | 1.01 8                     | 7.19 5  | 1.01 8                                       | εK=0.8460 2; εL=0.11961 16; εM+=0.03373 5                                                                   |
| (1330 32)    | 1778.23? |              | 0.37 5                     | 7.63 7  | 0.37 5                                       | εK=0.8459 2; εL=0.11958 16; εM+=0.03372 5                                                                   |
| (1355 32)    | 1753.62  | 0.00031 15   | 0.30 6                     | 7.74 10 | 0.30 6                                       | av Eβ=160 14; εK=0.8458 3; εL=0.11945 17;<br>εM+=0.03368 6                                                  |
| (1360 32)    | 1748.29  | 0.0008 4     | 0.72 9                     | 7.36 7  | 0.72 9                                       | av Eβ=162 14; εK=0.8458 3; εL=0.11942 17;<br>εM+=0.03367 6                                                  |
| (1373 32)    | 1735.44  | 0.012 5      | 9.36 21                    | 6.25 4  | 9.37 21                                      | av Eβ=168 14; εK=0.8457 3; εL=0.11935 17;<br>εM+=0.03365 6                                                  |
| (1374 32)    | 1734.15  | 0.0007 3     | 0.52 4                     | 7.51 5  | 0.52 4                                       | av $E\beta$ =168 14; $\varepsilon K$ =0.8457 4; $\varepsilon L$ =0.11935 17;<br>$\varepsilon M$ +=0.03365 6 |
| (1393 32)    | 1715.40  | 0.0053 20    | 3.20 12                    | 6.73 4  | 3.21 12                                      | av Eβ=177 14; εK=0.8455 4; εL=0.11924 18;                                                                   |

 $\varepsilon, \beta^+$  radiations

Continued on next page (footnotes at end of table)

### <sup>133</sup>Ce $\varepsilon$ decay (5.1 h) 1978He16 (continued)

# $\epsilon, \beta^+$ radiations (continued)

| E(decay)  | E(level) | Ιβ <sup>+</sup> ‡ | $I\varepsilon^{\ddagger}$ | Log <i>ft</i>                | $I(\varepsilon + \beta^+)^{\dagger \ddagger}$ | Comments                                                                                                                                    |
|-----------|----------|-------------------|---------------------------|------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| (1418 32) | 1690.64  | 0.008 3           | 3.89 13                   | 6.66 4                       | 3.90 13                                       | $\varepsilon M$ +=0.03361 6<br>av E $\beta$ =188 14; $\varepsilon K$ =0.8452 5; $\varepsilon L$ =0.11910 19;<br>$\varepsilon M$ ==0.03357 6 |
| (1547 32) | 1561.16  | 0.0033 9          | 0.50 8                    | 7.64 8                       | 0.50 8                                        | av $E\beta$ =245 14; $\varepsilon$ K=0.8419 13; $\varepsilon$ L=0.1182 3;                                                                   |
| (1639 32) | 1468.86  | 0.015 3           | 1.19 8                    | 7.31 5                       | 1.24 8                                        | $\epsilon$ M+=0.03329 8<br>av E $\beta$ =285 14; $\epsilon$ K=0.8375 19; $\epsilon$ L=0.1173 4;                                             |
| (1743 32) | 1365.01  | 0.0086 25         | 0.39 10                   | 7.85 12                      | 0.40 10                                       | $\epsilon M += 0.03302 TI$<br>av $\epsilon \beta = 330 T4; \epsilon \epsilon E = 0.830 3; \epsilon L = 0.1159 5;$                           |
| (1790 32) | 1318.57? | 0.013 2           | 0.46 5                    | 7.80 6                       | 0.47 5                                        | $\varepsilon M$ +=0.03263 14<br>av E $\beta$ =351 14; $\varepsilon K$ =0.825 4; $\varepsilon L$ =0.1152 6;<br>$\varepsilon M$ +=0.03242 15  |
| (1797 32) | 1311.09  | 0.0092 17         | 0.32 4                    | 7.96 6                       | 0.33 4                                        | av $E\beta$ =354 14; $\epsilon$ K=0.825 4; $\epsilon$ L=0.1151 6;<br>$\epsilon$ M+=0.0328 16                                                |
| (1889 32) | 1218.90  | 0.030 5           | 0.69 7                    | 7.67 6                       | 0.72 7                                        | av $E\beta$ =394 14; $\epsilon$ K=0.814 5; $\epsilon$ L=0.1133 7;<br>$\epsilon$ M+=0.0318 19                                                |
| (1914 32) | 1194.63? | 0.016 3           | 0.33 4                    | 8.00 6                       | 0.35 4                                        | av $E\beta$ =405 14; $\epsilon$ K=0.810 5; $\epsilon$ L=0.1128 7;<br>$\epsilon$ M = 0.03174 20                                              |
| (1920 32) | 1188.56  | 0.013 5           | 0.27 10                   | 8.10 16                      | 0.28 10                                       | av $E\beta$ =408 14; $\epsilon$ K=0.810 5; $\epsilon$ L=0.1127 7;<br>$\epsilon$ M==0.03170 20                                               |
| (2016 32) | 1092.38  | 0.046 7           | 0.67 8                    | 7.74 7                       | 0.72 9                                        | av $E\beta$ =450 14; $\varepsilon$ K=0.794 6; $\varepsilon$ L=0.1103 9;                                                                     |
| (2062 32) | 1045.925 | 0.65 8            | 8.0 6                     | 6.68 5                       | 8.7 6                                         | $\epsilon \text{IM} +=0.05105 25$<br>av $\epsilon \beta = 470 14$ ; $\epsilon \text{K} = 0.786 6$ ; $\epsilon \text{L} = 0.1091 9$ ;        |
| (2158 32) | 950.35   | 0.20 3            | 1.87 19                   | 7.36 6                       | 2.07 21                                       | $\epsilon M$ +=0.0306/25<br>av E $\beta$ =512 14; $\epsilon K$ =0.766 7; $\epsilon L$ =0.1062 10;                                           |
| (2241 32) | 867.15   | 0.061 10          | 0.44 6                    | 8.02 7                       | 0.50 7                                        | $\varepsilon M$ +=0.0299 3<br>av E $\beta$ =549 14; $\varepsilon K$ =0.746 8; $\varepsilon L$ =0.1033 11;                                   |
| (2270 32) | 838.24   | 0.017 9           | 0.11 6                    | 8.62 24                      | 0.13 7                                        | $\varepsilon M$ +=0.0290 3<br>av E $\beta$ =562 14; $\varepsilon K$ =0.739 8; $\varepsilon L$ =0.1023 12;                                   |
| (2324 32) | 784.531  | 0.16 6            | 0.9 <i>3</i>              | 7.72 16                      | 1.1 4                                         | $\varepsilon M$ +=0.0288 4<br>av E $\beta$ =586 14; $\varepsilon K$ =0.725 9; $\varepsilon L$ =0.1003 12;                                   |
| (2454 32) | 654.60   | 0.04 3            | 0.19 13                   | 8.5 <i>3</i>                 | 0.23 16                                       | $\varepsilon M$ +=0.0282 4<br>av E $\beta$ =644 14; $\varepsilon K$ =0.688 9; $\varepsilon L$ =0.0950 13;                                   |
| (2517 32) | 591.25   | 0.030 9           | 0.11 3                    | 8.72 13                      | 0.14 4                                        | $\varepsilon M$ +=0.0267 4<br>av E $\beta$ =672 14; $\varepsilon K$ =0.669 10; $\varepsilon L$ =0.0923 14;                                  |
| (2545 32) | 563.348  | 0.41 4            | 1.42 13                   | 7.62 5                       | 1.83 17                                       | $\varepsilon M$ +=0.0259 4<br>av E $\beta$ =684 14; $\varepsilon K$ =0.660 10; $\varepsilon L$ =0.0911 14;                                  |
| (2573 32) | 535.588  | 0.3 3             | 0.9 8                     | 7.8 4                        | 1.2 11                                        | $\varepsilon M$ +=0.0256 4<br>av E $\beta$ =697 14; $\varepsilon K$ =0.651 10; $\varepsilon L$ =0.0898 14;                                  |
| (2613 32) | 495.02   | 0.33 <i>3</i>     | 1.00 7                    | 7.80 5                       | 1.33 9                                        | $\varepsilon M$ +=0.0252 4<br>av E $\beta$ =715 14; $\varepsilon K$ =0.638 10; $\varepsilon L$ =0.0880 14;                                  |
| (2977 32) | 130.804  | 1.1 3             | 1.6 5                     | 7.69 14                      | 2.7 8                                         | $\varepsilon M$ +=0.0247 4<br>av E $\beta$ =879 14; $\varepsilon K$ =0.519 10; $\varepsilon L$ =0.0714 14;                                  |
| (3020 32) | 87.940   | 0.49 8            | 2.2 3                     | 9.11 <sup>1</sup> <i>u</i> 8 | 2.7 4                                         | $\varepsilon$ M+=0.0200 4<br>av E $\beta$ =911 14; $\varepsilon$ K=0.693 7; $\varepsilon$ L=0.0975 10;<br>$\varepsilon$ M+=0.0275 3         |

 $^{\dagger}$  From intensity balance considerations.  $^{\ddagger}$  For absolute intensity per 100 decays, multiply by  $\leq 1.0.$ 

 $\gamma(^{133}\text{La})$ 

| ${\rm E_{\gamma}}^{\ddagger}$           | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                      | $\mathbf{E}_{f}$      | $J_f^{\pi}$ N      | /Iult. <sup>#</sup> | $\delta^{@}$ | $\alpha^{\dagger}$ | $I_{(\gamma+ce)}^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------|---------------------------|------------------------|-------------------------------------------|-----------------------|--------------------|---------------------|--------------|--------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (33.54)                                 |                           | 130.804                | 7/2+                                      | 97.259 3              | /2+                |                     |              |                    | ≤41                   | $E_{\gamma}$ : not measured. Existence is required by 346γ-97γ coin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42.7 <sup>bc</sup> 1                    | 2.0 3                     | 130.804                | 7/2+                                      | 87.940 5              | /2 <sup>+</sup> M  | I1+E2               | 0.160 +18-21 | 13.6 3             | 29 4                  | $I_{(γ+ce)}: \text{ from intensity balance.}$ ce(L1)=2.5 3; ce(L2)=0.80 7; ce(L3)≤0.4;<br>α(L1)exp=1.25 24; α(L2)exp=0.40 3;<br>α(L3)exp≤0.2<br>ce(K)/(γ+ce)=0.734 14; ce(L)/(γ+ce)=0.156 12;<br>ce(M)/(γ+ce)=0.033 3; ce(N+)/(γ+ce)=0.0084<br>8<br>α(L1)=1.340 21; α(L2)=0.45 3; α(L3)=0.47 5<br>ce(N)/(γ+ce)=0.0072 7; ce(O)/(γ+ce)=0.00110<br>9; ce(P)/(γ+ce)=5.78×10 <sup>-5</sup> 16<br>α(N+)=0.121 5; α(N)=0.104 4; α(O)=0.0160 6;<br>α(P)=0.000842 14<br>I <sub>(γ+ce)</sub> : from α <sub>tot</sub> and I <sub>γ</sub> .<br>δ; from 1084(Cr20) |
| 50.09 <sup><i>a</i></sup> 10<br>58.39 3 | 491 <i>10</i>             | 591.25<br>535.588      | 7/2,9/2 <sup>+</sup><br>11/2 <sup>-</sup> | 541.20 7<br>477.213 9 | /2+<br>/2+ E       | 1                   |              | 1.023              |                       | a (L)exp: calculated by evaluators.<br>ce(K)<0.5<br>ce(K)=420 40; ce(L1)=40 3; ce(L2)=9.1 7;<br>ce(L3)=13.3 11<br>$\alpha$ (K)exp=0.86 8; $\alpha$ (L1)exp=0.081 7;<br>$\alpha$ (L2)exp=0.0185 15; $\alpha$ (L3)exp=0.027 2<br>$\alpha$ (K)=0.862 13; $\alpha$ (L)=0.1280 18; $\alpha$ (M)=0.0265<br>4; $\alpha$ (N+)=0.00660 10<br>$\alpha$ (N)=0.00568 8; $\alpha$ (O)=0.000868 13;<br>$\alpha$ (P)=4.88×10 <sup>-5</sup> 7<br>$\alpha$ (L1)=0.0809 11; $\alpha$ (L2)=0.01948 27;<br>$\alpha$ (L3)=0.02763 39                                        |
| 63.93 <sup><i>a</i></sup> 11            | 0.14 4                    | 541.20                 | 7/2+                                      | 477.213 9             | /2 <sup>+</sup> [N | M1,E2]              |              | 74                 |                       | $ce(K)=0.50 \ 15$<br>$\alpha(K)=3.7 \ 4; \ \alpha(L)=2.6 \ 22; \ \alpha(M)=0.6 \ 5;$<br>$\alpha(N+)=0.14 \ 12$<br>$\alpha(N)=0.12 \ 10; \ \alpha(O)=0.017 \ 14; \ \alpha(P)=0.00024 \ 3$                                                                                                                                                                                                                                                                                                                                                               |
| 72.39 <sup>a</sup> 10                   | 0.56 17                   | 1468.86                | 9/2-                                      | 1396.40 5             | /2 <sup>-</sup> [E | 2]                  |              | 6.39               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|                                                                     |                           |                        |                      |                    | <sup>133</sup> Ce $\varepsilon$ decay | y (5.1 h) 1                    | 978He16 (continu | ied)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|---------------------------|------------------------|----------------------|--------------------|---------------------------------------|--------------------------------|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     |                           |                        |                      |                    |                                       | $\gamma(^{133}\text{La})$ (cor | ntinued)         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ${\rm E_{\gamma}}^{\ddagger}$                                       | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$   | ${ m J}_f^\pi$                        | Mult. <sup>#</sup>             | $\delta^{@}$     | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 72.67 <sup>a</sup> 10                                               |                           | 1850.90                | (9/2 <sup>-</sup> )  | 1778.23?           | 7/2.9/2.11/2+                         |                                |                  |                    | $\begin{aligned} &\alpha(\text{N})=0.1244\ 20;\ \alpha(\text{O})=0.0174\ 3;\\ &\alpha(\text{P})=0.0001553\ 23\\ &\alpha(\text{N})=0.07\ 6;\ \alpha(\text{O})=0.010\ 8;\ \alpha(\text{P})=0.000169\ 14\\ &\text{ce}(\text{N})/(\gamma+\text{ce})=0.012\ 11;\ \text{ce}(\text{O})/(\gamma+\text{ce})=0.0018\\ &15;\ \text{ce}(\text{P})/(\gamma+\text{ce})=3.0\times10^{-5}\ 11\\ &\text{I}_{\gamma}:\ \text{from ce}(\text{K})\ \text{and}\ \alpha(\text{K})=2.7\ 3\ \text{if}\ \text{M1},\ \text{E2}.\\ &\text{ce}(\text{K})=0.20\ 7\end{aligned}$   |
| 86.11 <sup><i>a</i></sup> 12                                        | 0.06 2                    | 563.348                | 9/2+                 | 477.213            | 9/2 <sup>+</sup>                      | [M1,E2]                        |                  | 2.5 9              | ce(K)=0.12 4<br>$\alpha$ (K)=1.65 24; $\alpha$ (L)=0.7 5; $\alpha$ (M)=0.15 12;<br>$\alpha$ (N+)=0.04 3<br>$\alpha$ (N)=0.032 24; $\alpha$ (O)=0.005 4; $\alpha$ (P)=0.000105 6<br>I <sub>Y</sub> : from ce(K) and $\alpha$ (K) if M1, E2.                                                                                                                                                                                                                                                                                                           |
| 87.939 <i>11</i>                                                    | 131 3                     | 87.940                 | 5/2+                 | 0.0                | 5/2+                                  | M1+E2                          | 0.051 +12-16     | 1.566              | ce(K)=190 30; ce(L1)=28 3; ce(L2)=2.6 3;<br>ce(L3)=0.70 8<br>$\alpha$ (K)=1.335 19; $\alpha$ (L)=0.183 3; $\alpha$ (M)=0.0382 6;<br>$\alpha$ (N+)=0.00985 16<br>$\alpha$ (N)=0.00838 14; $\alpha$ (O)=0.001359 21;<br>$\alpha$ (P)=0.0001040 15<br>$\alpha$ (L1)=0.1656 23; $\alpha$ (L2)=0.0138 6;<br>$\alpha$ (L3)=0.0040 7<br>$\delta$ ; from 1984Gr30.                                                                                                                                                                                           |
| 97.261 <i>10</i>                                                    | 44.8 10                   | 97.259                 | 3/2 <sup>+</sup>     | 0.0                | 5/2 <sup>+</sup>                      | M1+E2                          | 0.157 <i>17</i>  | 1.195 <i>18</i>    | ce(K)=49 5; ce(L1)=6.3 6; ce(L2)=0.80 8;<br>ce(L3)<0.3<br>$\alpha$ (K)exp=1.1 <i>I</i> ; $\alpha$ (L1)exp=0.14 2;<br>$\alpha$ (L2)exp=0.018 2; $\alpha$ (L3)exp<0.006<br>$\alpha$ (K)=1.007 <i>I</i> 5; $\alpha$ (L)=0.149 4; $\alpha$ (M)=0.0311 8;<br>$\alpha$ (N+)=0.00799 20<br>$\alpha$ (N)=0.00682 <i>I</i> 7; $\alpha$ (O)=0.001092 25;<br>$\alpha$ (P)=7.78×10 <sup>-5</sup> <i>I</i> 1<br>$\alpha$ (L1)=0.1240 <i>I</i> 7; $\alpha$ (L2)=0.0155 <i>I</i> 4;<br>$\alpha$ (L3)=0.0091 <i>I</i> 6<br>$\delta$ : from 1984Gr30.<br>ce(K)=0.08 3 |
| 102.6 <sup>a</sup> <i>1</i><br>112.03 <sup><i>a</i></sup> <i>11</i> | 0.20 8                    | 950.35                 | (9/2) <sup>+</sup>   | 838.24             | //2,9/2<br>9/2 <sup>+</sup>           | [M1+E2]                        |                  | 1.1 3              | ce(K)=0.08 3<br>ce(K)=0.15 6<br>$\alpha$ (K)=0.76 10; $\alpha$ (L)=0.23 14; $\alpha$ (M)=0.05 3;<br>$\alpha$ (N+)=0.012 8<br>$\alpha$ (N)=0.011 7; $\alpha$ (O)=0.0016 9; $\alpha$ (P)=4.98×10 <sup>-5</sup><br>25<br>I <sub>\gamma</sub> : from ce(K) and $\alpha$ (K) if M1+E2.<br>Mult.: from level scheme.                                                                                                                                                                                                                                       |
| 114.02 <sup><i>a</i></sup> 11<br>118.96 <sup><i>a</i></sup> 13      | 0.65 24                   | 591.25<br>654.60       | 7/2,9/2+<br>11/2+    | 477.213<br>535.588 | 9/2+<br>11/2 <sup>-</sup>             | [E1]                           |                  | 0.1455             | ce(K)≈0.05<br>ce(K)=0.08 <i>3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

S

 $^{133}_{57} La_{76}$ -5

I

|                                                                                             |                           |                              |                                                              |                               | <sup>133</sup> Ce ε                                                            | decay (5.1 l       | h) <b>1978He16</b> (d | continued)         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------|---------------------------|------------------------------|--------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------|--------------------|-----------------------|--------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                             |                           |                              |                                                              |                               |                                                                                |                    |                       |                    |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $E_{\gamma}^{\ddagger}$                                                                     | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level)       | $\mathbf{J}_i^\pi$                                           | $E_f$                         | $\mathrm{J}_f^\pi$                                                             | Mult. <sup>#</sup> | $\delta^{@}$          | $\alpha^{\dagger}$ | $I_{(\gamma+ce)}^{d}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 130.803 <i>10</i>                                                                           | 457 10                    | 130.804                      | 7/2+                                                         | 0.0                           | 5/2+                                                                           | M1+E2              | 0.239 +30-21          | 0.520              | 695 <i>15</i>         | $\begin{aligned} \alpha(K) = 0.1243 \ 18; \ \alpha(L) = 0.01685 \ 25; \\ \alpha(M) = 0.00348 \ 5; \ \alpha(N+) = 0.000881 \ 13 \\ \alpha(N) = 0.000755 \ 11; \ \alpha(O) = 0.0001188 \ 17; \\ \alpha(P) = 7.77 \times 10^{-6} \ 12 \\ I_{\gamma}: \ from \ ce(K) \ and \ \alpha(K) \ if \ E1. \\ Mult.: \ from \ level \ scheme. \\ ce(K) = 205 \ 24; \ ce(L1) = 23.3 \ 25; \ ce(L2) = 3.9 \\ 3; \ ce(L3) = 2.1 \ 2 \\ \alpha(K) \exp = 0.46 \ 6; \ \alpha(L1) \exp = 0.050 \ 7; \\ \alpha(L2) \exp = 0.0085 \ 7; \ \alpha(L3) \exp = 0.0046 \ 5 \\ \alpha(L3) = 0.0046 \ 8 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 135.5 <sup><i>a</i></sup> 2<br>150.3 <sup><i>a</i></sup> 2<br>159.56 <sup><i>a</i></sup> 18 | 0.35 14                   | 1850.90<br>1468.86<br>654.60 | (9/2 <sup>-</sup> )<br>9/2 <sup>-</sup><br>11/2 <sup>+</sup> | 1715.40<br>1318.57?<br>495.02 | 7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>7/2,9/2 <sup>+</sup><br>7/2 <sup>+</sup> | [E2]               |                       | 0.385              |                       | $\begin{aligned} &\alpha(L5)=0.0046\ 8\\ &ce(N)/(\gamma+ce)=0.00197\ 7;\\ &ce(O)/(\gamma+ce)=0.000315\ 9;\\ &ce(P)/(\gamma+ce)=2.20\times10^{-5}\ 4\\ &\alpha(N)=0.00299\ 9;\ \alpha(O)=0.000478\ 12;\\ &\alpha(P)=3.35\times10^{-5}\ 5\\ &ce(K)\leq 0.1\\ &ce(K)=0.20\ 6\\ &ce(K)=0.10\ 4\\ &\alpha(K)=0.282\ 4;\ \alpha(L)=0.0813\ 12;\\ &\alpha(M)=0.0177\ 3;\ \alpha(N+)=0.00435\ 7\\ &\alpha(N)=0.00378\ 6;\ \alpha(O)=0.000554\ 9;\\ &ce(N)=0.00378\ 6;\ \alpha(O)=0.000554\ 9;\\ &ce(N)=0.00378\ 6;\ \alpha(O)=0.000554\ 9;\\ &ce(N)=0.00378\ 6;\ \alpha(O)=0.000554\ 9;\\ &ce(N)=0.00378\ 6;\ \alpha(O)=0.000554\ 9;\\ &ce(N)=0.000554\ 9;\\ &ce(N)=0.00556\ 9;\\ &ce(N)=0.00566\ 9;\\ &ce(N)=0.00566\ 9;\\ &ce(N)=0.00566\$ |
| 165.72 <sup>a</sup> 18                                                                      | 8.0 20                    | 950.35                       | (9/2)+                                                       | 784.531                       | 7/2-                                                                           | [E1]               |                       | 0.0583             |                       | $\alpha(\mathbf{r}) = 1.077 \times 10^{-7} 25$<br>$I_{\gamma}$ : from ce(K) and $\alpha(K)$ if E2.<br>Mult.: from level scheme.<br>ce(K)=0.4 <i>I</i><br>$\alpha(K)=0.0499 \ 8; \ \alpha(L)=0.00663 \ 10;$<br>$\alpha(M)=0.001368 \ 20; \ \alpha(N+)=0.000348 \ 5$<br>$\alpha(N)=0.000298 \ 5; \ \alpha(O)=4.73\times 10^{-5} \ 7;$<br>$\alpha(\mathbf{P})=3.25\times 10^{-6} \ 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 173 <sup>c</sup>                                                                            | <2.4                      | 1153.35                      | 13/2-                                                        | 979.91                        | 15/2-                                                                          | (M1,E2)            |                       | 0.26 3             |                       | I <sub>γ</sub> : from ce(K) and $\alpha$ (K) if E1.<br>Mult.: from level scheme.<br>ce(K)=0.12 4; $\alpha$ (K)exp>0.05<br>$\alpha$ (K)=0.208 10; $\alpha$ (L)=0.042 16;<br>$\alpha$ (M)=0.009 4; $\alpha$ (N+)=0.0023 9<br>$\alpha$ (N)=0.0020 8; $\alpha$ (O)=0.00030 10;<br>(P) 1.42 ± 10 <sup>-5</sup> 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 174.0 2                                                                                     | 1.6 8                     | 1735.44                      | (9/2)-                                                       | 1561.16                       | (11/2 <sup>-</sup> )                                                           | M1+E2              | 0.67 7                | 0.246 5            |                       | $\alpha(r) = 1.43 \times 10^{-5} I2$<br>ce(K) = 0.26 4; ce(L2) = 0.023 3;<br>$ce(L3) = 0.021 8; \alpha(K)exp = 0.16 8;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

From ENSDF

|                               | <sup>133</sup> Ce $\varepsilon$ decay (5.1 h) 1978He16 (continued) |                        |                                                          |                  |                                        |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|-------------------------------|--------------------------------------------------------------------|------------------------|----------------------------------------------------------|------------------|----------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                               | $\gamma$ <sup>(133</sup> La) (continued)                           |                        |                                                          |                  |                                        |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| ${\rm E_{\gamma}}^{\ddagger}$ | $I_{\gamma}^{\ddagger d}$                                          | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                                         | $\mathrm{E}_{f}$ | ${ m J}_f^\pi$                         | Mult. <sup>#</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 177.3 2                       | 1.3 5                                                              | 654.60                 | 11/2+                                                    | 477.213          | 9/2+                                   | M1,E2              | 0.24 3             | $\begin{array}{l} \alpha(\text{L2})\text{exp}=0.014\ 7\\ \alpha(\text{L3})\text{exp}=0.013\ 7\\ \alpha(\text{K})=0.201\ 3;\ \alpha(\text{L})=0.0358\ 15;\ \alpha(\text{M})=0.0076\ 4;\\ \alpha(\text{N}+)=0.00192\ 8\\ \alpha(\text{L2})=0.0068\ 8;\ \alpha(\text{L3})=0.0056\ 6\\ \alpha(\text{N})=0.00165\ 7;\ \alpha(\text{O})=0.000256\ 10;\ \alpha(\text{P})=1.450\times10^{-5}\ 24\\ \delta:\ \text{calculated by evaluators from K:L2:L3 ratios}\ (1984\text{Gr}30)\\ \text{with BrIccMixing program.}\\ \text{ce}(\text{K})=0.25\ 4;\ \alpha(\text{K})\text{exp}=0.19\ 8 \end{array}$ |  |  |  |
|                               |                                                                    |                        | ,                                                        |                  | ,                                      | ,                  |                    | $\alpha(K)=0.193 \ 9; \ \alpha(L)=0.039 \ 14; \ \alpha(M)=0.008 \ 4; \ \alpha(N+)=0.0021$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 178.65 <i>3</i>               | 31 1                                                               | 2036.04                | 7/2 <sup>-</sup> ,9/2 <sup>-</sup>                       | 1857.39          | 7/2-                                   | M1,E2              | 0.237 25           | $\begin{array}{c} \alpha(\mathrm{N})=0.0018 \ 7; \ \alpha(\mathrm{O})=0.00027 \ 9; \ \alpha(\mathrm{P})=1.33\times10^{-5} \ 12 \\ \mathrm{ce}(\mathrm{K})=6 \ I; \ \mathrm{ce}(\mathrm{L}1)=0.8 \ I; \ \alpha(\mathrm{K})\mathrm{exp}=0.19 \ 3; \ \alpha(\mathrm{L}1)\mathrm{exp}=0.026 \ 4 \\ \alpha(\mathrm{K})=0.189 \ 8; \ \alpha(\mathrm{L})=0.038 \ 14; \ \alpha(\mathrm{M})=0.008 \ 3; \ \alpha(\mathrm{N}+)=0.0020 \\ 8 \end{array}$                                                                                                                                                  |  |  |  |
| <sup>x</sup> 204.16 <i>12</i> | 1.3 4                                                              |                        |                                                          |                  |                                        | M1,E2              | 0.157 10           | $\begin{aligned} &\alpha(N) = 0.0017 \ 7; \ \alpha(O) = 0.00027 \ 9; \ \alpha(P) = 1.30 \times 10^{-5} \ 12 \\ &\alpha(L1) = 0.02119 \ 15 \\ &\text{ce}(K) = 0.18 \ 4; \ \alpha(K) \text{exp} = 0.14 \ 5 \\ &\alpha(K) = 0.1271 \ 20; \ \alpha(L) = 0.023 \ 7; \ \alpha(M) = 0.0050 \ 15; \\ &\alpha(N+) = 0.0013 \ 4 \end{aligned}$                                                                                                                                                                                                                                                          |  |  |  |
| 211.65 6                      | 7.0 5                                                              | 1365.01                | 11/2-                                                    | 1153.35          | 13/2-                                  | M1,E2              | 0.140 7            | $ \begin{aligned} &\alpha(N) = 0.0011 \ 4; \ \alpha(O) = 0.00017 \ 5; \ \alpha(P) = 8.9 \times 10^{-6} \ 10 \\ &\text{ce}(K) = 0.8 \ 2; \ \alpha(K) \exp = 0.11 \ 3 \\ &\alpha(K) = 0.1143 \ 17; \ \alpha(L) = 0.021 \ 6; \ \alpha(M) = 0.0044 \ 13; \\ &\alpha(N+) = 0.0011 \ 3 \end{aligned} $                                                                                                                                                                                                                                                                                              |  |  |  |
| 221.2 <sup><i>a</i></sup> 1   | ≈2                                                                 | 784.531                | 7/2-                                                     | 563.348          | 9/2+                                   | [E1]               | 0.0266             | $\alpha(N)=0.0010 \ 3; \ \alpha(O)=0.00015 \ 4; \ \alpha(P)=8.0\times10^{-6} \ 9$<br>$ce(K)\approx0.05$<br>$\alpha(K)=0.0228 \ 4; \ \alpha(L)=0.00299 \ 5; \ \alpha(M)=0.000617 \ 9;$<br>$\alpha(N+)=0.0001576 \ 23$<br>$\alpha(N)=0.0001345 \ 19; \ \alpha(O)=2.15\times10^{-5} \ 3; \ \alpha(P)=1.528\times10^{-6} \ 22$<br>Mult. I <sub>v</sub> : from placement in the level scheme mult.=E1. I <sub>v</sub> is                                                                                                                                                                           |  |  |  |
| <sup>x</sup> 221.97 9         | 2.2 4                                                              |                        |                                                          |                  |                                        | M1,E2              | 0.122 5            | calculated according to $\alpha(K)$ and ce(K) by evaluators.<br>ce(K)=0.20 7; $\alpha(K)$ exp=0.09 3<br>$\alpha(K)$ =0.0993 21; $\alpha(L)$ =0.018 5; $\alpha(M)$ =0.0037 10;<br>$\alpha(N+)$ =0.00094 22                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 224.16 7                      | 3.6 4                                                              | 765.38                 | (5/2+)                                                   | 541.20           | 7/2+                                   | M1,E2              | 0.118 4            | $ \begin{array}{l} \alpha(\mathrm{N}) = 0.00081 \ 20; \ \alpha(\mathrm{O}) = 0.00013 \ 3; \ \alpha(\mathrm{P}) = 7.0 \times 10^{-6} \ 9 \\ \mathrm{ce}(\mathrm{K}) = 0.3 \ 1; \ \alpha(\mathrm{K}) \mathrm{exp} = 0.09 \ 3 \\ \alpha(\mathrm{K}) = 0.0965 \ 22; \ \alpha(\mathrm{L}) = 0.017 \ 4; \ \alpha(\mathrm{M}) = 0.0036 \ 9; \\ \alpha(\mathrm{N}+) = 0.00091 \ 21 \end{array} $                                                                                                                                                                                                      |  |  |  |
| 228.59 6                      | 9.7 5                                                              | 2035.22                | (7/2 <sup>-</sup> ,9/2 <sup>-</sup> ,11/2 <sup>-</sup> ) | 1806.62          | (9/2 <sup>-</sup> ,11/2 <sup>-</sup> ) | M1,E2              | 0.111 3            | $\begin{aligned} &\alpha(N) = 0.00078 \ I9; \ \alpha(O) = 0.000121 \ 25; \ \alpha(P) = 6.8 \times 10^{-6} \ 8 \\ &\text{ce}(K) = 0.9 \ 2; \ \alpha(K) \exp = 0.093 \ 2I; \ ce}(L1) = 0.15 \ 3 \\ &\alpha(K) = 0.0911 \ 25; \ \alpha(L) = 0.016 \ 4; \ \alpha(M) = 0.0034 \ 8; \\ &\alpha(N+) = 0.00085 \ I9 \\ &\alpha(N) = 0.00073 \ I7; \ \alpha(O) = 0.000114 \ 22; \ \alpha(P) = 6.5 \times 10^{-6} \ 8 \end{aligned}$                                                                                                                                                                    |  |  |  |

|                                   |                                          |                        |                                    |         | <sup>133</sup> Ce $\varepsilon$ decay   | (5.1 h) <b>19</b> ' | 78He16 (cont       | inued)                                                                                                                                                                                                                                                                                                                                                                                   |  |
|-----------------------------------|------------------------------------------|------------------------|------------------------------------|---------|-----------------------------------------|---------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                   | $\gamma$ <sup>(133</sup> La) (continued) |                        |                                    |         |                                         |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $E_{\gamma}^{\ddagger}$           | $I_{\gamma}^{\ddagger d}$                | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$               | $E_f$   | $J_f^{\pi}$                             | Mult. <sup>#</sup>  | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <sup>x</sup> 235.9 <sup>a</sup> 2 |                                          |                        |                                    |         |                                         |                     |                    | ce(K)=0.20 4                                                                                                                                                                                                                                                                                                                                                                             |  |
| 248.95 2                          | 34.0 8                                   | 784.531                | 7/2-                               | 535.588 | 11/2-                                   | E2                  | 0.0857             | $\begin{array}{l} \operatorname{ce}(\mathrm{K})=2.3 \ 5; \ \mathrm{L1/L2}=1.9 \ 5; \ \alpha(\mathrm{K}) = \mathrm{ep}=0.068 \ 15 \\ \alpha(\mathrm{K})=0.0679 \ 10; \ \alpha(\mathrm{L})=0.01405 \ 20; \ \alpha(\mathrm{M})=0.00301 \ 5; \\ \alpha(\mathrm{N+})=0.000751 \ 11 \end{array}$                                                                                               |  |
| h                                 |                                          |                        |                                    |         |                                         |                     |                    | $\alpha$ (N)=0.000649 9; $\alpha$ (O)=9.81×10 <sup>-5</sup> 14; $\alpha$ (P)=4.40×10 <sup>-6</sup> 7                                                                                                                                                                                                                                                                                     |  |
| <sup>x</sup> 256.6 <sup>b</sup> 2 | 1.3 5                                    |                        |                                    |         |                                         | (M1,E2)             | 0.0788 16          | $\begin{array}{c} \operatorname{ce}(\mathrm{K}) \leq 0.1; \ \alpha(\mathrm{K}) \exp \leq 0.07 \\ \alpha(\mathrm{K}) = 0.065 \ 4; \ \alpha(\mathrm{L}) = 0.0108 \ 18; \ \alpha(\mathrm{M}) = 0.0023 \ 4; \\ \alpha(\mathrm{N}+) = 0.00058 \ 10 \end{array}$                                                                                                                               |  |
| 261.396 14                        | 44.4 10                                  | 1045.925               | 9/2-                               | 784.531 | 7/2-                                    | M1(+E2)             | 0.0746 18          | $\alpha(N)=0.00050 \ 9; \ \alpha(O)=7.8\times10^{-5} \ 11; \ \alpha(P)=4.7\times10^{-6} \ 7$<br>$ce(K)=2.9 \ 4; \ ce(L1)=0.4 \ 1; \ \alpha(K)exp=0.065 \ 9; \ \alpha(L1)exp=0.009 \ 2$<br>$\alpha(K)=0.062 \ 4; \ \alpha(L)=0.0102 \ 16; \ \alpha(M)=0.0022 \ 4;$<br>$\alpha(N+)=0.00054 \ 9$                                                                                            |  |
|                                   |                                          |                        |                                    |         |                                         |                     |                    | $\alpha(N)=0.00047 \ 8; \ \alpha(O)=7.3\times10^{-5} \ 9; \ \alpha(P)=4.4\times10^{-6} \ 7 \ \alpha(L1)=0.0071 \ 9$                                                                                                                                                                                                                                                                      |  |
| 264.70 <sup>&amp;</sup> 10        | 1.8 4                                    | 2018.26                | 7/2-                               | 1753.62 | 7/2 <sup>-</sup> ,9/2,11/2 <sup>+</sup> | (M1,E2)             | 0.0719 20          | ce(K) $\approx$ 0.1; $\alpha$ (K)exp $\approx$ 0.06<br>$\alpha$ (K)=0.059 4; $\alpha$ (L)=0.0098 15; $\alpha$ (M)=0.0021 4;<br>$\alpha$ (N+)=0.00052 8                                                                                                                                                                                                                                   |  |
|                                   |                                          |                        |                                    |         |                                         |                     |                    | $\alpha$ (N)=0.00045 7; $\alpha$ (O)=7.0×10 <sup>-5</sup> 9; $\alpha$ (P)=4.3×10 <sup>-6</sup> 6<br>E <sub><math>\gamma</math></sub> : in 1978He16, this transition de-excites the 1311 level as<br>uncertain, corresponding level energy difference is equal to<br>265.23 14.                                                                                                           |  |
| 274.84 7                          | 3.4 5                                    | 838.24                 | 9/2+                               | 563.348 | 9/2+                                    | M1,E2               | 0.0643 24          | $ce(K)=0.18$ 4; $\alpha(K)exp=0.053$ 13                                                                                                                                                                                                                                                                                                                                                  |  |
|                                   |                                          |                        |                                    |         |                                         |                     |                    | $\alpha(K)=0.053 \ 4; \ \alpha(L)=0.0086 \ 11; \ \alpha(M)=0.0018 \ 3; \ \alpha(N+)=0.00046 \ 6$                                                                                                                                                                                                                                                                                         |  |
| 279.0.5                           |                                          | 20(2.16                | 0/2-                               | 1794 10 | $(0/2^{+}, 11/2^{+})$                   | (E1)                | 0.01452            | $\alpha(N)=0.00040 \ 6; \ \alpha(O)=6.2\times10^{-5} \ 7; \ \alpha(P)=3.8\times10^{-6} \ 6$                                                                                                                                                                                                                                                                                              |  |
| 278.0 5                           | ≈0                                       | 2002.10                | 9/2                                | 1784.19 | (9/2*,11/2*)                            | (EI)                | 0.01452            | $\alpha$ (K)=0.09 2; $\alpha$ (K)exp≈0.015<br>$\alpha$ (K)=0.01248 19; $\alpha$ (L)=0.001619 24; $\alpha$ (M)=0.000334 5;<br>$\alpha$ (N+ )=8 56×10 <sup>-5</sup> 13                                                                                                                                                                                                                     |  |
|                                   |                                          |                        |                                    |         |                                         |                     |                    | $\alpha(N)=7.30\times10^{-5}$ //: $\alpha(O)=1.171\times10^{-5}$ /8: $\alpha(P)=8.52\times10^{-7}$ /3                                                                                                                                                                                                                                                                                    |  |
| 282.42 5                          | 7.4 5                                    | 2036.04                | 7/2-,9/2-                          | 1753.62 | 7/2-,9/2,11/2+                          |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 287.73 <sup>&amp;</sup> 8         | 4.4 6                                    | 2036.04                | 7/2 <sup>-</sup> ,9/2 <sup>-</sup> | 1748.29 | 7/2,9/2                                 |                     |                    | $E_{\gamma}$ : in table 1 (1978He16) this transition was placed tentatively from the 765 keV level, but with poor energy fit.                                                                                                                                                                                                                                                            |  |
| 294.23 5                          | 12.7 6                                   | 1690.64                | (9/2)-                             | 1396.40 | 5/2-                                    | E2                  | 0.0499             | $\begin{array}{c} ce(K)=0.5 \ 1; \ \alpha(K)exp=0.04 \ 1 \\ \alpha(K)=0.0403 \ 6; \ \alpha(L)=0.00761 \ 11; \ \alpha(M)=0.001623 \ 23; \\ \alpha(N+)=0.000407 \ 6 \end{array}$                                                                                                                                                                                                           |  |
| 296.0 <sup><i>a</i></sup> 1       | 2.3 10                                   | 950.35                 | (9/2)+                             | 654.60  | 11/2+                                   | [M1,E2]             | 0.052 3            | $\begin{aligned} \alpha(N) &= 0.000350 \ 5; \ \alpha(O) &= 5.36 \times 10^{-5} \ 8; \ \alpha(P) &= 2.68 \times 10^{-6} \ 4 \\ ce(K) &= 0.10 \ 4 \\ \alpha(K) &= 0.043 \ 4; \ \alpha(L) &= 0.0068 \ 7; \ \alpha(M) &= 0.00144 \ 16; \\ \alpha(N+) &= 0.00037 \ 4 \\ \alpha(N) &= 0.00031 \ 3; \ \alpha(O) &= 4.9 \times 10^{-5} \ 4; \ \alpha(P) &= 3.1 \times 10^{-6} \ 5 \end{aligned}$ |  |

 $\infty$ 

# From ENSDF

 $^{133}_{57} La_{76}$ -8

 $^{133}_{57} La_{76}$ -8

|                                     |                           |                        |                                                          |                    | <sup>133</sup> Ce $\varepsilon$ de                     | cay (5.1 h)                   | 1978He16           | 6 (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------|---------------------------|------------------------|----------------------------------------------------------|--------------------|--------------------------------------------------------|-------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                           |                        |                                                          |                    |                                                        | $\gamma$ ( <sup>133</sup> La) | (continued)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $E_{\gamma}^{\ddagger}$             | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                                         | $\mathrm{E}_{f}$   | $\mathrm{J}_f^\pi$                                     | Mult. <sup>#</sup>            | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 300.54 10                           | 6.1 10                    | 2036.04                | 7/2-,9/2-                                                | 1735.44            | (9/2)-                                                 | M1,E2                         | 0.050 3            | I <sub>γ</sub> : from ce(K) and $\alpha$ (K) if M1, E2.<br>E <sub>γ</sub> : poor fit; the level energy difference is equal to 295.74 <i>6</i> keV.<br>ce(K)=0.25 <i>4</i> ; $\alpha$ (K)exp=0.041 <i>9</i><br>$\alpha$ (K)=0.041 <i>4</i> ; $\alpha$ (L)=0.0065 <i>6</i> ; $\alpha$ (M)=0.00137 <i>14</i> ; $\alpha$ (N+)=0.00035 <i>3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 307.30 6                            | 23.8 9                    | 784.531                | 7/2-                                                     | 477.213            | 9/2+                                                   | E1                            | 0.01121            | $\alpha(N)=0.00030 \ 3; \ \alpha(O)=4.7\times10^{-5} \ 3; \ \alpha(P)=3.0\times10^{-6} \ 5 \\ ce(K)=0.25 \ 4; \ \alpha(K)exp=0.0011 \ 2 \\ \alpha(K)=0.00964 \ 14; \ \alpha(L)=0.001245 \ 18; \ \alpha(M)=0.000257 \ 4; \\ \alpha(M)=$ |
| 315.45 8                            | 5.1 6                     | 1468.86                | 9/2-                                                     | 1153.35            | 13/2-                                                  | E2                            | 0.0401             | $\alpha(N+)=0.39\times10^{-7} 10$<br>$\alpha(N)=5.62\times10^{-5} 8; \ \alpha(O)=9.03\times10^{-6} 13; \ \alpha(P)=6.63\times10^{-7} 10$<br>$ce(K)=0.16 5; \ \alpha(K)exp=0.030 9$<br>$\alpha(K)=0.0325 5; \ \alpha(L)=0.00595 9; \ \alpha(M)=0.001265 18;$<br>$\alpha(N+)=0.000318 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 319.03 7                            | 8.0 7                     | 1365.01                | 11/2-                                                    | 1045.925           | 9/2-                                                   | M1,E2                         | 0.042 4            | $\alpha(N)=0.000273 \ 4; \ \alpha(O)=4.20\times10^{-5} \ 6; \ \alpha(P)=2.19\times10^{-6} \ 3 \\ \alpha(N)=0.000256 \ 18; \ \alpha(O)=4.05\times10^{-5} \ 17; \ \alpha(P)=2.6\times10^{-6} \ 5 \\ ce(K)=0.28 \ 4; \ \alpha(K)exp=0.035 \ 6 \\ \alpha(K)=0.035 \ 4; \ \alpha(L)=0.0054 \ 4; \ \alpha(M)=0.00114 \ 9; \ \alpha(N+)=0.000289 \ 17 \\ \alpha(N)=0.000247 \ 16; \ \alpha(O)=3.91\times10^{-5} \ 15; \ \alpha(P)=2.5\times10^{-6} \ 5 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 320.72 <i>10</i><br>339.03 <i>5</i> | 3.4 7<br>24.9 <i>15</i>   | 2036.04<br>1735.44     | 7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>(9/2) <sup>-</sup> | 1715.40<br>1396.40 | 7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>5/2 <sup>-</sup> | [E2]                          | 0.0320             | $\alpha$ (K)=0.0262 4; $\alpha$ (L)=0.00463 7; $\alpha$ (M)=0.000982 14;<br>$\alpha$ (N+)=0.000247 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 342.65 9                            | 3.0 5                     | 2199.95                | (9/2-)                                                   | 1857.39            | 7/2-                                                   | [M1]                          | 0.0374             | $\alpha$ (N)=0.000213 <i>3</i> ; $\alpha$ (O)=3.28×10 <sup>-5</sup> <i>5</i> ; $\alpha$ (P)=1.779×10 <sup>-6</sup> 25<br>ce(K)≈0.03; $\alpha$ (K)exp≈0.01<br>$\alpha$ (K)=0.0321 <i>5</i> ; $\alpha$ (L)=0.00422 <i>6</i> ; $\alpha$ (M)=0.000874 <i>13</i> ;<br>$\alpha$ (N+)=0.000226 <i>4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 346.39 5                            | 106 2                     | 477.213                | 9/2+                                                     | 130.804            | 7/2+                                                   | M1(+E2)                       | 0.033 4            | $\alpha(N)=0.000192 \ 3; \ \alpha(O)=3.13\times10^{-5} \ 5; \ \alpha(P)=2.47\times10^{-6} \ 4$<br>$ce(K)=3.5 \ 5; \ ce(L1)=0.5 \ 1; \ \alpha(K)exp=0.033 \ 5; \ \alpha(L1)exp=0.005 \ 1$<br>$\alpha(K)=0.028 \ 4; \ \alpha(L)=0.00420 \ 12; \ \alpha(M)=0.00088 \ 4; \ \alpha(N+)=0.000225 \ 6$<br>$\alpha(N)=0.000192 \ 6; \ \alpha(O)=3.05\times10^{-5} \ 5; \ \alpha(P)=2.0\times10^{-6} \ 4$<br>$\alpha(L1)=0.001949 \ 27$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 350.03 <sup>c</sup> 11              | 1.9 4                     | 1188.56                | $13/2^{+}$                                               | 838.24             | 9/2+                                                   |                               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 351 <sup>°</sup>                    | <2.3                      | 1396.40                | $5/2^{-}$                                                | 1045.925           | $9/2^{-}$                                              | (M1 E2)                       | 0.020 4            | $a_2(K) > 0.07$ ; $a_2(K) = 0.020$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 300.96 10                           | 2.4 0                     | 838.24                 | 9/2                                                      | 477.213            | 9/2                                                    | (M11,E2)                      | 0.030 4            | $\alpha(K) \approx 0.07; \alpha(K) \exp \approx 0.029$<br>$\alpha(K) = 0.025 4; \alpha(L) = 0.00371 6; \alpha(M) = 0.000778 19; \alpha(N+) = 0.000199$<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 364.19 <i>4</i>                     | 32.0 8                    | 495.02                 | 7/2+                                                     | 130.804            | 7/2+                                                   | M1,E2                         | 0.029 4            | $\begin{array}{l} \alpha(\mathrm{N})=0.000170 \ 3; \ \alpha(\mathrm{O})=2.70\times10^{-5} \ 6; \ \alpha(\mathrm{P})=1.8\times10^{-6} \ 4 \\ \mathrm{ce}(\mathrm{K})=0.8 \ 2; \ \mathrm{ce}(\mathrm{L1})=0.10 \ 3; \ \alpha(\mathrm{K})\mathrm{exp}=0.025 \ 6; \ \alpha(\mathrm{L1})\mathrm{exp}=0.003 \ 1 \\ \alpha(\mathrm{K})=0.024 \ 4; \ \alpha(\mathrm{L})=0.00361 \ 6; \ \alpha(\mathrm{M})=0.000757 \ 16; \ \alpha(\mathrm{N}+)=0.000193 \\ 3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <sup>x</sup> 369.9 2                | 4.8 10                    |                        |                                                          |                    |                                                        |                               |                    | $\alpha$ (N)=0.000165 3; $\alpha$ (O)=2.63×10 <sup>-5</sup> 6; $\alpha$ (P)=1.8×10 <sup>-6</sup> 4<br>$\alpha$ (L1)=0.0029 5<br>ce(K)≤0.06; $\alpha$ (K)exp≤0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|                               |                           |                        |                              | 13               | $^{33}$ Ce $\varepsilon$ deca      | y (5.1 h)                     | 1978He16           | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------|---------------------------|------------------------|------------------------------|------------------|------------------------------------|-------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                           |                        |                              |                  |                                    | $\gamma(^{133}\text{La})$ (co | ontinued)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ${\rm E_{\gamma}}^{\ddagger}$ | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$             | $E_f$            | $\mathrm{J}_f^\pi$                 | Mult. <sup>#</sup>            | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 371.9 <i>3</i>                | 1.3 4                     | 867.15                 | (7/2 <sup>+</sup> )          | 495.02           | 7/2+                               | [M1,E2]                       | 0.027 3            | $\alpha(K)=0.023 \ 3; \ \alpha(L)=0.00339 \ 5; \ \alpha(M)=0.000711 \ 12; \ \alpha(N+)=0.000182 \ 3$                                                                                                                                                                                                                                                                                                                                                                        |
| <sup>x</sup> 376.71 9         | 3.9 5                     |                        |                              |                  |                                    | (M1,E2)                       | 0.026 3            | $\alpha(N)=0.0001555 \ 22; \ \alpha(O)=2.4/\times 10^{-5} \ ; \ \alpha(P)=1./\times 10^{-6} \ 4$<br>$ce(K)=0.09 \ 4; \ \alpha(K)exp=0.025 \ 12$<br>$\alpha(K)=0.022 \ 3; \ \alpha(L)=0.00327 \ 6; \ \alpha(M)=0.000684 \ 10;$<br>$\alpha(N+)=0.000175 \ 3$<br>$\alpha(N)=0.000175 \ 3$<br>$\alpha(N)=0.000176 \ 3$                                                                                                                                                          |
| 380.7 <i>2</i><br>384 6 5     | 1.9 5<br><1 7             | 1218.90<br>1365.01     | $7/2^+$<br>11/2 <sup>-</sup> | 838.24<br>979 91 | $9/2^+$<br>15/2 <sup>-</sup>       |                               |                    | $u(n) = 0.000149422, u(0) = 2.30 \times 10^{-6}, u(r) = 1.0 \times 10^{-5}$                                                                                                                                                                                                                                                                                                                                                                                                 |
| 389.37 9                      | 5.4 5                     | 477.213                | 9/2 <sup>+</sup>             | 87.940           | 5/2+                               | E2                            | 0.0211             | ce(K)=0.10 3; $\alpha$ (K)exp=0.019 6<br>$\alpha$ (K)=0.01739 25; $\alpha$ (L)=0.00291 4; $\alpha$ (M)=0.000615 9;<br>$\alpha$ (N+)=0.0001553 22<br>$\alpha$ (N)=0.0001333 19; $\alpha$ (O)=2.08×10 <sup>-5</sup> 3; $\alpha$ (P)=1.203×10 <sup>-6</sup> 17<br>Mult : M1 E2 from conversion data. M1 ruled out from placement in                                                                                                                                            |
|                               |                           |                        |                              |                  |                                    |                               |                    | level scheme.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 392.16 <sup>cc</sup> 8        | 8.1 5                     | 2359.87                | (7/2,9/2,11/2) <sup>-</sup>  | 1967.76          | 7/2 <sup>-</sup> ,9/2 <sup>-</sup> | M1,E2                         | 0.024 3            | ce(K)=0.15 3; $\alpha$ (K)exp=0.019 4<br>$\alpha$ (K)=0.020 3; $\alpha$ (L)=0.00290 8; $\alpha$ (M)=0.000608 12;<br>$\alpha$ (N+)=0.000155 5                                                                                                                                                                                                                                                                                                                                |
| 397.75 6                      | 15.3 6                    | 495.02                 | 7/2+                         | 97.259           | 3/2+                               | E2                            | 0.0198             | $\alpha(N)=0.000133 \ 4; \ \alpha(O)=2.12\times10^{-5} \ 10; \ \alpha(P)=1.5\times10^{-6} \ 3$<br>ce(K)=0.30 5; \alpha(K)exp=0.019 \ 4<br>\alpha(K)=0.01635 \ 23; \alpha(L)=0.00271 \ 4; \alpha(M)=0.000573 \ 8;<br>\alpha(N+)=0.0001449 \ 21                                                                                                                                                                                                                               |
| 404.78 <i>4</i>               | 43.3 9                    | 535.588                | 11/2-                        | 130.804          | 7/2+                               | M2                            | 0.0883             | $\begin{aligned} &\alpha(N) = 0.0001243 \ 18; \ \alpha(O) = 1.94 \times 10^{-5} \ 3; \ \alpha(P) = 1.134 \times 10^{-6} \ 16 \\ &\text{Mult.: M1,E2 from conversion data. M1 ruled out from placement in level scheme.} \\ &\text{ce}(K) = 3.3 \ 7; \ &\text{ce}(L) = 0.5 \ 1; \ \alpha(K) \exp = 0.076 \ 16; \ \alpha(L) \exp = 0.012 \ 3 \\ &\alpha(K) = 0.0742 \ 11; \ \alpha(L) = 0.01117 \ 16; \ \alpha(M) = 0.00235 \ 4; \\ &\alpha(N+) = 0.000608 \ 9 \end{aligned}$ |
| 407.10 <i>10</i>              | 6.3 5                     | 495.02                 | 7/2+                         | 87.940           | 5/2+                               | M1,E2                         | 0.021 3            | $\alpha(N)=0.000518 \ 8; \ \alpha(O)=8.38\times10^{-5} \ 12; \ \alpha(P)=6.32\times10^{-6} \ 9 \ \alpha(L1)=0.00993 \ 14 \ ce(K)=0.13 \ 3; \ \alpha(K)exp=0.021 \ 5 \ \alpha(K)=0.018 \ 3; \ \alpha(L)=0.00260 \ 10; \ \alpha(M)=0.000545 \ 16; \ \alpha(N+)=0.000139 \ 6$                                                                                                                                                                                                  |
| 408.0 5                       | ≈2.4                      | 1561.16                | (11/2 <sup>-</sup> )         | 1153.35          | 13/2-                              | [M1]                          | 0.0239             | $\alpha(N)=0.000119 5; \alpha(O)=1.90\times10^{-5} 11; \alpha(P)=1.3\times10^{-6} 3$<br>$\alpha(K)=0.0205 3; \alpha(L)=0.00268 4; \alpha(M)=0.000555 8;$<br>$\alpha(N+)=0.0001436 21$<br>(1) 1 00 1075 2(D) 1 571 1076 23                                                                                                                                                                                                                                                   |
| 410.39 10                     | 18.4 <i>6</i>             | 541.20                 | 7/2+                         | 130.804          | 7/2+                               | M1,E2                         | 0.021 3            | $\alpha(N)=0.0001221 \ 18; \ \alpha(O)=1.99\times10^{-5} \ 3; \ \alpha(P)=1.5/4\times10^{-6} \ 23$<br>$E_{\gamma}: \ \Delta E_{\gamma} \text{ is assigned by evaluators.}$<br>$ce(K)=0.4 \ 1; \ \alpha(K)exp=0.022 \ 5$<br>$\alpha(K)=0.018 \ 3; \ \alpha(L)=0.00254 \ 10; \ \alpha(M)=0.000532 \ 17;$                                                                                                                                                                      |

 $^{133}_{57} La_{76}$ -10

From ENSDF

 $^{133}_{57}$ La<sub>76</sub>-10

|    |                               |                           |                        |                   |           | <sup>133</sup> Ce $\varepsilon$ d | ecay (5.1 h)                 | 1978He16           | (continued)                                                                                                                                     |
|----|-------------------------------|---------------------------|------------------------|-------------------|-----------|-----------------------------------|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                               |                           |                        |                   |           |                                   | $\gamma$ <sup>(133</sup> La) | (continued)        |                                                                                                                                                 |
|    | ${\rm E}_{\gamma}^{\ddagger}$ | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$  | $E_f$     | $\mathrm{J}_f^\pi$                | Mult. <sup>#</sup>           | $\alpha^{\dagger}$ | Comments                                                                                                                                        |
|    |                               |                           |                        |                   |           |                                   |                              |                    | α(N+)=0.000136 6                                                                                                                                |
|    | 115 18 5                      | 256                       | 1724 15                | $(11/2^{-})$      | 1210 579  | 7/2 0/2+                          |                              |                    | $\alpha(N)=0.000116\ 5;\ \alpha(O)=1.86\times10^{-5}\ 11;\ \alpha(P)=1.3\times10^{-6}\ 3$                                                       |
|    | 415.415                       | 2.5 0                     | 1/54.15                | (11/2)            | 1316.37 : | 1/2,9/2                           |                              |                    | $E_{\gamma}$ : $\Delta E$ is assigned by evaluators.                                                                                            |
|    | 419.16 5                      | 12.0 6                    | 1784.19                | $(9/2^+, 11/2^+)$ | 1365.01   | $\frac{11}{2^{-}}$                | M1 E2                        | 0.010.2            | $a_2/K = 0.20.6$ ; $a_2/K = 0.017.2$                                                                                                            |
|    | 422.92 3                      | 18.1.0                    | 1408.80                | 9/2               | 1043.923  | 9/2                               | W11,E2                       | 0.019 5            | $\alpha(K)=0.016 \ 3; \ \alpha(L)=0.00233 \ 12; \ \alpha(M)=0.000488 \ 20;$                                                                     |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(N+)=0.0001257$                                                                                                                          |
|    | 432.55 4                      | 90 2                      | 563.348                | 9/2+              | 130.804   | 7/2+                              | M1.E2                        | 0.018 3            | $\alpha(N)=0.0001075; \alpha(O)=1.71\times10^{-5}12; \alpha(P)=1.20\times10^{-5}24$<br>ce(K)=0.94 15: $\alpha(K)$ exp=0.011 2                   |
|    |                               |                           |                        | - /               |           |                                   | ,                            |                    | $\alpha(K)=0.0153\ 25;\ \alpha(L)=0.00219\ 12;\ \alpha(M)=0.000457\ 22;$                                                                        |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(N+)=0.000117 / \alpha(N)=0.000100 6; \alpha(O)=1.60\times10^{-5} 12; \alpha(P)=1.13\times10^{-6} 23$                                    |
|    | 437.69 7                      | 4.2 5                     | 1092.38                | 7/2+,9/2+         | 654.60    | $11/2^+$                          | M1,E2                        | 0.017 3            | $ce(K)=0.10 \ 3; \ \alpha(K)exp=0.023 \ 7$                                                                                                      |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(K)=0.0148\ 24;\ \alpha(L)=0.00212\ 13;\ \alpha(M)=0.000442\ 23;\ \alpha(N+)=0.000113\ 7$                                                |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(N)=9.7\times10^{-5} 6; \alpha(O)=1.55\times10^{-5} 12; \alpha(P)=1.09\times10^{-6} 23$                                                  |
| 11 | 444.2 <sup>e</sup> 1          | ≈35 <sup>e</sup>          | 541.20                 | 7/2+              | 97.259    | 3/2+                              | (E2)                         | 0.01436            | $ce(K)=0.58$ 7; $\alpha(K)exp=0.0097$ 12<br>$\alpha(K)=0.01195$ 17: $\alpha(L)=0.00191$ 3: $\alpha(M)=0.000401$ 6:                              |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(N+)=0.0001018 \ I5$                                                                                                                     |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(N)=8.73\times10^{-5}$ 13; $\alpha(O)=1.368\times10^{-5}$ 20; $\alpha(P)=8.38\times10^{-7}$ 12                                           |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha$ (K)exp: for undivided line; $I\gamma$ =59 2.                                                                                           |
|    |                               |                           |                        |                   |           |                                   |                              |                    | Mult.: $\alpha(K)$ exp for two unresolved $\gamma$ -rays (from 979 and 541 states)                                                              |
|    |                               |                           |                        |                   |           |                                   |                              |                    | not conflict with the level scheme.                                                                                                             |
|    | 444.2 <sup>e</sup> 1          | ≈24 <sup>e</sup>          | 979.91                 | 15/2-             | 535.588   | $11/2^{-}$                        | E2                           | 0.01436            | $ce(K)=0.58$ 7; $\alpha(K)exp=0.0097$ 12<br>$\alpha(K)=0.01105$ 17; $\alpha(L)=0.00101$ 3; $\alpha(M)=0.000401$ 6;                              |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(\mathbf{N})=0.001195\ 17$ ; $\alpha(\mathbf{L})=0.00191\ 5$ ; $\alpha(\mathbf{M})=0.000401\ 6$ ;<br>$\alpha(\mathbf{N}+)=0.0001018\ 15$ |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha$ (N)=8.73×10 <sup>-5</sup> <i>13</i> ; $\alpha$ (O)=1.368×10 <sup>-5</sup> <i>20</i> ; $\alpha$ (P)=8.38×10 <sup>-7</sup> <i>12</i>     |
|    |                               |                           |                        |                   |           |                                   |                              |                    | Mult.: $\alpha(K)$ exp for two unresolved $\gamma$ -rays (from 979 and 541 states)                                                              |
|    |                               |                           |                        |                   |           |                                   |                              |                    | is consistent with mult=E2; multipolarity of E2 for each $\gamma$ do not                                                                        |
|    | 453.27 5                      | 25.4 9                    | 541.20                 | 7/2+              | 87.940    | 5/2+                              | M1,E2                        | 0.0159 24          | connected with the level scheme.<br>$ce(K)=0.30$ 5; $\alpha(K)exp=0.013$ 3                                                                      |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(K)=0.0135\ 23;\ \alpha(L)=0.00192\ 14;\ \alpha(M)=0.000400\ 25;$<br>$\alpha(N+)=0.000103\ 8$                                            |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(N) = 8.8 \times 10^{-5} 6; \ \alpha(O) = 1.40 \times 10^{-5} 12; \ \alpha(P) = 1.00 \times 10^{-6} 21$                                  |
|    | 455.28 10                     | 2.8 9                     | 950.35                 | $(9/2)^+$         | 495.02    | 7/2+                              | (M1+E2)                      | 0.0157 24          | $ce(K) \approx 0.05; \alpha(K) \exp \approx 0.018$<br>$\alpha(K) = 0.0133, 22; \alpha(L) = 0.00180, 14; \alpha(M) = 0.000305, 25;$              |
|    |                               |                           |                        |                   |           |                                   |                              |                    | $\alpha(\mathbf{N})=0.0135\ 22;\ \alpha(\mathbf{L})=0.00169\ 14;\ \alpha(\mathbf{M})=0.000395\ 23;$                                             |

From ENSDF

 $^{133}_{57} La_{76}$ -11

 $^{133}_{57} La_{76}$ -11

|                      |                           |                        |                    |         |                      | $\gamma(^{13}$     | <sup>3</sup> La) (continue | <u>d)</u>                                                                                                                                                                                                                                                                                                                              |
|----------------------|---------------------------|------------------------|--------------------|---------|----------------------|--------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>γ</sub> ‡     | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup> | $\alpha^{\dagger}$         | Comments                                                                                                                                                                                                                                                                                                                               |
|                      |                           |                        |                    |         |                      |                    |                            | α(N+)=0.000101 8                                                                                                                                                                                                                                                                                                                       |
| 460.5 <sup>e</sup> 5 | ≈1.7 <sup>e</sup>         | 591.25                 | 7/2,9/2+           | 130.804 | 7/2+                 |                    |                            | $\alpha(N)=8.6\times10^{-5} 6$ ; $\alpha(O)=1.39\times10^{-5} 12$ ; $\alpha(P)=9.9\times10^{-7} 21$<br>E <sub><math>\gamma</math></sub> ,I <sub><math>\gamma</math></sub> : $\Delta E$ is assigned by evaluators. I( $\gamma$ +ce)=4.9 6 is divided on the basis of coincidence data (1978He16)                                        |
| 460.5 <sup>e</sup> 5 | ≈3.2 <sup>e</sup>         | 1857.39                | 7/2-               | 1396.40 | 5/2-                 |                    |                            | $E_{\gamma}, I_{\gamma}$ : I( $\gamma$ +ce)=4.9 6 is divided on the basis of coincidence data                                                                                                                                                                                                                                          |
| 475.49 6             | 81 2                      | 563.348                | 9/2+               | 87.940  | 5/2+                 | E2                 | 0.01185                    | $ce(K)=1.0.3; \alpha(K)exp=0.012 4$<br>$\alpha(K)=0.00990 14; \alpha(L)=0.001544 22; \alpha(M)=0.000325 5;$                                                                                                                                                                                                                            |
| 477.22 4             | 1000                      | 477.213                | 9/2+               | 0.0     | 5/2+                 | E2                 | 0.01173                    | $\alpha(N+)=8.25\times10^{-5}$ 12<br>$\alpha(N)=7.07\times10^{-5}$ 10; $\alpha(O)=1.112\times10^{-5}$ 16; $\alpha(P)=6.99\times10^{-7}$ 10<br>ce(K)=9.80; ce(L)=1.5 3; $\alpha(K)=0.00980$ ; $\alpha(L)\exp=0.0015$ 3<br>$\alpha(K)=0.00980$ 14; $\alpha(L)=0.001527$ 22; $\alpha(M)=0.000321$ 5;<br>$\alpha(N+)=8.16\times10^{-5}$ 12 |
| 495.07 7             | 15.4 6                    | 495.02                 | 7/2+               | 0.0     | 5/2+                 | [M1]               | 0.01466                    | $\alpha(N+) = 8.10 \times 10^{-7} I^{2}$<br>$\alpha(N) = 6.99 \times 10^{-5} I^{0}; \ \alpha(O) = 1.100 \times 10^{-5} I^{6}; \ \alpha(P) = 6.92 \times 10^{-7} I^{0}$<br>$\alpha(K) = 0.01260 I^{8}; \ \alpha(L) = 0.001636 2^{3}; \ \alpha(M) = 0.000339 5;$<br>$\alpha(N+) = 8.76 \times 10^{-5} I^{3}$                             |
| 498.72 8             | 5.1 5                     | 1967.76                | 7/2-,9/2-          | 1468.86 | 9/2-                 |                    |                            | $\alpha(N)=7.45\times10^{-5}$ 11; $\alpha(O)=1.216\times10^{-5}$ 17; $\alpha(P)=9.64\times10^{-7}$ 14                                                                                                                                                                                                                                  |
| 502.04 9             | 5.1 12                    | 1690.64                | (9/2)-             | 1188.56 | 13/2+                | [M2]               | 0.0459                     | $\alpha(K)=0.0388 \ 6; \ \alpha(L)=0.00564 \ 8; \ \alpha(M)=0.001185 \ 17; \ \alpha(N+)=0.000306 \ 5$                                                                                                                                                                                                                                  |
|                      |                           |                        |                    |         |                      |                    |                            | $\alpha(N)=0.000261 4; \alpha(O)=4.23\times10^{-5} 6; \alpha(P)=3.23\times10^{-6} 5$                                                                                                                                                                                                                                                   |
| 504.73 8             | 13 3                      | 1045.925               | 9/2-               | 541.20  | 7/2+                 | [E1]               | 0.00334 5                  | $\alpha(K)=0.00288 \ 4; \ \alpha(L)=0.000366 \ 6; \ \alpha(M)=7.54\times10^{-5} \ 11; \ \alpha(N+)=1.94\times10^{-5} \ 3$                                                                                                                                                                                                              |
| 510.36 7             | 528 12                    | 1045.925               | 9/2-               | 535.588 | 11/2-                | M1(+E2)            | 0.0117 20                  | $\alpha$ (N)=1.652×10 <sup>-5</sup> 24; $\alpha$ (O)=2.67×10 <sup>-6</sup> 4; $\alpha$ (P)=2.04×10 <sup>-7</sup> 3<br>ce(K)=6.4 10; ce(L)=0.9 2; $\alpha$ (K)exp=0.012 2; $\alpha$ (L)exp=0.0017 4<br>$\alpha$ (K)=0.0099 18; $\alpha$ (L)=0.00138 14; $\alpha$ (M)=0.00029 3;                                                         |
| 523.76 5             | 80 2                      | 654.60                 | 11/2+              | 130.804 | 7/2+                 | E2                 | 0.00909 13                 | $\alpha(N+)=7.4\times10^{-5} 8$<br>$\alpha(N)=6.3\times10^{-5} 6; \ \alpha(O)=1.01\times10^{-5} 12; \ \alpha(P)=7.4\times10^{-7} 16$<br>$ce(K)=0.6 1; \ \alpha(K)exp=0.008 1 (1984Gr30); \ \alpha(K)exp=0.0062 7$<br>(1978He16)<br>$\alpha(K)=0.00763 11; \ \alpha(L)=0.001156 17; \ \alpha(M)=0.000243 4;$                            |
| 534.3 8              | 4 2                       | 1188.56                | 13/2+              | 654.60  | 11/2+                | M1+E2              | 0.0104 18                  | $\alpha(N+)=6.17\times10^{-5} 9$<br>$\alpha(N)=5.28\times10^{-5} 8; \alpha(O)=8.35\times10^{-6} 12; \alpha(P)=5.43\times10^{-7} 8$<br>$\alpha(K)=0.0088 16; \alpha(L)=0.00122 13; \alpha(M)=0.00025 3;$<br>$\alpha(N+)=6.5\times10^{-5} 7$                                                                                             |
| 535                  | 3 1                       | 535.588                | 11/2-              | 0.0     | 5/2+                 | [E3]               | 0.0234                     | $\alpha(N)=5.6\times10^{-5} 6$ ; $\alpha(O)=9.0\times10^{-6} 11$ ; $\alpha(P)=6.6\times10^{-7} 14$<br>$E_{\gamma},I_{\gamma}$ : from adopted gammas; $I_{\gamma}$ value normalized to that for 711 $\gamma$ .<br>$\alpha(K)=0.0186 3$ ; $\alpha(L)=0.00383 6$ ; $\alpha(M)=0.000824 12$ ;<br>$\alpha(N+)=0.000207 3$                   |

|                                                     |                           |                        |                                                          | <sup>133</sup> Ce | $\varepsilon$ decay  | (5.1 h) <b>1</b> 9         | 78He16 (conti    | inued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------|---------------------------|------------------------|----------------------------------------------------------|-------------------|----------------------|----------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |                           |                        |                                                          |                   | <u>2</u>             | v( <sup>133</sup> La) (con | tinued)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ${\rm E_{\gamma}}^{\ddagger}$                       | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | $J_i^\pi$                                                | $E_f$             | $\mathbf{J}_f^{\pi}$ | Mult. <sup>#</sup>         | $lpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 541.09 10                                           | 75 10                     | 541.20                 | 7/2+                                                     | 0.0               | 5/2+                 | M1                         | 0.01175          | ce(K)=0.8 2; $\alpha$ (K)exp=0.011 3<br>$\alpha$ (K)=0.01010 15; $\alpha$ (L)=0.001308 19; $\alpha$ (M)=0.000271 4;<br>$\alpha$ (N+)=7.00×10 <sup>-5</sup> 10<br>$\alpha$ (N)=5.06×10 <sup>-5</sup> 0; $\alpha$ (Q)=0.72×10 <sup>-6</sup> 14; $\alpha$ (R)=7.72×10 <sup>-7</sup> 11                                                                                                                                                                                                                                                                           |
| 546.86 8                                            | 5.8 5                     | 1735.44                | (9/2) <sup>-</sup>                                       | 1188.56           | 13/2+                | [M2]                       | 0.0357           | $\alpha(N) = 5.90\times10^{-9}, \alpha(O) = 9.72\times10^{-14}, \alpha(P) = 7.72\times10^{-114}$<br>$\alpha(K) = 0.0302 5; \alpha(L) = 0.00434 6; \alpha(M) = 0.000909 13;$<br>$\alpha(N+) = 0.000235 4$                                                                                                                                                                                                                                                                                                                                                      |
| 551.2 2                                             | 1.8 5                     | 1092.38                | 7/2+,9/2+                                                | 541.20            | 7/2+                 | [M1]                       | 0.01123          | $\begin{aligned} \alpha(N) &= 0.000200 \ 3; \ \alpha(O) &= 3.25 \times 10^{-5} \ 5; \ \alpha(P) &= 2.49 \times 10^{-6} \ 4 \\ \alpha(K) &= 0.00965 \ 14; \ \alpha(L) &= 0.001249 \ 18; \ \alpha(M) &= 0.000258 \ 4; \\ \alpha(N+) &= 6.69 \times 10^{-5} \ 10 \\ \alpha(N) &= 5.69 \times 10^{-5} \ 8; \ \alpha(O) &= 9.28 \times 10^{-6} \ 13; \ \alpha(P) &= 7.38 \times 10^{-7} \ 11 \end{aligned}$                                                                                                                                                        |
| 553.16 <sup>&amp;</sup> 15<br><sup>x</sup> 560.09 7 | 1.7 5<br>15 6             | 1318.57?               | 7/2,9/2+                                                 | 765.38            | (5/2+)               |                            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 566.5 5<br>×571.06 10                               | ≈1.7<br>4.1 10            | 2035.22                | (7/2 <sup>-</sup> ,9/2 <sup>-</sup> ,11/2 <sup>-</sup> ) | 1468.86           | 9/2-                 | (M1,E2)                    | 0.0088 16        | ce(K) $\approx$ 0.05; $\alpha$ (K)exp $\approx$ 0.012<br>$\alpha$ (K)=0.0075 <i>14</i> ; $\alpha$ (L)=0.00102 <i>13</i> ; $\alpha$ (M)=0.000213 <i>25</i> ;<br>$\alpha$ (N+)=5.5×10 <sup>-5</sup> <i>7</i><br>(N)=0.0075 ( $\alpha$ (C))=7.5 1076 ( $\alpha$ (C))=7.5 ( $\alpha$ (C))=7.12                                                                                                                                                                                                                                                                    |
| 580.4 5                                             | <1                        | 1365.01                | 11/2-                                                    | 784.531           | 7/2-                 |                            |                  | $\alpha(N)=4.7\times10^{-5} 6; \alpha(O)=7.5\times10^{-5} 10; \alpha(P)=5.6\times10^{-7} 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 581.12 10                                           | 15.7 <i>15</i>            | 1561.16                | (11/2 <sup>-</sup> )                                     | 979.91            | 15/2-                | [E2]                       | 0.00690 10       | $\alpha$ (K)=0.00582 9; $\alpha$ (L)=0.000857 12; $\alpha$ (M)=0.000179 3;<br>$\alpha$ (N+)=4.58×10 <sup>-5</sup> 7                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 591.24 10                                           | 5.5 7                     | 591.25                 | 7/2,9/2+                                                 | 0.0               | $5/2^{+}$            |                            |                  | $u(N)=3.91\times10^{-6}$ ; $u(O)=0.22\times10^{-6}$ 9; $u(P)=4.1/\times10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 597.36 14                                           | 9.6 8                     | 1092.38                | 7/2+,9/2+                                                | 495.02            | 7/2+                 | M1,E2                      | 0.0078 14        | ce(K)=0.07 2; $\alpha$ (K)exp=0.007 2<br>$\alpha$ (K)=0.0067 13; $\alpha$ (L)=0.00091 12; $\alpha$ (M)=0.000189 23;<br>$\alpha$ (N+)=4.9×10 <sup>-5</sup> 7                                                                                                                                                                                                                                                                                                                                                                                                   |
| 602 5 3                                             | 597                       | 1967 76                | 7/2-9/2-                                                 | 1365.01           | $11/2^{-}$           |                            |                  | $\alpha(N)=4.1\times10^{-3}$ 6; $\alpha(O)=6.7\times10^{-6}$ 10; $\alpha(P)=5.0\times10^{-7}$ 11                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 611.83 6                                            | 66.2 16                   | 1396.40                | 5/2-                                                     | 784.531           | 7/2-                 | M1(+E2)                    | 0.0074 14        | ce(K)=0.45 5; $\alpha$ (K)exp=0.0068 7<br>$\alpha$ (K)=0.0063 12; $\alpha$ (L)=0.00085 12; $\alpha$ (M)=0.000177 23;<br>$\alpha$ (N+)=4.6×10 <sup>-5</sup> 6                                                                                                                                                                                                                                                                                                                                                                                                  |
| 615.39 12                                           | 6.9 8                     | 1092.38                | 7/2+,9/2+                                                | 477.213           | 9/2+                 | (M1,E2)                    | 0.0073 13        | $\begin{aligned} \alpha(N) &= 3.9 \times 10^{-5} \ 5; \ \alpha(O) &= 6.3 \times 10^{-6} \ 9; \ \alpha(P) &= 4.7 \times 10^{-7} \ 11 \\ ce(K) &\approx 0.06; \ \alpha(K) exp &\approx 0.0087 \\ \alpha(K) &= 0.0062 \ 12; \ \alpha(L) &= 0.00084 \ 11; \ \alpha(M) &= 0.000175 \ 22; \\ \alpha(N+) &= 4.5 \times 10^{-5} \ 6 \\ \alpha(N) &= 3.8 \times 10^{-5} \ 5; \ \alpha(O) &= 6.2 \times 10^{-6} \ 9; \ \alpha(P) &= 4.6 \times 10^{-7} \ 10 \\ E_{\gamma}: \text{ poor fit; the level energy difference is equal to } 615.16 \ 5 \\ keV. \end{aligned}$ |
| 617.7 2                                             | 42 6                      | 1153.35                | 13/2-                                                    | 535.588           | 11/2-                | M1(+E2)                    | 0.0072 13        | ce(K)=0.30 5; $\alpha$ (K)exp=0.0071 13<br>$\alpha$ (K)=0.0061 12; $\alpha$ (L)=0.00083 11; $\alpha$ (M)=0.000173 22;                                                                                                                                                                                                                                                                                                                                                                                                                                         |

 $^{133}_{57} La_{76}$ -13

|                                                                              |                                  |                                            |                                                                                                | <sup>133</sup> C                         | e $\varepsilon$ decay (5                                                                        | 5.1 h) 1978                | 3He16 (continu     | ued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------|----------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              |                                  |                                            |                                                                                                |                                          | $\gamma(1)$                                                                                     | <sup>133</sup> La) (contir | nued)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $E_{\gamma}^{\ddagger}$                                                      | $I_{\gamma}^{\ddagger d}$        | E <sub>i</sub> (level)                     | $\mathbf{J}_i^{\pi}$                                                                           | $E_f$                                    | $\mathrm{J}_f^\pi$                                                                              | Mult. <sup>#</sup>         | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (21.9.5                                                                      | 14.6                             | 2018 26                                    | 7/2-                                                                                           | 1206.40                                  | 5/0-                                                                                            |                            |                    | $\alpha$ (N+)=4.5×10 <sup>-5</sup> 6<br>$\alpha$ (N)=3.8×10 <sup>-5</sup> 5; $\alpha$ (O)=6.1×10 <sup>-6</sup> 9; $\alpha$ (P)=4.6×10 <sup>-7</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 634.5 2                                                                      | 2.8 <i>10</i>                    | 765.38                                     | $(5/2^+)$                                                                                      | 130.804                                  | 5/2<br>7/2+                                                                                     | [M1]                       | 0.00795 12         | $\alpha(K)=0.00684 \ 10; \ \alpha(L)=0.000881 \ 13; \ \alpha(M)=0.000182 \ 3; \ \alpha(N+)=4.71\times10^{-5} \ 7 \ \alpha(N)=4.01\times10^{-5} \ 6; \ \alpha(O)=6.55\times10^{-6} \ 10; \ \alpha(D)=5.22\times10^{-7} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6} \ 10^{-6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 639.3 2                                                                      | 6.6 10                           | 2036.04                                    | 7/2-,9/2-                                                                                      | 1396.40                                  | 5/2-                                                                                            |                            |                    | $u(\mathbf{N}) = 4.01 \times 10^{-6}$ 0; $u(\mathbf{O}) = 0.55 \times 10^{-10}$ ; $u(\mathbf{P}) = 5.22 \times 10^{-6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 644.74 <i>4</i>                                                              | 50.2 12                          | 1690.64                                    | (9/2)-                                                                                         | 1045.925                                 | 9/2-                                                                                            | M1(+E2)                    | 0.0065 12          | ce(K)=0.29 4; $\alpha$ (K)exp=0.0061 9<br>$\alpha$ (K)=0.0055 11; $\alpha$ (L)=0.00075 11; $\alpha$ (M)=0.000155 21;<br>$\alpha$ (N+)=4.0×10 <sup>-5</sup> 6<br>$\alpha$ (N)=3.4×10 <sup>-5</sup> 5; $\alpha$ (Q)=5.5×10 <sup>-6</sup> 8; $\alpha$ (P)=4.1×10 <sup>-7</sup> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 653.75 12                                                                    | 11.2 10                          | 784.531                                    | 7/2-                                                                                           | 130.804                                  | 7/2+                                                                                            | [E1]                       | 0.00189 <i>3</i>   | $\alpha(N)=0.4160  5, \ \alpha(G)=5.5\times10^{-5}, \ \alpha(G)=4.1\times10^{-5}, \ \alpha(K)=0.001628  23; \ \alpha(L)=0.000204  3; \ \alpha(M)=4.21\times10^{-5}, \ 6; \ \alpha(N=1.25\times10^{-5}, 16)^{-5}, \ \alpha(N)=9.23\times10^{-6}, \ 13; \ \alpha(O)=1.499\times10^{-6}, \ 21; \ \alpha(D)=1.499\times10^{-6}, \ 21; \ \alpha(D)=1.49\times10^{-6}, \ \alpha(D)=1.49\times10^{-6}, \ \alpha(D)=1.40\times10^{-6}, \ \alpha(D)=1.40\times10^{-6},$ |
| 656.47 11                                                                    | 3.3 6                            | 1311.09                                    | 7/2+.9/2.11/2                                                                                  | 654.60                                   | $11/2^{+}$                                                                                      |                            |                    | $\alpha(P)=1.159\times10^{-7}$ 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 669.0 <sup>cf</sup> 2                                                        | 3.9 5                            | 1857.39                                    | 7/2-                                                                                           | 1188.56                                  | $13/2^+$                                                                                        |                            |                    | $E_{\gamma}$ : poor fit; level energy difference is equal to 668.78 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 669.0 <sup>&amp;</sup> 2<br>678.3 <sup>e</sup> 5                             | 3.9 5<br>≈7 <sup>e</sup>         | 2359.87<br>765.38                          | $(7/2,9/2,11/2)^{-}$<br>$(5/2^{+})$                                                            | 1690.64<br>87.940                        | (9/2) <sup>-</sup><br>5/2 <sup>+</sup>                                                          | [M1,E2]                    | 0.0057 11          | $\alpha(K)=0.0049 \ 10; \ \alpha(L)=0.00065 \ 10; \ \alpha(M)=0.000136 \ 19;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                              |                                  |                                            |                                                                                                |                                          |                                                                                                 |                            |                    | $\alpha(N+)=3.5\times10^{-5} 5$<br>$\alpha(N)=3.0\times10^{-5} 5$ ; $\alpha(O)=4.8\times10^{-6} 8$ ; $\alpha(P)=3.6\times10^{-7} 8$<br>$E_{\gamma},I_{\gamma}$ : transition with this energy de-excites the 1218.9 keV<br>state also. I( $\gamma$ +ce)=21 4 is divided on the basis of<br>coincidence data (1978He16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 678.3 <sup>e</sup> 5                                                         | ≈14 <sup>e</sup>                 | 1218.90                                    | 7/2+                                                                                           | 541.20                                   | 7/2+                                                                                            |                            |                    | $E_{\gamma}$ , $I_{\gamma}$ : transition with this energy de-excites the 765.38 keV state also. I( $\gamma$ +ce)=21 4 is divided on the basis of coincidence data (1978He16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 684.28 8                                                                     | 10.4 8                           | 1468.86                                    | 9/2-                                                                                           | 784.531                                  | 7/2-                                                                                            | [M1]                       | 0.00662 10         | $\alpha(K)=0.00570\ 8;\ \alpha(L)=0.000732\ 11;\ \alpha(M)=0.0001513\ 22;\ \alpha(N+)=3.92\times10^{-5}\ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 689.48 <i>4</i>                                                              | 105 3                            | 1735.44                                    | (9/2)-                                                                                         | 1045.925                                 | 9/2-                                                                                            | M1(+E2)                    | 0.0055 11          | $\alpha(N)=5.33\times10^{-5} 5; \alpha(O)=5.44\times10^{-6} 8; \alpha(P)=4.34\times10^{-7} 6$<br>$ce(K)=0.61 5; \alpha(K)exp=0.0062 6$<br>$\alpha(K)=0.0047 9; \alpha(L)=0.00063 9; \alpha(M)=0.000130 19;$<br>$\alpha(N+)=3.4\times10^{-5} 5$<br>$\alpha(N)=2.9\times10^{-5} 4; \alpha(O)=4.6\times10^{-6} 8; \alpha(P)=3.5\times10^{-7} 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 692.36 <sup>&amp;</sup> 12<br>697.19 6<br>699.58 <sup>c</sup> 7<br>702.37 11 | 2.6 8<br>9.8 5<br>6.2 5<br>3.1 5 | 1784.76?<br>2062.16<br>1194.63?<br>1748.29 | 7/2 <sup>-</sup> ,9/2,11/2 <sup>-</sup><br>9/2 <sup>-</sup><br>7/2,9/2 <sup>+</sup><br>7/2,9/2 | 1092.38<br>1365.01<br>495.02<br>1045.925 | 7/2 <sup>+</sup> ,9/2 <sup>+</sup><br>11/2 <sup>-</sup><br>7/2 <sup>+</sup><br>9/2 <sup>-</sup> |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 707.41 6                                                                     | 10.1 7                           | 838.24                                     | 9/2+                                                                                           | 130.804                                  | $7/2^{+}$                                                                                       | [M1]                       | 0.00611 9          | $\alpha(K)=0.00526 \ 8; \ \alpha(L)=0.000675 \ 10; \ \alpha(M)=0.0001395 \ 20;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

# From ENSDF

 $^{133}_{57} La_{76}$ -14

|                              |                           |                        |                        | 133              | Ce ɛ deca          | y (5.1 h)                     | 1978He16 (cont     | inued)                                                                                               |
|------------------------------|---------------------------|------------------------|------------------------|------------------|--------------------|-------------------------------|--------------------|------------------------------------------------------------------------------------------------------|
|                              |                           |                        |                        |                  |                    | $\gamma(^{133}\text{La})$ (co | ontinued)          |                                                                                                      |
| $E_{\gamma}^{\ddagger}$      | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | $J_i^\pi$              | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$ | Mult. <sup>#</sup>            | $\alpha^{\dagger}$ | Comments                                                                                             |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha$ (N+)=3.61×10 <sup>-5</sup> 5                                                                |
| 711 42 7                     | 1257                      | 1100 56                | 12/2+                  | 477 012          | 0/2+               |                               |                    | $\alpha(N)=3.07\times10^{-5} 5; \alpha(O)=5.02\times10^{-6} 7; \alpha(P)=4.00\times10^{-7} 6$        |
| 736 32 11                    | 416                       | 867.15                 | $(7/2^+)$              | 477.213          | 9/2*<br>7/2+       | [M1 E2]                       | 0.0047.9           | $\alpha(K) = 0.0040 \ \% \ \alpha(L) = 0.00053 \ \% \ \alpha(M) = 0.000111 \ 16$                     |
| 1000211                      |                           | 007110                 | ()/= )                 | 1001001          | .,=                | [,22]                         | 010017             | $\alpha(N+)=2.8\times10^{-5}$ 5                                                                      |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N)=2.4\times10^{-5}$ 4; $\alpha(O)=3.9\times10^{-6}$ 7; $\alpha(P)=3.0\times10^{-7}$ 7       |
| 739.0 <sup>°</sup> 3         | 2.0 10                    | 1784.76?               | 7/2-,9/2,11/2-         | 1045.925         | 9/2-               |                               |                    |                                                                                                      |
| 740.84 <i>12</i><br>x742 9 2 | 7.08                      | 2137.18                | 9/2-                   | 1396.40          | 5/2-               |                               |                    |                                                                                                      |
| 747.76 13                    | 5.1 7                     | 1311.09                | 7/2+,9/2,11/2          | 563.348          | $9/2^{+}$          |                               |                    |                                                                                                      |
| 754.25 12                    | 10.8 6                    | 1734.15                | $(11/2^{-})$           | 979.91           | $15/2^{-}$         |                               |                    |                                                                                                      |
| 759.04 13                    | 4.2 7                     | 2155.17                | (9/2 <sup>-</sup> )    | 1396.40          | 5/2-               |                               |                    | $E_{\gamma}$ : poor fit; the level energy difference is equal to 758.78 6                            |
| 765.19 12                    | 6.7 7                     | 765.38                 | (5/2+)                 | 0.0              | 5/2+               | [M1,E2]                       | 0.0043 8           | $\alpha(K) = 0.0037 \ 7; \ \alpha(L) = 0.00048 \ 8; \ \alpha(M) = 0.000101 \ 15;$                    |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N+)=2.0\times10^{-5} 4$                                                                      |
| 769 9 2                      | 295                       | 867 15                 | $(7/2^+)$              | 97 259           | 3/2+               | [F2]                          | 0.00344_5          | $\alpha(K) = 0.00293 5; \alpha(L) = 0.000406 6; \alpha(M) = 8.44 \times 10^{-5} 12;$                 |
| 10).) 2                      | 2.75                      | 007.15                 | (1/2)                  | )1.23)           | 5/2                | [122]                         | 0.005++ 5          | $\alpha(N+)=2.16\times10^{-5}$ 3                                                                     |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N)=1.85\times10^{-5}$ 3; $\alpha(O)=2.96\times10^{-6}$ 5; $\alpha(P)=2.13\times10^{-7}$ 3    |
| 779.16 14                    | 5.0 8                     | 867.15                 | $(7/2^+)$              | 87.940           | 5/2+               | [M1]                          | 0.00485 7          | $\alpha(K)=0.00417 6; \alpha(L)=0.000534 8; \alpha(M)=0.0001104 16;$                                 |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha$ (N+)=2.86×10 <sup>-5</sup> 4                                                                |
| 784 55 8                     | 246.6                     | 784 531                | 7/2-                   | 0.0              | 5/2+               | E1                            | 0.001200.78        | $\alpha(N)=2.43\times10^{-5}$ 4; $\alpha(O)=3.9/\times10^{-6}$ 6; $\alpha(P)=3.1/\times10^{-7}$ 5    |
| 704.55 0                     | 240 0                     | 704.551                | 1/2                    | 0.0              | 5/2                | LI                            | 0.001290 10        | $\alpha(K)=0.001115$ 16: $\alpha(L)=0.0001390$ 20: $\alpha(M)=2.86\times10^{-5}$ 4:                  |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N+)=7.38\times10^{-6}$                                                                       |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N)=6.28\times10^{-6} 9; \ \alpha(O)=1.021\times10^{-6} 15; \ \alpha(P)=7.97\times10^{-8} 12$ |
| 790.2 <sup>&amp;</sup> 2     | 2.2 6                     | 2155.17                | (9/2-)                 | 1365.01          | $11/2^{-}$         |                               |                    |                                                                                                      |
| <sup>x</sup> 792.8 2         | 2.8 7                     |                        |                        |                  |                    |                               |                    |                                                                                                      |
| 798.59 15                    | 3.4 6                     | 2359.87                | $(7/2,9/2,11/2)^{-}$   | 1561.16          | $(11/2^{-})$       |                               |                    |                                                                                                      |
| 802.1 3                      | 4.2 7                     | 1365.01                | 11/2-                  | 563.348          | 9/2*               |                               |                    |                                                                                                      |
| 805.4 2                      | 3.9 6                     | 1958.67                | 9/2 <sup>-</sup> ,11/2 | 1153.35          | $13/2^{-}$         |                               |                    |                                                                                                      |
| 811.2 3                      | 7.6 15                    | 1857.39                | 7/2-                   | 1045.925         | 9/2-               |                               |                    |                                                                                                      |
| 819.47 15                    | 22.7 12                   | 950.35                 | $(9/2)^+$              | 130.804          | 7/2+               | M1(+E2)                       | 0.0036 7           | $ce(K)=0.094 \ 10; \ \alpha(K)exp=0.0044 \ 6$                                                        |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(K)=0.0031\ 6;\ \alpha(L)=0.00041\ 7;\ \alpha(M)=8.5\times10^{-5}\ 13;$                       |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N+)=2.2\times10^{-5} 4$                                                                      |
|                              |                           | 1010                   |                        |                  |                    |                               |                    | $\alpha(N)=1.9\times10^{-5}$ 3; $\alpha(O)=3.0\times10^{-6}$ 5; $\alpha(P)=2.3\times10^{-7}$ 5       |
| 829.42 15                    | 25.7 9                    | 1365.01                | 11/2-                  | 535.588          | $11/2^{-}$         | M1(+E2)                       | 0.0035 7           | $ce(K)=0.075$ 9; $\alpha(K)exp=0.0031$ 4                                                             |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(K)=0.0030\ 6;\ \alpha(L)=0.00040\ 7;\ \alpha(M)=8.3\times10^{-5}\ 13;$                       |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N+)=2.1\times10^{-5} 4$                                                                      |
|                              |                           |                        |                        |                  |                    |                               |                    | $\alpha(N)=1.8\times10^{-5}$ 3; $\alpha(O)=2.9\times10^{-6}$ 5; $\alpha(P)=2.3\times10^{-7}$ 5       |

From ENSDF

 $^{133}_{57}$ La<sub>76</sub>-15

|                                                    |                           |                        |                                    |                  | <sup>133</sup> Ce $\varepsilon$ de | cay (5.1 h)                  | <b>1978He16</b> (  | continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------|---------------------------|------------------------|------------------------------------|------------------|------------------------------------|------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                           |                        |                                    |                  |                                    | $\gamma$ ( <sup>133</sup> La | a) (continued)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ${\rm E_{\gamma}}^{\ddagger}$                      | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$               | $\mathrm{E}_{f}$ | $\mathrm{J}_f^\pi$                 | Mult. <sup>#</sup>           | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 834.77 15                                          | 10.9 6                    | 2199.95                | (9/2 <sup>-</sup> )                | 1365.01          | 11/2-                              | M1,E2                        | 0.0035 7           | ce(K)=0.031 7; $\alpha$ (K)exp=0.0030 7<br>$\alpha$ (K)=0.0030 6; $\alpha$ (L)=0.00039 6; $\alpha$ (M)=8.1×10 <sup>-5</sup> 13;<br>$\alpha$ (N+)=2.1×10 <sup>-5</sup> 4<br>$\alpha$ (N)=0.10 <sup>-5</sup> 4<br>$\alpha$ (N)=0.10 <sup>-5</sup> 4<br>$\alpha$ (N)=0.10 <sup>-5</sup> 4<br>$\alpha$ (N)=0.10 <sup>-5</sup> 7<br>$\alpha$ (N)=0.10 <sup>-5</sup> 7<br>$\alpha$ (N)=0.10 <sup>-5</sup> 7<br>$\alpha$ (N)=0.0030 7<br>$\alpha$ (N)=0.003 |
| 838.1 2                                            | 3.7 6                     | 838.24                 | 9/2+                               | 0.0              | 5/2+                               | [E2]                         | 0.00283 4          | $\alpha(N) = 1.8 \times 10^{-5} 3; \ \alpha(O) = 2.9 \times 10^{-5} 3; \ \alpha(P) = 2.2 \times 10^{-5} 5; \ \alpha(K) = 0.00241 4; \ \alpha(L) = 0.000329 5; \ \alpha(M) = 6.84 \times 10^{-5} 10; \ \alpha(N+) = 1.755 \times 10^{-5} 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 841.37 <sup>c</sup> 14                             | 12.7 7                    | 1318.57?               | 7/2.9/2+                           | 477.213          | 9/2+                               |                              |                    | $\alpha(N)=1.496\times10^{-5} 21; \ \alpha(O)=2.41\times10^{-6} 4; \ \alpha(P)=1.759\times10^{-7} 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <sup>x</sup> 844.19 <sup>b</sup> 14                | 7.1 7                     |                        | .1=,-1=                            |                  | ~1 =                               |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 862.29 13                                          | 17.7 6                    | 950.35                 | (9/2)+                             | 87.940           | 5/2+                               | [E2]                         | 0.00265 4          | $\alpha$ (K)=0.00226 4; $\alpha$ (L)=0.000307 5; $\alpha$ (M)=6.38×10 <sup>-5</sup> 9;<br>$\alpha$ (N+)=1.638×10 <sup>-5</sup> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 867.2 <sup>e</sup> 5                               | ≈8.2 <sup>e</sup>         | 867.15                 | (7/2 <sup>+</sup> )                | 0.0              | 5/2+                               | [M1]                         | 0.00376 6          | $\alpha(N)=1.397\times10^{-5} 20; \ \alpha(O)=2.25\times10^{-6} 4; \ \alpha(P)=1.652\times10^{-7} 24$<br>$\alpha(K)=0.00324 5; \ \alpha(L)=0.000413 6; \ \alpha(M)=8.53\times10^{-5} 12;$<br>$\alpha(N+)=2.21\times10^{-5} 4$<br>$\alpha(N)=1.88\times10^{-5} 3; \ \alpha(O)=3.07\times10^{-6} 5; \ \alpha(P)=2.46\times10^{-7} 4$<br>$I_{\gamma}: I(\gamma+ce)=10.7 7 \text{ is divided on the basis of coincidence data}$<br>(1978He16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 867.2 <sup>e</sup> 5                               | 2.5 <sup>e</sup> 5        | 1912.81                | 9/2-                               | 1045.925         | 9/2-                               |                              |                    | $I_{\gamma}$ : $I(\gamma+ce)=10.7$ 7 is divided on the basis of coincidence data (1978He16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 877.13 <sup>&amp;</sup> 14<br><sup>x</sup> 879.5 2 | 9.3 8<br>4.9 7            | 1715.40                | 7/2 <sup>-</sup> ,9/2 <sup>-</sup> | 838.24           | 9/2+                               |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 887.7 2<br>×901.79 15                              | 6.2 <i>12</i><br>5.0 7    | 1365.01                | 11/2-                              | 477.213          | 9/2+                               |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 906.13 11                                          | 11.1 7                    | 1690.64                | (9/2)-                             | 784.531          | 7/2-                               | M1,E2                        | 0.0029 6           | ce(K)=0.026 5; $\alpha$ (K)exp=0.0025 6<br>$\alpha$ (K)=0.0025 5; $\alpha$ (L)=0.00032 5; $\alpha$ (M)=6.7×10 <sup>-5</sup> 11;<br>$\alpha$ (N+)=1.7×10 <sup>-5</sup> 3<br>$\alpha$ (N)=1.47×10 <sup>-5</sup> 23; $\alpha$ (Q)=2.4×10 <sup>-6</sup> 4; $\alpha$ (P)=1.8×10 <sup>-7</sup> 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 914.8 <i>3</i>                                     | 3.4 7                     | 1045.925               | 9/2-                               | 130.804          | 7/2+                               | [E1]                         | 0.000951 14        | $\alpha(N) = 1.11 \times 10^{-5} 3;$<br>$\alpha(N) = 0.000823 \ 12; \ \alpha(L) = 0.0001020 \ 15; \ \alpha(M) = 2.10 \times 10^{-5} 3;$<br>$\alpha(N+) = 5.42 \times 10^{-6} 3;$<br>$\alpha(N) = 4.61 \times 10^{-6} 7; \ \alpha(Q) = 7.51 \times 10^{-7} \ 11; \ \alpha(R) = 5.00 \times 10^{-8} 0.53$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 930.87 12                                          | 4.4 11                    | 1715.40                | 7/2-,9/2-                          | 784.531          | 7/2-                               |                              |                    | $\alpha(N) = 4.01 \times 10^{-6} /; \alpha(O) = 7.51 \times 10^{-6} / 11; \alpha(P) = 5.90 \times 10^{-6} 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 943.70 9                                           | 14.6 10                   | 2036.04                | 7/2-,9/2-                          | 1092.38          | 7/2+,9/2+                          |                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 950.99 7                                           | 32.5 8                    | 1735.44                | (9/2)-                             | 784.531          | 7/2-                               | (E2)                         | 0.00213 3          | ce(K)=0.053 7; $\alpha$ (K)exp=0.0017 3<br>$\alpha$ (K)=0.00182 3; $\alpha$ (L)=0.000244 4; $\alpha$ (M)=5.06×10 <sup>-5</sup> 7;<br>$\alpha$ (N+)=1.300×10 <sup>-5</sup> 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 961.8 4                                            | 4 1                       | 1092.38                | 7/2+,9/2+                          | 130.804          | 7/2+                               | [M1]                         | 0.00295 5          | $\begin{aligned} \alpha(N) &= 1.108 \times 10^{-5} \ 16; \ \alpha(O) &= 1.79 \times 10^{-6} \ 3; \ \alpha(P) &= 1.334 \times 10^{-7} \ 19 \\ \alpha(K) &= 0.00254 \ 4; \ \alpha(L) &= 0.000323 \ 5; \ \alpha(M) &= 6.68 \times 10^{-5} \ 10; \\ \alpha(N+) &= 1.728 \times 10^{-5} \ 25 \\ \alpha(N) &= 1.469 \times 10^{-5} \ 21; \ \alpha(O) &= 2.40 \times 10^{-6} \ 4; \ \alpha(P) &= 1.93 \times 10^{-7} \ 3 \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                                     |                           |                               |                                                     | <sup>133</sup> Ce              | eεdecay                                                   | v (5.1 h) 1                    | 978He16 (conti | nued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|---------------------------|-------------------------------|-----------------------------------------------------|--------------------------------|-----------------------------------------------------------|--------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                           |                               |                                                     |                                |                                                           | $\gamma(^{133}\text{La})$ (cor | ntinued)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $E_{\gamma}^{\ddagger}$             | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level)        | $\mathbf{J}_i^{\pi}$                                | $E_f$                          | $\mathrm{J}_f^\pi$                                        | Mult. <sup>#</sup>             | $a^{\dagger}$  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 963.6 <i>4</i><br>968.7<br>972.34 9 | 4 1<br>≈3<br>24.9 11      | 1748.29<br>2122.59<br>2018.26 | 7/2,9/2<br>11/2 <sup>-</sup><br>7/2 <sup>-</sup>    | 784.531<br>1153.35<br>1045.925 | 7/2 <sup>-</sup><br>13/2 <sup>-</sup><br>9/2 <sup>-</sup> | M1,E2                          | 0.0025 5       | ce(K)=0.061 7; $\alpha$ (K)exp=0.0026 4<br>$\alpha$ (K)=0.0021 4; $\alpha$ (L)=0.00027 5; $\alpha$ (M)=5.7×10 <sup>-5</sup> 9;<br>$\alpha$ (N+)=1.46×10 <sup>-5</sup> 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 983.9 <sup>e</sup> 2                | 19.2 <sup>e</sup> 8       | 2029.84                       | 7/2,9/2+                                            | 1045.925                       | 9/2-                                                      |                                |                | $\alpha$ (N)=1.24×10 <sup>-5</sup> <i>19</i> ; $\alpha$ (O)=2.0×10 <sup>-6</sup> <i>4</i> ; $\alpha$ (P)=1.6×10 <sup>-7</sup> <i>3</i><br>I <sub><math>\gamma</math></sub> : I( $\gamma$ +ce)=20.7 <i>8</i> is divided on the basis of coincidence data<br>(1978He16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 983.9 <sup>e</sup> 2                | ≈1.5 <sup>e</sup>         | 2137.18                       | 9/2-                                                | 1153.35                        | 13/2-                                                     |                                |                | $I_{\gamma}$ : $I(\gamma+ce)=20.7$ 8 is divided on the basis of coincidence data<br>(1078He16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 990.13 5                            | 75 2                      | 2036.04                       | 7/2 <sup>-</sup> ,9/2 <sup>-</sup>                  | 1045.925                       | 9/2-                                                      | M1(+E2)                        | 0.0024 4       | ce(K)=0.166 <i>16</i> ; $\alpha$ (K)exp=0.0023 <i>3</i><br>$\alpha$ (K)=0.0020 <i>4</i> ; $\alpha$ (L)=0.00026 <i>4</i> ; $\alpha$ (M)=5.4×10 <sup>-5</sup> <i>9</i> ;<br>$\alpha$ (N+)=1.40×10 <sup>-5</sup> <i>22</i><br>$\alpha$ (N)=1.19×10 <sup>-5</sup> <i>19</i> ; $\alpha$ (O)=1.9×10 <sup>-6</sup> <i>3</i> ; $\alpha$ (P)=1.5×10 <sup>-7</sup> <i>3</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> 997.25 11              | 6.3 6                     | 1794 769                      | 7/2= 0/2 11/2=                                      | 794 521                        | 7/0-                                                      |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1000.2° 3<br>1004.49 <i>10</i>      | 2.2 6<br>9.0 6            | 1784.76?<br>1092.38           | 7/2 ,9/2,11/2<br>7/2 <sup>+</sup> ,9/2 <sup>+</sup> | /84.531<br>87.940              | 7/2<br>5/2 <sup>+</sup>                                   | [M1,E2]                        | 0.0023 4       | $\alpha(K)=0.0020 \ 4; \ \alpha(L)=0.00025 \ 4; \ \alpha(M)=5.2\times10^{-5} \ 8; \ \alpha(N+)=1.35\times10^{-5} \ 21 \ \alpha(N)=1.15\times10^{-5} \ 18; \ \alpha(D)=1.0\times10^{-6} \ 3; \ \alpha(D)=1.5\times10^{-7} \ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1016.22 9                           | 12.3 6                    | 2062.16                       | 9/2-                                                | 1045.925                       | 9/2-                                                      | M1(+E2)                        | 0.0022 4       | $\begin{aligned} \alpha(N) &= 1.13 \times 10^{-15} \times 10^$ |
| 1019.24 <sup>&amp;</sup> <i>14</i>  | 3.0 6                     | 1857.39                       | 7/2-                                                | 838.24                         | 9/2+                                                      |                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1022.24 12                          | 9.9 8                     | 2175.64                       | (11/2 <sup>-</sup> )                                | 1153.35                        | 13/2-                                                     | [M1]                           | 0.00256 4      | $\alpha(K)=0.00221 \ 3; \ \alpha(L)=0.000280 \ 4; \ \alpha(M)=5.78\times10^{-5} \ 8; \\ \alpha(N+)=1.497\times10^{-5} \ 21 \\ \alpha(N)=1.272\times10^{-5} \ 18; \ \alpha(Q)=2.08\times10^{-6} \ 2; \ \alpha(D)=1.671\times10^{-7} \ 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1036.3 <i>3</i>                     | 3.1 15                    | 1690.64                       | (9/2)-                                              | 654.60                         | 11/2+                                                     | [E1]                           | 0.000751 11    | $\alpha(N)=1.275\times10^{-18}, \alpha(O)=2.08\times10^{-5}, \alpha(P)=1.071\times10^{-24}$<br>$\alpha(K)=0.000650 \ 10; \ \alpha(L)=8.02\times10^{-5} \ 12; \ \alpha(M)=1.650\times10^{-5}$<br>$24; \ \alpha(N+)=4.26\times10^{-6}$<br>$\alpha(N)=3.62\times10^{-6} \ 5; \ \alpha(O)=5.90\times10^{-7} \ 9; \ \alpha(P)=4.67\times10^{-8} \ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1066.3 <i>3</i>                     | 2.2 8                     | 1850.90                       | (9/2-)                                              | 784.531                        | 7/2-                                                      |                                |                | u(1)=5.02×10 5, u(0)=5.90×10 9, u(1)=1.07×10 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1073.20 12                          | 7.3 8                     | 1857.39                       | 7/2-                                                | 784.531                        | 7/2-                                                      |                                |                | $E_{\gamma}$ : poor fit; level energy difference is equal to 1072.86 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1076.6 2                            | 3.8 7                     | 2122.59                       | 11/2-                                               | 1045.925                       | 9/2-                                                      |                                |                | 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1081.1 2                            | 6.6 10                    | 1735.44                       | (9/2)-                                              | 654.60                         | 11/2+                                                     | [E1]                           | 0.000694 10    | $\alpha(K) = 0.000601 \ 9; \ \alpha(L) = 7.41 \times 10^{-5} \ 11; \ \alpha(M) = 1.523 \times 10^{-5} \ 22; \\ \alpha(N+) = 3.93 \times 10^{-6} \ 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1085 42 12                          | 120.12                    | 1850.00                       | $(0/2^{-})$                                         | 765 20                         | $(5/2^{+})$                                               |                                |                | $\alpha(N)=5.34\times10^{-6}$ 5; $\alpha(O)=5.45\times10^{-7}$ 8; $\alpha(P)=4.32\times10^{-6}$ 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $1091.7^{e}$ 2                      | $\approx 12^{e}$          | 1857.39                       | 7/2-                                                | 765.38                         | $(5/2^+)$ $(5/2^+)$                                       |                                |                | I <sub><math>\gamma</math></sub> : I( $\gamma$ +ce)=31 2 is divided on the basis of coincidence data (1978He16).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

From ENSDF

 $^{133}_{57} La_{76}$ -17

 $^{133}_{57} La_{76}$ -17

|                                                                                                           |                                                        |                                                      |                                                                                                                               | <sup>133</sup> Ce $\varepsilon$ d                                                                                                       | ecay (5.1 h)                 | 1978He16 (         | continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                           |                                                        |                                                      |                                                                                                                               |                                                                                                                                         | $\gamma$ <sup>(133</sup> La) | (continued)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $E_{\gamma}^{\ddagger}$                                                                                   | $I_{\gamma}^{\ddagger d}$                              | E <sub>i</sub> (level)                               | $\mathrm{J}_i^\pi$                                                                                                            | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                                                                                | Mult. <sup>#</sup>           | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1091.7 <sup>e</sup> 2                                                                                     | 19 <sup>e</sup> 3                                      | 2137.18                                              | 9/2-                                                                                                                          | 1045.925 9/2-                                                                                                                           |                              |                    | $E_{\gamma}$ : poor fit; the level energy difference is equal to 1091.25 7 keV.<br>$I_{\gamma}$ : $I(\gamma+ce)=31$ 2 is divided on the basis of coincidence data<br>(1978He16): Aly assigned by evaluators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1107.1 <sup><i>c</i></sup> 3<br>1109.44 <i>14</i><br>1121.5 2<br>1128.0 2<br>1129.7 <sup><i>e</i></sup> 2 | 2.8 7<br>4.9 7<br>2.5 7<br>6.0 10<br>≈1.2 <sup>e</sup> | 1194.63?<br>2155.17<br>1218.90<br>1912.81<br>1784.19 | 7/2,9/2 <sup>+</sup><br>(9/2 <sup>-</sup> )<br>7/2 <sup>+</sup><br>9/2 <sup>-</sup><br>(9/2 <sup>+</sup> ,11/2 <sup>+</sup> ) | 87.940 5/2 <sup>+</sup><br>1045.925 9/2 <sup>-</sup><br>97.259 3/2 <sup>+</sup><br>784.531 7/2 <sup>-</sup><br>654.60 11/2 <sup>+</sup> |                              |                    | $I_{\gamma}$ : I( $\gamma$ +ce)=13.5 <i>10</i> is divided on the basis of coincidence data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1129.7 <sup>e</sup> 2                                                                                     | 12.3 <sup>e</sup> 10                                   | 2175.64                                              | (11/2 <sup>-</sup> )                                                                                                          | 1045.925 9/2-                                                                                                                           | (M1,E2)                      | 0.0018 3           | (1978He16).<br>$\alpha(K)\exp=0.00118\ 23$<br>$\alpha(K)=0.00151\ 25;\ \alpha(L)=0.00019\ 3;\ \alpha(M)=4.0\times10^{-5}\ 6;$<br>$\alpha(N+)=1.14\times10^{-5}\ 15$<br>$\alpha(N)=8.8\times10^{-6}\ 13;\ \alpha(O)=1.43\times10^{-6}\ 22;\ \alpha(P)=1.13\times10^{-7}\ 20;$<br>$\alpha(IPF)=1.057\times10^{-6}\ 23$<br>$E_{\gamma}:$ from Table I (1978He16); in the <sup>133</sup> La level scheme (Fig.3)<br>E=1219.7.<br>$I_{\gamma}: I(\gamma+ce)=13.5\ 10$ is divided on the basis of coincidence data<br>(1978He16).<br>$\alpha(K)\exp:$ calculated by evaluators assuming mult.=(M1+E2) for<br>1128.0-keV $\gamma$ placed between levels with J=(9/2) <sup>-</sup> and J=7/2 <sup>-</sup> ,<br>and data from 1978He16 |
| 1135.9 <sup>c</sup> 3<br>1143.0 <sup>c</sup> 4<br>1152.05 11                                              | 1.7 6<br>1.3 6                                         | 2501.31<br>2122.59<br>1806.62                        | $9/2^{-},11/2^{+}$<br>$11/2^{-}$<br>$(9/2^{-},11/2^{-})$                                                                      | $\begin{array}{rrrr} 1365.01 & 11/2^{-} \\ 979.91 & 15/2^{-} \\ 654.60 & 11/2^{+} \end{array}$                                          | (F1)                         | 0 000629 9         | $\alpha(K) = 0.000535 \ 8. \ \alpha(L) = 6.58 \times 10^{-5} \ 10. \ \alpha(M) = 1.353 \times 10^{-5} \ 10.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1152.05 11                                                                                                | 11.5 0                                                 | 1800.02                                              | (9/2 ,11/2 )                                                                                                                  | 034.00 11/2                                                                                                                             | (E1)                         | 0.000029 9         | $\alpha(N)=0.000353 \text{ s}, \alpha(L)=0.38\times10^{-7} 10, \alpha(M)=1.333\times10^{-7} 19, \alpha(N)=1.506\times10^{-5} 2$<br>$\alpha(N)=2.97\times10^{-6} 5; \alpha(O)=4.85\times10^{-7} 7; \alpha(P)=3.85\times10^{-8} 6; \alpha(IPF)=1.156\times10^{-5} 17$<br>Mult.: from ce(K)=2.5 5 and $\alpha(K)$ exp=0.00088 18 (calculated by evaluators) values for the 1152.05 $\gamma$ +1154.68 $\gamma$ , it can be deduced that one of the two transitions should be of mult=E1 and the other of mult=E2,M1. If mult(1154 $\gamma$ )=(M1,E2) according to decay pattern then mult(1152 $\gamma$ )=(E1).                                                                                                                   |
| 1154.68 <sup><i>f</i></sup> 10                                                                            | 16.9 9                                                 | 2199.95                                              | (9/2 <sup>-</sup> )                                                                                                           | 1045.925 9/2-                                                                                                                           | [M1,E2]                      | 0.0017 3           | $\alpha(K)=0.00144\ 23;\ \alpha(L)=0.00018\ 3;\ \alpha(M)=3.8\times10^{-5}\ 6;\ \alpha(N+)=1.20\times10^{-5}\ 14$<br>$\alpha(N)=8.4\times10^{-6}\ 13;\ \alpha(O)=1.36\times10^{-6}\ 21;\ \alpha(P)=1.08\times10^{-7}\ 19;\ \alpha(IPF)=2.20\times10^{-6}\ 5$<br>$E_{\gamma}:\ poor\ fit;\ the\ level\ energy\ difference\ is\ equal\ to\ 1154.02\ 6\ keV.$<br>Mult.: see comment on 1152 $\gamma$ from 1806.6 keV level.                                                                                                                                                                                                                                                                                                      |

|                                                                                      |                                                   |                                                      |                                                                                                                                                                   | 13                                                  | <sup>3</sup> Ce $\varepsilon$ deca                                                                | ny (5.1 h)                       | 1978He16 (cont    | inued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      |                                                   |                                                      |                                                                                                                                                                   |                                                     |                                                                                                   | $\gamma$ <sup>(133</sup> La) (co | ontinued)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ${\rm E_{\gamma}}^{\ddagger}$                                                        | $I_{\gamma}^{\ddagger d}$                         | E <sub>i</sub> (level)                               | $J_i^{\pi}$                                                                                                                                                       | $\mathbf{E}_{f}$                                    | $\mathbf{J}_f^{\pi}$                                                                              | Mult. <sup>#</sup>               | $a^{\dagger}$     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1168.76 <i>14</i><br>1172.05 <i>10</i>                                               | 4.5 9<br>15.1 9                                   | 2036.04<br>1735.44                                   | 7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>(9/2) <sup>-</sup>                                                                                                          | 867.15<br>563.348                                   | (7/2 <sup>+</sup> )<br>9/2 <sup>+</sup>                                                           | [E1]                             | 0.000617 9        | $\alpha(K)=0.000518 \ 8; \ \alpha(L)=6.38\times10^{-5} \ 9; \ \alpha(M)=1.311\times10^{-5} \ 19; \\ \alpha(N+)=2.13\times10^{-5} \ 3 \\ \alpha(N)=2.88\times10^{-6} \ 4; \ \alpha(O)=4.70\times10^{-7} \ 7; \ \alpha(P)=3.73\times10^{-8} \ 6; \\ \alpha(IPF)=1.79\times10^{-5} \ 3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1174.1 <i>3</i><br>1180.1 <sup><i>c</i></sup> 2<br>1183.33 <i>9</i>                  | 3.8 <i>10</i><br>3.0 7<br>28.0 9                  | 1715.40<br>1715.40<br>1967.76                        | 7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>7/2 <sup>-</sup> ,9/2 <sup>-</sup>                                                    | 541.20<br>535.588<br>784.531                        | 7/2 <sup>+</sup><br>11/2 <sup>-</sup><br>7/2 <sup>-</sup>                                         | M1,E2                            | 0.00159 25        | ce(K)=0.033 5; $\alpha$ (K)exp=0.0013 3<br>$\alpha$ (K)=0.00137 22; $\alpha$ (L)=0.000175 25; $\alpha$ (M)=3.6×10 <sup>-5</sup> 6;<br>$\alpha$ (N+)=1.37×10 <sup>-5</sup> 13<br>$\alpha$ (N)=7.9×10 <sup>-6</sup> 12; $\alpha$ (O)=1.29×10 <sup>-6</sup> 19; $\alpha$ (P)=1.02×10 <sup>-7</sup> 18;<br>$\alpha$ (PE)=4.40×10 <sup>-6</sup> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1187.1 <sup><i>c</i></sup> 2<br>1190.33 <i>10</i><br>1196.28 <i>11</i><br>1199.9 2   | 3.6 7<br>11.8 7<br>16.1 <i>10</i><br>40 <i>3</i>  | 1778.23?<br>1753.62<br>1850.90<br>1735.44            | 7/2,9/2,11/2 <sup>+</sup><br>7/2 <sup>-</sup> ,9/2,11/2 <sup>+</sup><br>(9/2 <sup>-</sup> )<br>(9/2) <sup>-</sup>                                                 | 591.25<br>563.348<br>654.60<br>535.588              | 7/2,9/2 <sup>+</sup><br>9/2 <sup>+</sup><br>11/2 <sup>+</sup><br>11/2 <sup>-</sup>                | [M1]                             | 0.001779 25       | $\alpha(\text{K})=0.001530\ 22;\ \alpha(\text{L})=0.000193\ 3;\ \alpha(\text{M})=3.99\times10^{-5}\ 6;\alpha(\text{N}+)=1.636\times10^{-5}\ 2\alpha(\text{N})=8.77\times10^{-6}\ 13;\ \alpha(\text{O})=1.435\times10^{-6}\ 20;\ \alpha(\text{P})=1.155\times10^{-7}\ 17;\ \alpha(\text{PE})=6.04\times10^{-6}\ 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1207.04 <i>11</i><br>1212.9 <i>2</i>                                                 | 15.6 9<br>20 2                                    | 1748.29<br>1690.64                                   | 7/2,9/2<br>(9/2) <sup>-</sup>                                                                                                                                     | 541.20<br>477.213                                   | 7/2 <sup>+</sup><br>9/2 <sup>+</sup>                                                              | [E1]                             | 0.000598 <i>9</i> | $\alpha(K)=0.000488 7; \ \alpha(L)=5.99\times10^{-5} 9; \ \alpha(M)=1.231\times10^{-5} 18; \alpha(N+)=3.85\times10^{-5} 6 \alpha(N)=2.70\times10^{-6} 4; \ \alpha(O)=4.41\times10^{-7} 7; \ \alpha(P)=3.51\times10^{-8} 5; \alpha(IPF)=3.53\times10^{-5} 5 E_{\gamma}:  poor fit; the level energy difference is equal to 1213.43 4 Level 10 Compared to 1213.43 4 Compared to$ |
| 1217.7 <sup><i>c</i></sup> 3<br>1221.2 3<br>1225.4 3<br>1233.64 11                   | 2.8 7<br>6.2 <i>15</i><br>1.8 6<br>12.8 8         | 1753.62<br>1784.19<br>2175.64<br>2018.26             | 7/2 <sup>-</sup> ,9/2,11/2 <sup>+</sup><br>(9/2 <sup>+</sup> ,11/2 <sup>+</sup> )<br>(11/2 <sup>-</sup> )<br>7/2 <sup>-</sup>                                     | 535.588<br>563.348<br>950.35<br>784.531             | 11/2 <sup>-</sup><br>9/2 <sup>+</sup><br>(9/2) <sup>+</sup><br>7/2 <sup>-</sup>                   | M1(+E2)                          | 0.00146 22        | keV.<br>ce(K)=0.021 4; $\alpha$ (K)exp=0.0017 4<br>$\alpha$ (K)=0.00125 19; $\alpha$ (L)=0.000159 23; $\alpha$ (M)=3.3×10 <sup>-5</sup> 5;<br>$\alpha$ (N+)=1.89×10 <sup>-5</sup> 11<br>$\alpha$ (N)=7.2×10 <sup>-6</sup> 11; $\alpha$ (O)=1.18×10 <sup>-6</sup> 17; $\alpha$ (P)=9.3×10 <sup>-8</sup> 16;<br>$\alpha$ (RE)=1.044×10 <sup>-5</sup> 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1238.0 2<br>1245.1 2<br>1249.1 <sup>c</sup> 3<br>1251.68 15<br>1258.2 <sup>e</sup> 5 | 3.67<br>5.410<br>4.36<br>8.57<br>≈12 <sup>e</sup> | 1715.40<br>2029.84<br>1784.76?<br>2036.04<br>1735.44 | 7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>7/2,9/2 <sup>+</sup><br>7/2 <sup>-</sup> ,9/2,11/2 <sup>-</sup><br>7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>(9/2) <sup>-</sup> | 477.213<br>784.531<br>535.588<br>784.531<br>477.213 | 9/2 <sup>+</sup><br>7/2 <sup>-</sup><br>11/2 <sup>-</sup><br>7/2 <sup>-</sup><br>9/2 <sup>+</sup> | [E1]                             | 0.000585 9        | $\alpha(\text{K})=0.000457\ 7;\ \alpha(\text{L})=5.61\times10^{-5}\ 8;\ \alpha(\text{M})=1.152\times10^{-5}\ 17;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

 $^{133}_{57}$ La<sub>76</sub>-19

|                                        |                           |                        |                                                                         | <sup>133</sup> C   | e ε deca                              | y (5.1 h)                       | 1978He16 (co       | ntinued)                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------|---------------------------|------------------------|-------------------------------------------------------------------------|--------------------|---------------------------------------|---------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                           |                        |                                                                         |                    |                                       | $\gamma$ <sup>(133</sup> La) (c | continued)         |                                                                                                                                                                                                                                                                                                                                              |
| $E_{\gamma}^{\ddagger}$                | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | ${ m J}^{\pi}_i$                                                        | $\mathbf{E}_{f}$   | $\mathbf{J}_f^{\pi}$                  | Mult. <sup>#</sup>              | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                     |
| 1258.2 <sup>e</sup> 5                  | ~10 <sup>e</sup>          | 1912 81                | 9/2-                                                                    | 654.60             | 11/2+                                 |                                 |                    | $\alpha(N+)=6.09\times10^{-5} 9$<br>$\alpha(N)=2.53\times10^{-6} 4; \ \alpha(O)=4.13\times10^{-7} 6; \ \alpha(P)=3.29\times10^{-8} 5;$<br>$\alpha(IPF)=5.79\times10^{-5} 9$<br>I <sub>\gamma</sub> : 22.2 <i>10</i> is divided on the basis of coincidence data<br>(1978He16).                                                               |
| 1250.2 5                               | ×10                       | 1712.01                | 7/2                                                                     | 051.00             | 11/2                                  |                                 |                    | (1978He16).                                                                                                                                                                                                                                                                                                                                  |
| 1265.57 15                             | 9.2 8                     | 1396.40                | 5/2-                                                                    | 130.804            | 7/2+                                  |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1270.95 <i>14</i><br>1277.47 <i>10</i> | 9.5 8<br>16.0 <i>11</i>   | 1806.62<br>2062.16     | (9/2 <sup>-</sup> ,11/2 <sup>-</sup> )<br>9/2 <sup>-</sup>              | 535.588<br>784.531 | 11/2 <sup>-</sup><br>7/2 <sup>-</sup> | (M1,E2)                         | 0.00136 20         | ce(K)=0.012 3; $\alpha$ (K)exp=0.0008 3<br>$\alpha$ (K)=0.00116 17; $\alpha$ (L)=0.000147 21; $\alpha$ (M)=3.0×10 <sup>-5</sup> 5;<br>$\alpha$ (N+)=2.51×10 <sup>-5</sup> 10<br>$\alpha$ (N)=6.7×10 <sup>-6</sup> 10; $\alpha$ (O)=1.09×10 <sup>-6</sup> 16; $\alpha$ (P)=8.6×10 <sup>-8</sup> 14;<br>$\alpha$ (IPF)=1.73×10 <sup>-5</sup> 3 |
| 1287.58 7                              | 21.9 8                    | 1850.90                | $(9/2^{-})$                                                             | 563.348            | $9/2^{+}$                             |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1294.07 11                             | 7.6 7                     | 1857.39                | 7/2-                                                                    | 563.348            | $9/2^+$                               |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1301.2 3<br>×1305 0 2                  | 2.77                      | 1778.23?               | //2,9/2,11/2                                                            | 4/7.213            | 9/21                                  |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1309.7 2                               | 5.0 10                    | 1850.90                | $(9/2^{-})$                                                             | 541.20             | $7/2^{+}$                             |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1314.1 2                               | 4.9 10                    | 2359.87                | $(7/2,9/2,11/2)^{-}$                                                    | 1045.925           | 9/2-                                  |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1316.1 2                               | 4.6 15                    | 1857.39                | 7/2-                                                                    | 541.20             | $7/2^{+}$                             |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| x1333.21 15                            | 5.9 11                    | 2501.21                | 0/2-11/2+                                                               | 1152.05            | 10/0-                                 |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1348.02 I2<br>$1352 0^{\circ} 5$       | 1.27                      | 2501.31                | 9/2, 11/2 ·                                                             | 1153.35            | $\frac{13}{2}$                        |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1362.41 9                              | 15.4 7                    | 1857.39                | $7/2^{-}$                                                               | 495.02             | $7/2^+$                               |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> 1365.8 2                  | 2.9 6                     | 100/102                | .,_                                                                     | .,,,,,             | • / =                                 |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1369.9 <sup>c</sup> 4                  | 1.2 6                     | 2734.8?                | 7/2-,9/2+                                                               | 1365.01            | $11/2^{-}$                            |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1377.22 7                              | 44 1                      | 1912.81                | 9/2-                                                                    | 535.588            | 11/2-                                 | M1,E2                           | 0.00118 16         | ce(K)=0.035 5; $\alpha$ (K)exp=0.00084 13<br>$\alpha$ (K)=0.00099 14; $\alpha$ (L)=0.000125 17; $\alpha$ (M)=2.6×10 <sup>-5</sup> 4;<br>$\alpha$ (N+)=4.61×10 <sup>-5</sup> 10<br>$\alpha$ (N)=5.7×10 <sup>-6</sup> 8; $\alpha$ (O)=9.3×10 <sup>-7</sup> 13; $\alpha$ (P)=7.3×10 <sup>-8</sup> 11;<br>$\alpha$ (IPF)=3.94×10 <sup>-5</sup> 6 |
| 1380.19 11                             | 6.4 7                     | 1857.39                | 7/2-                                                                    | 477.213            | 9/2+                                  |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1395.1 <i>3</i>                        | 2.2 7                     | 1958.67                | 9/2-,11/2                                                               | 563.348            | 9/2+                                  |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1404.51 11                             | 5.4 6                     | 1967.76                | 7/2 <sup>-</sup> ,9/2 <sup>-</sup>                                      | 563.348            | $9/2^+$                               |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1407.5 5                               | 1.2 6                     | 2062.16                | 9/2<br>7/2- 0/2 11/2+                                                   | 654.60<br>562.249  | $11/2^{+}$                            |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1419.9 3<br>1423 1 4                   | 5.07<br>115               | 1983.38                | $\frac{1}{2}, \frac{9}{2}, \frac{11}{2}$<br>$\frac{9}{2}, \frac{11}{2}$ | 535 588            | $\frac{9/2}{11/2^{-1}}$               |                                 |                    |                                                                                                                                                                                                                                                                                                                                              |
| 1432.22 7                              | 30.6 8                    | 1967.76                | 7/29/2-                                                                 | 535.588            | $11/2^{-1}$                           | M1.E2                           | 0.00111 14         | $ce(K)=0.024$ 4: $\alpha(K)exp=0.00083$ 15                                                                                                                                                                                                                                                                                                   |
| /                                      |                           |                        | ., - , -, -                                                             |                    | -,-                                   | ,                               |                    | $\alpha(K)=0.00091 \ 12; \ \alpha(L)=0.000115 \ 15; \ \alpha(M)=2.4\times10^{-5} \ 3;$                                                                                                                                                                                                                                                       |

 $^{133}_{57}$ La<sub>76</sub>-20

From ENSDF

 $^{133}_{57} La_{76}$ -20

|                                          |                                                            |                           |                               |                                                                                 | <sup>133</sup> Ce            | ε decay                  | (5.1 h) <b>19</b>  | 78He16 (conti      | nued)                                                                                                                                                                                                                                                                                                                                                         |  |
|------------------------------------------|------------------------------------------------------------|---------------------------|-------------------------------|---------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(133</sup> La) (continued) |                                                            |                           |                               |                                                                                 |                              |                          |                    |                    |                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          | $E_{\gamma}^{\ddagger}$                                    | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level)        | $\mathrm{J}^{\pi}_i$                                                            | $E_f$                        | $\mathrm{J}_f^\pi$       | Mult. <sup>#</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                      |  |
|                                          |                                                            |                           |                               |                                                                                 |                              |                          |                    |                    | $\alpha(N+)=6.18\times10^{-5} \ I2$<br>$\alpha(N)=5.2\times10^{-6} \ 7; \ \alpha(O)=8.5\times10^{-7} \ I1; \ \alpha(P)=6.8\times10^{-8} \ I0;$<br>$\alpha(IPF)=5.56\times10^{-5} \ 8$                                                                                                                                                                         |  |
|                                          | 1435.6 3                                                   | 1.3 6                     | 1912.81                       | 9/2 <sup>-</sup>                                                                | 477.213                      | $9/2^+$                  |                    |                    |                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          | $1447.7^{e} 4$<br>$1455.3^{e} 5$                           | $\approx 1.1^{e}$         | 1983.38<br>2018.26            | 7/2 ,9/2,11/2<br>7/2 <sup>-</sup>                                               | 535.588<br>563.348           | 11/2<br>9/2 <sup>+</sup> |                    |                    | I <sub>y</sub> : I(y+ce)=2.3 6 is divided on the basis of coincidence data (1978He16)                                                                                                                                                                                                                                                                         |  |
|                                          | 1455.3 <sup>e</sup> 5                                      | ≈1.2 <sup>e</sup>         | 2501.31                       | 9/2-,11/2+                                                                      | 1045.925                     | 9/2-                     |                    |                    | $I_{\gamma}$ : $I(\gamma+ce)=2.3$ 6 is divided on the basis of coincidence data (1978He16).                                                                                                                                                                                                                                                                   |  |
|                                          | 1465.3 <sup>ef</sup> 2                                     | ≈2 <sup>e</sup>           | 2029.84                       | 7/2,9/2+                                                                        | 563.348                      | 9/2+                     |                    |                    | $E_{\gamma}$ : poor fit; the level energy difference is equal to 1466.49 9.<br>$I_{\gamma}$ : $I(\gamma+ce)=18.9$ 8 is divided on the basis of coincidence data (1978He16).                                                                                                                                                                                   |  |
|                                          | 1465.3 <sup>e</sup> 2                                      | 16.9 <sup>e</sup> 8       | 2250.00                       | 7/2+,9/2+                                                                       | 784.531                      | 7/2-                     |                    |                    | $I_{\gamma}$ : I( $\gamma$ +ce)=18.9 8 is divided on the basis of coincidence data (1978He16).                                                                                                                                                                                                                                                                |  |
|                                          | 1472.08 11                                                 | 7.1 8                     | 2035.22                       | $(7/2^-, 9/2^-, 11/2^-)$                                                        | 563.348                      | 9/2+                     |                    |                    |                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          | 1494.85 5                                                  | 82 2                      | 2036.04                       | 7/2 <sup>-</sup> ,9/2 <sup>-</sup>                                              | 541.20                       | 7/2+                     | E1                 | 0.000605 9         | ce(K)=0.018 4; $\alpha$ (K)exp=0.00023 6<br>$\alpha$ (K)=0.000339 5; $\alpha$ (L)=4.14×10 <sup>-5</sup> 6; $\alpha$ (M)=8.51×10 <sup>-6</sup> 12;<br>$\alpha$ (N+)=0.000216 3<br>$\alpha$ (N)=1.87×10 <sup>-6</sup> 3; $\alpha$ (O)=3.06×10 <sup>-7</sup> 5; $\alpha$ (P)=2.44×10 <sup>-8</sup> 4;                                                            |  |
|                                          | 1409 0 2                                                   | 715                       | 2062 16                       | 0/2-                                                                            | 562 210                      | 0/2+                     |                    |                    | $\alpha$ (IPF)=0.000214 3                                                                                                                                                                                                                                                                                                                                     |  |
|                                          | 1498.95<br>$150041^{e}$ 6                                  | $121^{e} 4$               | 2002.10                       | 9/2<br>7/2 <sup>-</sup> 9/2 <sup>-</sup>                                        | 535 588                      | $\frac{9/2}{11/2^{-1}}$  | M1 E2              | 0.00103.12         | $ce(K)=0.078$ 11: $\alpha(K)exp=0.00068$ 11                                                                                                                                                                                                                                                                                                                   |  |
|                                          | 1300.11                                                    | 121 /                     | 2030.01                       | //2 ,//2                                                                        | 555,566                      | 11/2                     | 1111,22            | 0.00103 12         | $\alpha(K)=0.0082 \ 11; \ \alpha(L)=0.000104 \ 13; \ \alpha(M)=2.1\times10^{-5} \ 3; \ \alpha(N+)=8.38\times10^{-5} \ 15 \ \alpha(N)=4.7\times10^{-6} \ 6; \ \alpha(O)=7.7\times10^{-7} \ 10; \ \alpha(P)=6.1\times10^{-8} \ 9; \ \alpha(IPF)=7.82\times10^{-5} \ 12 \ I_{\gamma}: I(\gamma+ce)=123 \ 3 \text{ is divided on the basis of coincidence data} $ |  |
|                                          | 1500.41 <sup>e</sup> 6                                     | ≈2 <sup>e</sup>           | 2155.17                       | (9/2 <sup>-</sup> )                                                             | 654.60                       | 11/2+                    |                    |                    | $E_{\gamma}$ : poor fit; the level energy difference is equal to 1500.58 5 keV.<br>$I_{\gamma}$ : I( $\gamma$ +ce)=123 3 is divided on the basis of coincidence data                                                                                                                                                                                          |  |
|                                          | 1506.28 <i>12</i><br>1521.03 <i>10</i><br>1526.56 <i>6</i> | 5.3 7<br>14.5 9<br>63 2   | 1983.38<br>2062.16<br>2062.16 | 7/2 <sup>-</sup> ,9/2,11/2 <sup>+</sup><br>9/2 <sup>-</sup><br>9/2 <sup>-</sup> | 477.213<br>541.20<br>535.588 | 9/2+<br>7/2+<br>11/2-    | E2(+M1)            | 0.00101 12         | (1978He16).<br>ce(K)=0.036 8; α(K)exp=0.00061 14                                                                                                                                                                                                                                                                                                              |  |
|                                          |                                                            |                           |                               |                                                                                 |                              |                          | 、 /                |                    | $\begin{aligned} &\alpha(\mathrm{K}) = 0.00079 \ 10; \ \alpha(\mathrm{L}) = 0.000100 \ 12; \ \alpha(\mathrm{M}) = 2.07 \times 10^{-5} \ 25; \\ &\alpha(\mathrm{N}+) = 9.30 \times 10^{-5} \ 17 \\ &\alpha(\mathrm{N}) = 4.5 \times 10^{-6} \ 6; \ \alpha(\mathrm{O}) = 7.4 \times 10^{-7} \ 9; \ \alpha(\mathrm{P}) = 5.9 \times 10^{-8} \ 8; \end{aligned}$  |  |
|                                          | x1544.47 15                                                | 3.1.6                     |                               |                                                                                 |                              |                          |                    |                    | $\alpha$ (IPF)=8.76×10 <sup>-5</sup> 13                                                                                                                                                                                                                                                                                                                       |  |
|                                          |                                                            | 2.1 0                     |                               |                                                                                 |                              |                          |                    |                    |                                                                                                                                                                                                                                                                                                                                                               |  |

 $^{133}_{57} La_{76}$ -21

|                                                                           |                                 |                                |                                                                                         | <sup>133</sup> Ce             | $\varepsilon$ decay                                           | (5.1 h)            | 1978He16 (con      | tinued)                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|---------------------------------------------------------------------------|---------------------------------|--------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\gamma$ <sup>(133</sup> La) (continued)                                  |                                 |                                |                                                                                         |                               |                                                               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| $E_{\gamma}^{\ddagger}$                                                   | $I_{\gamma}^{\ddagger d}$       | E <sub>i</sub> (level)         | $\mathrm{J}_i^\pi$                                                                      | $E_f$                         | $\mathrm{J}_f^\pi$                                            | Mult. <sup>#</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 1557.82 <i>10</i><br><sup>x</sup> 1567.9 <i>3</i>                         | 9.2 <i>13</i><br>1.9 8          | 2035.22                        | (7/2 <sup>-</sup> ,9/2 <sup>-</sup> ,11/2 <sup>-</sup> )                                | 477.213                       | 9/2+                                                          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1573.65 <i>10</i><br>1584.62 <i>6</i>                                     | 8.1 <i>6</i><br>61 2            | 2137.18<br>1715.40             | 9/2 <sup>-</sup><br>7/2 <sup>-</sup> ,9/2 <sup>-</sup>                                  | 563.348<br>130.804            | 9/2 <sup>+</sup><br>7/2 <sup>+</sup>                          | E1                 | 0.000636 9         | ce(K)=0.015 3; $\alpha$ (K)exp=0.00026 6<br>$\alpha$ (K)=0.000308 5; $\alpha$ (L)=3.75×10 <sup>-5</sup> 6; $\alpha$ (M)=7.71×10 <sup>-6</sup> 11;<br>$\alpha$ (N+)=0.000283 4<br>$\alpha$ (N)=1.694×10 <sup>-6</sup> 24; $\alpha$ (O)=2.77×10 <sup>-7</sup> 4; $\alpha$ (P)=2.22×10 <sup>-8</sup> 4;<br>$\alpha$ (HE)=0.00281 4                                 |  |  |  |
| 1595.43 <i>11</i><br>1601.3 <sup>c</sup> 5<br>1612.3 2                    | 6.9 6<br>$\approx 1.8$<br>3.8 6 | 2250.00<br>2137.18<br>2175.64  | 7/2 <sup>+</sup> ,9/2 <sup>+</sup><br>9/2 <sup>-</sup><br>(11/2 <sup>-</sup> )          | 654.60<br>535.588<br>563.348  | 11/2 <sup>+</sup><br>11/2 <sup>-</sup><br>9/2 <sup>+</sup>    |                    |                    | $\alpha(1FF)=0.000281.4$                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 1620.0 2                                                                  | 4.6 7                           | 2155.17                        | $(9/2^{-})$                                                                             | 535.588                       | 11/2-                                                         |                    |                    | $E_{\gamma}$ : poor fit; the level energy difference is equal to 1619.59 5 keV.                                                                                                                                                                                                                                                                                 |  |  |  |
| 1623.0 2<br>1636.7 2                                                      | 2.4 6<br>11.5 6                 | 1753.62<br>2199.95             | 7/2 <sup>-</sup> ,9/2,11/2 <sup>+</sup><br>(9/2 <sup>-</sup> )                          | 130.804<br>563.348            | 7/2 <sup>+</sup><br>9/2 <sup>+</sup>                          | [E1]               | 0.000657 10        | $\alpha(K)=0.000292 \ 4; \ \alpha(L)=3.55\times10^{-5} \ 5; \ \alpha(M)=7.30\times10^{-6} \ 11; \ \alpha(N+)=0.000322 \ 5 \ \alpha(N)=1.605\times10^{-6} \ 23; \ \alpha(O)=2.62\times10^{-7} \ 4; \ \alpha(P)=2.10\times10^{-8} \ 3;$                                                                                                                           |  |  |  |
| 1640.2 <i>3</i><br>1646.9 <sup>c</sup> <i>3</i><br>1653.4 2               | 3.7 6<br>3.1 8<br>12.3 8        | 2175.64<br>1778.23?<br>1784.19 | $(11/2^{-})$<br>7/2,9/2,11/2 <sup>+</sup><br>$(9/2^{+},11/2^{+})$                       | 535.588<br>130.804<br>130.804 | 11/2 <sup>-</sup><br>7/2 <sup>+</sup><br>7/2 <sup>+</sup>     |                    |                    | $\alpha$ (IPF)=0.000321 5                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 1658.9 <i>3</i>                                                           | 4.3 5                           | 2199.95                        | (9/2 <sup>-</sup> )                                                                     | 541.20                        | 7/2+                                                          | [E1]               | 0.000666 10        | $\begin{aligned} &\alpha(\mathrm{K}) = 0.000285 \ 4; \ \alpha(\mathrm{L}) = 3.48 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 7.14 \times 10^{-6} \ 10; \\ &\alpha(\mathrm{N}+) = 0.000339 \ 5 \\ &\alpha(\mathrm{N}) = 1.569 \times 10^{-6} \ 22; \ \alpha(\mathrm{O}) = 2.56 \times 10^{-7} \ 4; \ \alpha(\mathrm{P}) = 2.06 \times 10^{-8} \ 3; \end{aligned}$ |  |  |  |
| 1664.4 2                                                                  | 19.2 8                          | 2199.95                        | (9/2 <sup>-</sup> )                                                                     | 535.588                       | 11/2-                                                         | [M1]               | 0.000999 14        |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1678 3 3                                                                  | 6612                            | 2155 17                        | $(9/2^{-})$                                                                             | 477 213                       | 9/2+                                                          |                    |                    | 1664 $\gamma$ is different.                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| <sup>x</sup> 1683.2 3<br><sup>x</sup> 1686.0 4                            | 3.5 5                           | 2133.17                        | (7/4)                                                                                   | тт.213                        | <i>)  4</i>                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1698.0 <i>3</i><br>1705.5 <sup><i>c</i></sup> <i>3</i><br>1712.4 <i>3</i> | 7.5 6<br>4.2 7<br>3.2 6         | 2851.11<br>2572.76?<br>2367.35 | (9/2 <sup>-</sup> ,11/2 <sup>+</sup> )<br>(7/2 <sup>+</sup> )<br>(7/2,9/2) <sup>+</sup> | 1153.35<br>867.15<br>654.60   | 13/2 <sup>-</sup><br>(7/2 <sup>+</sup> )<br>11/2 <sup>+</sup> |                    |                    |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

From ENSDF

 $^{133}_{57}\mathrm{La_{76}}$ -22

 $^{133}_{57} La_{76}$ -22

|                                                                                                                                                         |                                                                                     |                                                                           |                                                                                                                                                                                             | 13                                                                      | <sup>33</sup> Ce ε d                                                                                                                     | ecay (5.1 l                | n) 1978He16        | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                         |                                                                                     |                                                                           |                                                                                                                                                                                             |                                                                         |                                                                                                                                          | $\gamma$ <sup>(133</sup> L | La) (continued)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E <sub>γ</sub> ‡                                                                                                                                        | $I_{\gamma}^{\ddagger d}$                                                           | E <sub>i</sub> (level)                                                    | $\mathbf{J}_i^{\pi}$                                                                                                                                                                        | $E_f$                                                                   | $\mathbf{J}_f^{\pi}$                                                                                                                     | Mult. <sup>#</sup>         | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1720.2 2                                                                                                                                                | 32.7 8                                                                              | 1850.90                                                                   | (9/2 <sup>-</sup> )                                                                                                                                                                         | 130.804                                                                 | 7/2+                                                                                                                                     | (E1)                       | 0.000693 10        | $ \begin{array}{l} \alpha(\mathrm{K}) = 0.000269 \ 4; \ \alpha(\mathrm{L}) = 3.27 \times 10^{-5} \ 5; \ \alpha(\mathrm{M}) = 6.72 \times 10^{-6} \ 10; \\ \alpha(\mathrm{N}+) = 0.000385 \ 6 \\ \alpha(\mathrm{N}) = 1.477 \times 10^{-6} \ 21; \ \alpha(\mathrm{O}) = 2.41 \times 10^{-7} \ 4; \ \alpha(\mathrm{P}) = 1.94 \times 10^{-8} \ 3; \\ \alpha(\mathrm{IPF}) = 0.000383 \ 6 \end{array} $                                                                        |
| 1722.7 3                                                                                                                                                | 4.5 7                                                                               | 2199.95                                                                   | (9/2 <sup>-</sup> )                                                                                                                                                                         | 477.213                                                                 | 9/2+                                                                                                                                     | [E1]                       | 0.000695 10        | Mult.: deduced by evaluators from cc spectrum (fig. 2) of<br>1978He16 as Ice(K)(1720) $\leq$ Ice(K)(1664) and Ice(K)(1769).<br>$\alpha$ (K)=0.000268 4; $\alpha$ (L)=3.26×10 <sup>-5</sup> 5; $\alpha$ (M)=6.70×10 <sup>-6</sup> 10;<br>$\alpha$ (N+)=0.000387 6<br>$\alpha$ (N)=1.473×10 <sup>-6</sup> 21; $\alpha$ (O)=2.41×10 <sup>-7</sup> 4; $\alpha$ (P)=1.93×10 <sup>-8</sup> 3;<br>$\alpha$ (IPF)=0.000385 6                                                        |
| 1726.7 <i>3</i><br>1769.36 <i>8</i>                                                                                                                     | 5.0 6<br>31.1 7                                                                     | 1857.39<br>1857.39                                                        | 7/2 <sup>-</sup><br>7/2 <sup>-</sup>                                                                                                                                                        | 130.804<br>87.940                                                       | 7/2+<br>5/2+                                                                                                                             | E1                         | 0.000717 10        | ce(K)=0.0060 18; $\alpha$ (K)exp=0.00020 7<br>$\alpha$ (K)=0.000257 4; $\alpha$ (L)=3.12×10 <sup>-5</sup> 5; $\alpha$ (M)=6.41×10 <sup>-6</sup> 9;<br>$\alpha$ (N+)=0.000422 6<br>$\alpha$ (N)=1.410×10 <sup>-6</sup> 20; $\alpha$ (O)=2.30×10 <sup>-7</sup> 4; $\alpha$ (P)=1.85×10 <sup>-8</sup> 3;                                                                                                                                                                       |
| 1782.03 7                                                                                                                                               | 17.6 8                                                                              | 1912.81                                                                   | 9/2-                                                                                                                                                                                        | 130.804                                                                 | 7/2+                                                                                                                                     | E1                         | 0.000723 11        | $\begin{array}{l} \alpha(\mathrm{IPF})=0.000421\ 6\\ \mathrm{ce}(\mathrm{K})=0.040\ 16;\ \alpha(\mathrm{K})\mathrm{exp}=0.00024\ 10\\ \alpha(\mathrm{K})=0.000254\ 4;\ \alpha(\mathrm{L})=3.09\times10^{-5}\ 5;\ \alpha(\mathrm{M})=6.34\times10^{-6}\ 9;\\ \alpha(\mathrm{N}+)=0.000432\ 6\\ \alpha(\mathrm{N})=1.393\times10^{-6}\ 20;\ \alpha(\mathrm{O})=2.28\times10^{-7}\ 4;\ \alpha(\mathrm{P})=1.83\times10^{-8}\ 3;\\ \alpha(\mathrm{PE})=0.000430\ 6 \end{array}$ |
| 1824.4 <sup><i>c</i></sup> 4<br>1837.3 3<br>1846.5 4<br>1852.3 2                                                                                        | 2.4 8<br>3.1 7<br>1.1 5<br>14.0 7                                                   | 1912.81<br>1967.76<br>2501.31<br>1983.38                                  | 9/2 <sup>-</sup><br>7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>9/2 <sup>-</sup> ,11/2 <sup>+</sup><br>7/2 <sup>-</sup> ,9/2,11/2 <sup>+</sup>                                                    | 87.940<br>130.804<br>654.60<br>130.804                                  | 5/2 <sup>+</sup><br>7/2 <sup>+</sup><br>11/2 <sup>+</sup><br>7/2 <sup>+</sup>                                                            |                            |                    | <i>a</i> (IIT)=0.000450 0                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $1858.0^{cf}$ 3<br>$1872.4^{c}$ 4<br>x1876.3 3                                                                                                          | 2.0 5<br>0.8 4<br>2.6 14                                                            | 1857.39<br>2367.35                                                        | 7/2 <sup>-</sup><br>(7/2,9/2) <sup>+</sup>                                                                                                                                                  | 0.0<br>495.02                                                           | 5/2+<br>7/2+                                                                                                                             |                            |                    | $E_{\gamma}$ : poor fit; level energy difference is equal to 1857.39 3.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1887.3 <i>3</i><br>1890.3 <i>3</i><br>1899.1 <i>2</i><br>1905.1 <i>3</i><br>1931.4 <i>2</i><br>1941.83 <i>15</i><br>1960.3 <i>5</i><br>*1962.9 <i>3</i> | $25.9 8 \\ 1.8 7 \\ 4.2 6 \\ 1.7 5 \\ 7.6 11 \\ 7.3 6 \\ \approx 1.8 \\ 6 5 10 \\ $ | 2018.26<br>2367.35<br>2029.84<br>2036.04<br>2062.16<br>2029.84<br>2501.31 | 7/2 <sup>-</sup><br>(7/2,9/2) <sup>+</sup><br>7/2,9/2 <sup>+</sup><br>7/2 <sup>-</sup> ,9/2 <sup>-</sup><br>9/2 <sup>-</sup><br>7/2,9/2 <sup>+</sup><br>9/2 <sup>-</sup> ,11/2 <sup>+</sup> | 130.804<br>477.213<br>130.804<br>130.804<br>130.804<br>87.940<br>541.20 | 7/2 <sup>+</sup><br>9/2 <sup>+</sup><br>7/2 <sup>+</sup><br>7/2 <sup>+</sup><br>7/2 <sup>+</sup><br>5/2 <sup>+</sup><br>7/2 <sup>+</sup> |                            |                    | $E_{\gamma}$ : 1887.3 $\gamma$ is given in table I and 1887.5 in fig.3 of 1978He16.                                                                                                                                                                                                                                                                                                                                                                                         |
| 2001.9 <i>3</i><br>2018 23 <i>11</i>                                                                                                                    | 1.8 4<br>34 8 8                                                                     | 2132.08                                                                   | 7/2,9/2 <sup>+</sup>                                                                                                                                                                        | 130.804                                                                 | $7/2^+$<br>$5/2^+$                                                                                                                       |                            |                    | $E_{\gamma}$ : poor fit; the level energy difference is equal to 2001.28 7 keV.                                                                                                                                                                                                                                                                                                                                                                                             |
| 2018.23 11<br>2030.4 3<br>2044.09 7<br>x2051.45 12                                                                                                      | 2.5 <i>4</i><br>17.8 6<br>1.1 2                                                     | 2018.20<br>2029.84<br>2132.08                                             | 7/2,9/2 <sup>+</sup><br>7/2,9/2 <sup>+</sup>                                                                                                                                                | 0.0<br>0.0<br>87.940                                                    | 5/2 <sup>+</sup><br>5/2 <sup>+</sup><br>5/2 <sup>+</sup>                                                                                 |                            |                    | $E_{\gamma}$ : poor fit; the level energy difference is equal to 2029.84 9.                                                                                                                                                                                                                                                                                                                                                                                                 |

 $^{133}_{57}La_{76}$ -23

|                                          |                           |                        |                                            | 1       | h) 1978He16        | 6 (continued)      |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------|---------------------------|------------------------|--------------------------------------------|---------|--------------------|--------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(133</sup> La) (continued) |                           |                        |                                            |         |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $E_{\gamma}^{\ddagger}$                  | $I_{\gamma}^{\ddagger d}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                       | $E_f$   | $\mathrm{J}_f^\pi$ | Mult. <sup>#</sup> | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| <sup>x</sup> 2057.4 3                    | 0.4 1                     |                        |                                            |         |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <sup>x</sup> 2063.8 <i>3</i>             | 0.94 10                   |                        |                                            |         |                    |                    |                    | 5                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 2069.2 <i>3</i>                          | 0.66 10                   | 2199.95                | (9/2 <sup>-</sup> )                        | 130.804 | 7/2+               | [E1]               | 0.000870 13        | $\begin{aligned} &\alpha(\mathbf{K}) = 0.000200 \ 3; \ \alpha(\mathbf{L}) = 2.43 \times 10^{-5} \ 4; \ \alpha(\mathbf{M}) = 4.98 \times 10^{-6} \ 7; \\ &\alpha(\mathbf{N}+) = 0.000641 \ 9 \\ &\alpha(\mathbf{N}) = 1.095 \times 10^{-6} \ 16; \ \alpha(\mathbf{O}) = 1.79 \times 10^{-7} \ 3; \ \alpha(\mathbf{P}) = 1.443 \times 10^{-8} \ 21; \\ &\alpha(\mathbf{IPF}) = 0.000639 \ 9 \end{aligned}$ |  |
| <sup>x</sup> 2075.0 5                    | 0.03 8                    |                        |                                            |         |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $2095.8^{\circ} 4$                       | 0.49 8                    | 2572.76?               | $(7/2^+)$                                  | 477.213 | $9/2^{+}$          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2111.84 13                               | 15.2 9                    | 2199.95                | (9/2 <sup>-</sup> )                        | 87.940  | 5/2+               | [M2]               | 0.001262 18        | $\alpha$ (K)=0.000919 <i>13</i> ; $\alpha$ (L)=0.0001170 <i>17</i> ; $\alpha$ (M)=2.42×10 <sup>-5</sup> <i>4</i> ;<br>$\alpha$ (N+)=0.000202<br>$\alpha$ (N)=5.32×10 <sup>-6</sup> <i>8</i> ; $\alpha$ (O)=8.71×10 <sup>-7</sup> <i>13</i> ; $\alpha$ (P)=7.02×10 <sup>-8</sup> <i>10</i> :                                                                                                              |  |
|                                          |                           |                        |                                            |         |                    |                    |                    | α(IPF)=0.000196 <i>3</i>                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 2119.2 2                                 | 32 2                      | 2250.00                | 7/2+,9/2+                                  | 130.804 | 7/2+               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2132.1 3                                 | 1.0 1                     | 2132.08                | 7/2,9/2+                                   | 0.0     | $5/2^{+}$          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2147.2 3                                 | 2.2.2                     |                        |                                            |         |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| $^{\circ}2160.04$                        | 0.90 10                   | 2208 52                | $7/2 0/2^+$                                | 120 804 | 7/2+               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| x2107.0 4                                | 192                       | 2290.31                | 1/2,9/2                                    | 150.604 | 112                |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2196.4 4                                 | 0.38 7                    | 2851.11                | $(9/2^{-}, 11/2^{+})$                      | 654.60  | $11/2^{+}$         |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2210.6 <sup>c</sup> 4                    | 1.05 8                    | 2298.5?                | 7/2,9/2+                                   | 87.940  | $5/2^{+}$          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <sup>x</sup> 2217.1 4                    | 0.40 6                    |                        |                                            |         |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2237.0 5                                 | 0.35 7                    | 2367.35                | $(7/2, 9/2)^+$                             | 130.804 | 7/2+               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2249.9 <sup>°</sup> 8                    | 0.19 5                    | 2250.00                | 7/2+,9/2+                                  | 0.0     | 5/2+               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2279.1 6                                 | 1.3 1                     | 2367.35                | (1/2,9/2)+                                 | 87.940  | $5/2^{+}$          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2291.2 /                                 | 0.41 0                    | 2851-11                | (9/2 - 11/2 +)                             | 535 589 | 11/2-              |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| <sup>x</sup> 2320.1 9                    | 0.32.5<br>0.72.7          | 2031.11                | (9/2 ,11/2 )                               | 555.500 | 11/2               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2349.0 10                                | 0.27 4                    |                        |                                            |         |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2367.6 10                                | 0.20 5                    | 2367.35                | $(7/2, 9/2)^+$                             | 0.0     | $5/2^{+}$          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2373.6 6                                 | 0.48 6                    | 2851.11                | $(9/2^{-}, 11/2^{+})$                      | 477.213 | 9/2+               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2441.8 <sup>°</sup> 11                   | 0.13 5                    | 2572.76?               | $(7/2^+)$                                  | 130.804 | 7/2+               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2474.8 <sup>°</sup> 11                   | 0.31 7                    | 2572.76?               | $(7/2^+)$                                  | 97.259  | $3/2^{+}$          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2575.7 4                                 | 0.63 6                    | 0724.00                | 7/2 - 0/2 +                                | 120.004 | 7/2+               |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2004.0 9                                 | 0.30 4                    | 2/34.8?                | 1/2, $9/2$ '<br>( $0/2^{-}$ , $11/2^{+}$ ) | 130.804 | 7/2 '<br>7/2+      |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 2720.5 10<br>2734.1 11<br>2863.4 13      | 0.16 3                    | 2831.11<br>2734.8?     | $(9/2^{-},11/2^{+})$<br>$7/2^{-},9/2^{+}$  | 0.0     | $5/2^+$            |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                          |  |

From ENSDF

 $^{133}_{57}$ La<sub>76</sub>-24

# $\gamma$ <sup>(133</sup>La) (continued)</sup>

<sup>†</sup> Additional information 1.

- <sup>±</sup> From 1978He16, except as noted. When  $\Delta E\gamma$  is not given and  $E\gamma$  is quoted to nearest tenth of a keV, evaluators assumed  $\Delta E=0.5$  keV;  $\Delta E=1$  keV otherwise.
- <sup>#</sup> From  $\alpha(\exp)$  taken from 1984Gr30 for Ey=42-617 keV, from 1987He16 for Ey=346-1781 keV.  $\alpha(\exp)$  normalized to  $\alpha(K)(477.22, E2)=0.00980$  (2002Ba85).

<sup>@</sup> From  $\alpha(K)$ exp, L subshell or K/L ratios.

- & Inserted into the scheme by evaluators from unplaced  $\gamma$ 's in 1995Ra12. For all transitions, the values of differences of level energies, where the transitions were placed, consist with transition energy values in the range of  $\Delta E \gamma$  values.
- <sup>a</sup> Observed in ce spectra only (1984Gr30).

<sup>b</sup>  $\gamma$  ray is shown as questionable in 1978He16.

<sup>c</sup> Placement of the transition is shown as questionable in 1978He16.

<sup>d</sup> For absolute intensity per 100 decays, multiply by  $\leq 0.039$ .

<sup>e</sup> Multiply placed with intensity suitably divided.

<sup>f</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.

### Decay Scheme



<sup>133</sup><sub>57</sub>La<sub>76</sub>



<sup>133</sup><sub>57</sub>La<sub>76</sub>





### Decay Scheme (continued)

Intensities: Relative  $I_{\gamma}$ @ Multiply placed: intensity suitably divided



 $^{133}_{57}$ La<sub>76</sub>

| Decay Scheme | (continued) |
|--------------|-------------|
|--------------|-------------|



<sup>133</sup><sub>57</sub>La<sub>76</sub>





<sup>133</sup><sub>57</sub>La<sub>76</sub>





