176 **Yb**(136 **Xe**,**X** γ) 2009Wa11

History

Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Yu. Khazov and A. Rodionov, F. G. Kondev	NDS 112, 855 (2011)	31-Oct-2010	

2009Wa11: ¹⁷⁶Yb,¹⁹²Os(¹³⁶Xe,X γ), E=820,840 MeV; measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, T_{1/2}. ¹³³I; deduced levels, J^{π} , δ , $\alpha(\exp)$, mult. GAMMASPHERE array consisting of 98 Compton-suppressed Ge detectors. Shell-model calculations.

¹³³I Levels

E(level) [†]	Jπ‡	T _{1/2}	Comments	
0.0 912.3 3 1559.4 4 1633.5 5 1728.1 5 2080.4 4	$7/2^+$ $11/2^+$ $15/2^+$ $19/2^-$ $15/2^-$ $15/2^-$ $15/2^+$ $10/2^+$	$20.83^{\#}$ h 8 9 [#] s 2 ≈170 [#] ns		
2434.3 5 2493.0 6 3107.1 6 3820.8 7 3892.8 7 4046.6 7	19/2 ⁺ 23/2 ⁺	0.78" µs 16 469 ns 15	$T_{1/2}$: from $\gamma(t)$ 2009Wa11.	

[†] From a least-squares fit to the E γ uncertainty of 0.3 keV for each γ ray by evaluators.

[‡] From 2009Wa11.

From Adopted Levels.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [#]	$\delta^{\#}$	α ^{&}	Comments
58.7	41 <i>1</i>	2493.0	$23/2^{+}$	2434.3	19/2+	E2		11.9 3	$\alpha(\exp) = 19 \ 4 \ (2009 \text{Wall})$
74.1	34 1	1633.5	19/2-	1559.4	$15/2^{+}$	(M2) [@]		23.5 5	
94.6 153.8	17 <i>1</i> ≈3.5	1728.1 4046.6	15/2-	1633.5 3892.8	19/2-	E2 [@]		2.14 4	
168.7 225.7	13 <i>1</i> ≈3.5	1728.1 4046.6	15/2-	1559.4 3820.8	15/2+	(E1) [@]		0.0472 7	
353.9	6 1	2434.3	$19/2^{+}$	2080.4	$15/2^{+}$				
521.0	4 1	2080.4	15/2+	1559.4	15/2+	M1(+E2)	-0.3 +6-7	0.0091 7	$(521\gamma)(647\gamma)(\theta): A_2=+0.27 9, A_4=+0.16 13.$
614.1	≈3.5	3107.1		2493.0	$23/2^{+}$				·
647.1	97 <i>1</i>	1559.4	$15/2^{+}$	912.3	$11/2^{+}$	E2		0.00429 6	
713.7	≈3.5	3820.8		3107.1					
785.7	≈3.5	3892.8		3107.1					
874.9	45 1	2434.3	19/2+	1559.4	15/2+	E2(+M3)	0.02 +6-5	0.00207 9	$(875\gamma)(647\gamma)(\theta): A_2=+0.112\ 25, A_4=+0.01\ 4.$
912.3	100 <i>1</i>	912.3	$11/2^{+}$	0.0	$7/2^{+}$	E2		0.00188 <i>3</i>	·
1168.1	5 1	2080.4	15/2+	912.3	11/2+	E2(+M3)	+0.1 +53-3	0.001 5	(1168 γ)(912 γ)(θ): A ₂ =+0.16 14, A ₄ =+0.24 19.

 $\gamma(^{133}I)$

[†] From ¹³³I level scheme shown in fig.1 in 2009Wa11. $\Delta E\gamma = 0.30$ keV for each γ rays are assumed by evaluators. [‡] Deduced by the evaluators from ¹³³I level scheme in fig. 1 of 2009Wa11, following authors statement that the widths of arrows represent relative intensities.

Continued on next page (footnotes at end of table)

176 Yb(136 Xe,X γ) **2009Wa11** (continued)

$\gamma(^{133}I)$ (continued)

[#] From $\gamma\gamma(\theta)$, except as noted; $\delta=0$ was fixed for 647γ and 912γ in the data analysis.

[@] From adopted gammas.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

176 **Yb**(136 **Xe**,**X** γ) 2009Wa11 Legend Level Scheme $\begin{array}{l} \bullet \quad I_{\gamma} < \ 2\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} < 10\% \times I_{\gamma}^{max} \\ \bullet \quad I_{\gamma} > 10\% \times I_{\gamma}^{max} \end{array}$ Intensities: Type not specified *⊢≷*ъ, ^{ъз}, - 153.8 23.8 + 285¹ 233.5 ي:^{تع}ر 4046.6 اح ج ک 3892.8 3820.8 + 61₄₁ 3107.1 + 38,7 E241 333.9 6 Q, S $\frac{23/2^+}{19/2^+}$ 2493.0 2434.3 469 ns 15 0.78 μs 16 + 521.0 ATIC + + 1/08,1 Eg. 1 168,7 (E1) 13 15/2+ 1 340 ES 12 2080.4 1 (A2) 34 \$3° $\frac{15/2^-}{19/2^-}$ 1728.1 $\approx \! 170 \text{ ns}$ 1633.5 9 s 2 1559.4 + 912.3 E2 100 $11/2^+$ 912.3 0.0 20.83 h 8 7/2+

 $^{133}_{53}\mathrm{I}_{80}$